Как найти напряжение в сопромате

Напряжением называется
интенсивность действия внутренних сил
в точке тела
,
то есть, напряжение — это внутреннее
усилие, приходящееся на единицу площади.
По своей природе напряжение —
это поверхностная
нагрузка,
возникающая на внутренних поверхностях
соприкасания частей тела.

 Деформацией называется
изменение размеров и формы тела под
действием приложенных сил.

Напряжением называется
отношение действующего усилия к площади
поперечного сечения тела или образца σ
= P/F
.
    В
зависимости от направления действия
силы нормальные напряжения подразделяют
на растягивающие и сжимающие.
Различают временные и остаточные напряжения.
    Временные
напряжения
 возникают
под действием внешней нагрузки и исчезают
после ее снятия, остаточные –
остаются в теле после прекращения
действия нагрузки.

Если
после прекращения действия внешних сил
изменения формы, структуры и свойств
тела полностью устраняются, то такая
деформация называется упругой.

При
возрастании напряжений выше предела
упругости деформация становится
необратимой. При снятии нагрузки
устраняется лишь упругая составляющая
деформации, оставшаяся часть
называется пластической
деформацией
.

Норм
напряжение:

Составляющая
напряжений, направленных по нормали к
площадке ее действия.

Касат
напряжение:

Составляющая
напряжений, лежащих в плоскости сечения.

Правила
знаков:

Нормальные
напряжения
 σ принимаются
положительными (т.е. σ>0),
если они растягивают выделенный элемент
бруса.

Касательные
напряжения
 τ принимаются
положительными (т.е. τ>0),
если они стремятся повернуть рассматриваемый
элемент бруса по ходу часовой стрелки.

При
растяжении-сжатии

Внутренняя
продольная сила N
,
которая стремится растянуть рассматриваемую
частьбруса,
считается положительной. Сжимающая
продольная сила имеет отрицательный
знак.

При
кручении

Внутренний
скручивающий момент T считается
положительным, если он стремится
повернуть рассматриваемую часть бруса
против хода часовой стрелки, при взгляде
на него со стороны внешней нормали.

При
изгибе

Внутренняя
поперечная сила Q
 считается
положительной, в случае, когда она
стремится повернуть рассматриваемую
часть бруса по ходу часовой стрелки.

Внутренний
изгибающий момент M положителен, когда
он стремится сжать верхние волокна
бруса.

Деформация
при растяжении-сжатии Δl считается
положительной, если длина стержняпри
этом увеличивается.

При
плоском поперечном изгибе

Вертикальное
перемещение сечения бруса принимается
положительным, если оно направлено
вверх от начального положения.

Правило
знаков при составлении уравнений статики


для проекций сил на оси системы координат

Проекции
внешних сил на оси системы координат
принимаются положительными, если их
направление совпадает с положительным
направлением соответствующей оси.


для моментов

Сосредоточенные
моменты и моменты сил в уравнениях
статики записываются с положительным
знаком, если они стремятся повернуть
рассматриваемую систему против хода
часовой стрелки.

Правило
знаков при составлении уравнений статики
для неподвижных систем

При
составлении уравнений равновесия
статичных (неподвижных) систем (например,
приопределении
опорных реакций
),
последние два правила упрощаются до
вида:

Проекции
сил и моменты, имеющие одинаковое
направление принимаются положительными,
а соответственно проекции сил и моменты
обратного направления – отрицательными.

ПЛОСКОЕ
НАПРЯЖЕННОЕ СОСТОЯНИЕ

Если
все векторы напряжений параллельны
одной и той же плоскости, напряженное
состояние называется плоским (рис. 1).
Иначе: напряженное состояние является
плоским, если одно из трех главных
напряжений равно нулю.

Рисунок
1.

Плоское
напряженное состояние реализуется в
пластине, нагруженной по ее контуру
силами, равнодействующие которых
расположены в ее срединной плоскости
(срединная плоскость – плоскость, делящая
пополам толщину пластины).

Направления
напряжений на рис. 1 приняты за
положительные. Угол α положителен, если
он откладывается от оси х к оси у. На
площадке с нормалью n:

 (1)

при .

Нормальное
напряжение σn положительно,
если оно растягивающее. Положительное
напряжение показано
на рис. 1. Правило знаков дляпо
формуле (1) то же самое, что для
напряженийпо
формуле (1).

Данное
здесь правило знаков относится к
наклонным площадкам. В статье «Объёмное
напряженное состояние»
 сформулировано
правило знаков для компонентов напряжений
в точке, т. е. для напряжений на площадках,
перпендикулярных осям координат. Это
правило знаков принято в теории упругости.

Главные
напряжения на площадках, перпендикулярных
плоскости напряжений:

(2)

(Поскольку
здесь рассматриваются только два главных
напряжения, они обозначены через σ1 и
σ2,
хотя может оказаться, что σ2<0,
т. е. σ2 не
будет средним из трех главных напряжений).
Угол α1 составляемый
нормалью к первой главной площадке с
осью х, находится из равенства:

(3)

Наибольшее 
и  наименьшее  касательные напряжения

(4)

Эти
напряжения действуют на площадках,
расположенных под углом 45° к первой и
второй главным площадкам.

Если
главные напряжения σ1 и
σ2 имеют
одинаковый знак, то наибольшее касательное
напряжение действует на площадке,
расположенной под углом 45° к плоскости
напряжений (плоскости ху). В этом случае:

В
стенке балки (здесь имеется в виду
обычная балка, а не балка-стенка)  при
ее изгибе силами реализуется частный
случай плоского напряженного состояния.
В стенках балки одно из нормальных
напряжений σравно
нулю. В этом случае напряжения получатся
по формулам (1), (2) и (4), если в этих формулах
положить σy=0.
Положение первой главной площадки
определяется формулой (3).

РАСТЯЖЕНИЕ
ПО ДВУМ НАПРАВЛЕНИЯМ
 (рис
2):

Рисунок
2.

При
σ1>0
и σ2<0 

При
σ1>0
и σ2>0 

При
σ1<0
и σ2<0 

ЧИСТЫЙ
СДВИГ
 (рис.
3)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Привет! В этом уроке начнём знакомиться с таким видом деформации, как растяжение (сжатие). Обычно, с этой темы и начинают изучать сопротивление материалов — объясняются основные понятия, которые дальше используются на протяжении всего обучения.

Задание, которое будем рассматривать в этой статье, как правило, дается студентам в первую очередь в качестве домашней работы. После изучения материалов этого урока ты научишься строить следующие эпюры: продольных сил, нормальных напряжений, а также осевых перемещений поперечных сечений. Не пугайся мудрёных названий, на самом деле, все эти эпюры строятся очень просто!

Что же давай приступим к изучению!

Построение эпюры продольных сил

В качестве примера возьмём простенькую расчётную схему стержня (также часто ступенчатый стержень, который работает на растяжение или сжатие, называют брусом). Загрузим наш стержень сосредоточенными силами, вот так:

Теперь наша первостепенная задача – построить эпюру продольных сил. И давай сразу будем разбираться в терминологии.

Что такое эпюра?

Эпюра – это график, который принято строить для визуализации распределения какой-либо величины. В нашем случае, продольной силы.

Построив такой график, мы можем увидеть, где определённая величина достигает максимальных или минимальных значений, что может быть полезно при проведении прочностных расчётов и других. Кроме того, эпюры могут служить вспомогательными инструментами для построения других эпюр, о чём мы будем говорить далее.

Что такое продольная сила?

Продольная сила – это внутренняя сила, которая возникает в сечениях стержня, работающего на растяжение или сжатие под действием внешней нагрузки.

Расчёт эпюры продольных сил

Чтобы построить эпюру продольных сил, нужно разбить брус на несколько участков, где эпюра будет иметь постоянное значение. Конкретно, для этого стержня, границами участков служат те точки, где прикладываются сосредоточенные силы.

То есть для нашего примера, нужно рассмотреть всего 2 участка:

Важно! Эпюра продольных сил, никак не зависит от формы бруса, в отличие от других эпюр, которые будем дальше рассчитывать.

Правило знаков для продольных сил

Правило знаков для продольных сил следующее:

  • если внешняя сила (F) растягивает брус, то продольная сила (N) в сечениях будет положительная;
  • если внешняя сила (F) сжимает брус, то продольная сила (N) в сечениях будет отрицательная.

Расчёт продольных сил на участках

На первом участке сила F1 растягивает брус на величину 5 кН, поэтому на этом участке, продольная сила будет положительной и равной:

Откладываем это значение на графике — эпюре. Эпюры, принято заштриховывать перпендикулярно к нулевой линии, а также указывать знак продольной силы:

На втором же участке, помимо силы F1, также действует сила F2, которая сжимает брус, поэтому в уравнении ее нужно учесть со знаком «минус»:

Откладываем полученное значение на эпюре:

Расчёт реакции в жёсткой заделке

Прежде всего, следует разобраться с тем, что вообще такое реакция. Всё дело в том, что помимо внутренних усилий, возникающих внутри нагруженного элемента конструкции, в том месте, где закреплён этот элемент, также возникают некоторые силы (сила), которые являются реакцией на внешнюю нагрузку и удерживающие эту конструкцию в состоянии статического равновесия.

Например, стул на котором ты сейчас сидишь и давишь на него своим весом, сопротивляется, чтобы удерживать тебя в состоянии равновесия. Если переводить на язык сопромата, твой вес в этом случае это внешняя сила, а сила с которой стул реагирует на твой вес – это реакция опоры, равная по модулю этой силе, но противоположно направленная.

Так и в нашей конструкции, в жёсткой заделке, также возникает реакция! Осталось только научиться — определять эту силу. Так как она должна компенсировать всю нагрузку, которая приложена к стержню, условие равновесия для нашей схемы можно записать так:

То есть, так как система находится в состоянии равновесия, то сумма всех сил, действующих на конструкцию, будет равна нулю.

Из этого условия равновесия и найдём искомую реакцию. Приложим некоторую силу R в месте, где закреплён наш стержень, при этом направить её можно в любую сторону, хоть влево, хоть вправо, главное, чтобы она была направлена горизонтально, так как у нас вся нагрузка, направлена так, то и реакция в заделке будет возникать исключительно — горизонтальная:

Чтобы составить уравнение равновесия, введём продольную ось – x, относительно неё будем составлять это уравнение, при этом силы, которые будут совпадать с положительным направлением оси x, в уравнении будем учитывать с «плюсом», а противоположно направленные с «минусом»:

Находим из этого уравнения реакцию в заделке:

А теперь, давай обсудим, что можем делать с этим теперь. В нашей конкретной задаче реакция может помочь проверить эпюру продольных сил. Если в первом уроке, считали стержень, строго справа налево, то теперь, зная численное значение реакции, можно рассчитать стержень и слева направо. Или как минимум увидеть, что левый участок эпюры, был построен верно.

Да, можно было вполне обойтись, без расчёта этой реакции конкретно в этом случае. Но, чаще всего, решение задач по сопромату начинается как раз с определения реакций, потому что без этого в большинстве случаев, невозможно определить внутренние усилия, а тем самым произвести какие-либо дальнейшие расчёты. Но с этим мы ещё многократно будем сталкиваться в следующих уроках, особенно в задачах на изгиб.

Построение эпюры нормальных напряжений

В отличие от продольных сил, нормальные напряжения уже зависят от формы бруса, а если точнее, то от площади его поперечных сечений.

Формула для определения нормальных напряжений выглядит так:

Таким образом, чтобы найти нормальное напряжение в любом сечении бруса, нужно: продольную силу в этом сечении разделить на площадь сечения.

Нормальные напряжения, как и продольные силы, изменяются по одному закону в пределах участков. Однако, так как форма бруса сказывается на распределении нормальных напряжений, здесь границами участков также служат места изменения геометрии бруса. Таким образом, для нашей расчетной схемы, нужно рассмотреть три участка и вычислить напряжения, соответственно, 3 раза:

Будем считать, что по условию задачи нам известны все параметры бруса, включая площади поперечных сечений: на первом участке площадь поперечного сечения A1=2 см2, а на втором и третьем A2 = A3 = 4 см2.

Вычисляем напряжения на каждом участке:

По полученным значениям строим эпюру нормальных напряжений:

По полученной эпюре нормальных напряжений, можно определить те поперечные сечения, в которых напряжения будут максимальными (все сечения на участке 1), что полезно при проведении прочностного расчёта.

Построение эпюры осевых перемещений поперечных сечений

Под действием внешней нагрузки поперечные сечения бруса перемещаются вдоль продольной оси. Под нагрузкой брус может как удлиниться, так и укоротиться. И в этом разделе будем учиться определять эти перемещения.

Для начала подготовимся к расчету и расставим точки в характерных сечениях. Чтобы потом к ним привязываться по ходу решения:

Если для первых двух эпюр, расчет начинался справа налево, от свободного конца. То здесь нам нужно начать считать с закрепленного конца, с жесткой заделки и так как сечение A, закреплено жестко, то никакие перемещения этого сечения невозможны, поэтому сразу можем записать:

Эпюра перемещений так же, как и остальные эпюры, меняется по одному закону, в пределах участков. Поэтому, чтобы построить эпюру, достаточно определить эти перемещения в характерных точках.

Перемещение точки B будет складываться из перемещения предыдущего расчетного сечения:

А также удлинения (или укорочения) участка между расчетными сечениями:

В свою очередь, удлинение (или укорочение) любого участка, можно определить по следующей формуле:

Поэтому формулу, для нахождения перемещения сечения B, можно записать и в другом виде:

Подставив все численные значения, найдем искомое перемещение:

Откладываем полученное значение на эпюре:

Также важно отметить, что при вычислении удлинения или укорочения участка (Δl), фактически площадь эпюры продольных сил (ω) делится на жесткость при растяжении или сжатии (EA).

Это свойство нам еще пригодится, когда будем рассматривать более сложную задачу.

Для точек C и D перемещения находятся аналогичным способом, так же как и для точки B, поэтому подробно комментировать не буду, приведу решение.

Точка C

Точка D

Откладываем полученные значения на эпюре:

По полученной эпюре, можно увидеть — в какую сторону и насколько переместится любое поперечное сечение стержня. Наиболее интересной характеристикой здесь является перемещение сечения D, то есть перемещение свободного конца бруса или фактическое удлинение. Как видим, сечение D переместится вправо на величину WD (т. к. значение WD — положительное). То есть, под действием всей нагрузки брус удлинится на 0.575 мм.

Учёт распределённой нагрузки

А теперь предлагаю рассмотреть немного измененную задачу. Приложим к нашему брусу дополнительно распределенную нагрузку q с интенсивностью равной 2 кН/м. После чего рассчитаем и построим все те же эпюры: продольных сил, нормальных напряжений и перемещений.

Чтобы учесть распределенную нагрузку, необходимо интенсивность нагрузки (q) умножить на длину участка, на котором действует нагрузка. В чистом виде, только от распределенной нагрузки, эпюра продольных сил будет треугольная.

Расчет продольных сил

На первом участке, сила по-прежнему растягивает стержень, записываем ее в уравнение с «плюсом», а распределенная нагрузка сжимает, соответственно, ее учитываем с «минусом»:

Найдем значения продольной силы на границах первого участка:

Откладываем рассчитанные значения:

На втором участке, распределенная нагрузка будет действовать точно так же, как и сосредоточенная сила:

Рассчитываем продольную силу на третьем участке:

Строим окончательную эпюру продольных сил:

Расчет нормальных напряжений

Нормальные напряжения рассчитываются точно так же, как и для первой задачи, единственное отличие только в том, что на первом участке необходимо рассчитать напряжения два раза — на границах участка:

По полученным значениям строим эпюру нормальных напряжений:

Расчет перемещений

Для точек A, B и С перемещения рассчитываются аналогично, как в первой задаче: 

Строим эпюру перемещений на втором и третьем участке:

Чтобы рассчитать удлинение на первом участке, нужно вычислить площадь эпюры продольных сил на этом участке и разделить на жесткость (EA):

Так как на этом участке, эпюра состоит из двух одинаковых прямоугольных треугольников, но по разные стороны от нулевой линии, с учетом знаков, ожидаемо, получим, что перемещение точки D, будет равно перемещению точки C.

Однако, необходимо учесть еще одну особенность. На участках, где действуют распределенные нагрузки, эпюры перемещений изменяются не по линейному закону, а по квадратичному.

То есть на участке с распределенной нагрузкой, эпюра перемещений всегда будет иметь либо выпуклость, либо вогнутость:

Чтобы понять, как же будет выглядеть эпюра перемещений, на участке с распределённой нагрузкой, нужно проанализировать эпюру продольных сил.

Как видим, начиная от точки C и до пересечения нулевой линии, эпюра продольных сил – отрицательна, а это значит, что эпюра перемещений, на этом отрезке, также должна убывать, как показано зелёной пунктирной линией. Поэтому изображаем эпюру перемещений следующим образом:

Но чтобы окончательно убедиться в верности наших рассуждений, можно также определить экстремум на эпюре перемещений (там, где эпюра достигает своего максимального значения). Или в той точке, где эпюра продольных сил пересекает нулевую линию:

Отмечаем найденное значение на эпюре перемещений:

Главные напряжения и главные площадки

Главные площадки – это площадки, проходящие через исследуемую точку, на которых Касательные напряжения отсутствуют.

Главные напряжения – это возникающие на главных площадках нормальные напряжения

В общем случае нагружения (при объемном напряженном состоянии) среди множества площадок, проходящих через некоторую точку тела, всегда можно найти три взаимно перпендикулярные главные площадки . В окрестности любой точки деформированного твердого тела всегда можно выделить элементарный параллелепипед, ориентированный в пространстве таким образом, что по его граням будут возникать только нормальные (главные) напряжения (см. рис. 6.2).

– наибольшее, а – наименьшее нормальное напряжение в исследуемой точке тела.

В частном случае нагружения может получиться так, что все три главных напряжения в исследуемой точке тела равны между собой. Тогда любая площадка, проведенная через эту точку, является главной площадкой .

По значениям главных напряжений дается оценка прочности материала в исследуемой точке деформированного твердого тела.

При плоском напряженном состоянии на грани элементарного параллелепипеда с нормалью х полностью отсутствует не только касательное, но и нормальное напряжение. Площадка тоже является главной площадкой , главное напряжение на которой равно нулю.

Пусть мы нашли для случая плоского напряженного состояния, что экстремальные напряжения в исследуемой точке тела равны МПа, а МПа. Индексы главных напряжений : МПа , МПа, МПа.

Если получилось МПа, а МПа, то тогда МПа , МПа , МПа .

Источник

iSopromat.ru

Главными называют нормальные напряжения на площадках рассматриваемого элемента с нулевыми касательными напряжениями.

Для любого случая нагружения бруса всегда можно найти такое положение мысленно выделенного в нем элемента, на гранях которого касательные напряжения будут отсутствовать (т.е. τ=0)

Площадки (грани элемента) на которых касательные напряжения равны нулю называются главными.

Таким образом, главные напряжения – это нормальные напряжения на главных площадках.

Обозначение главных напряжений

Главные напряжения принято обозначать буквой σ с индексом 1, 2 и 3.

При этом наибольшее, с учетом знака, напряжение обозначается как σ1 а наименьшее соответственно σ3.

Другими словами, главное напряжение, расположенное на числовой оси правее других – σ1, а то, которое левее всех σ3.

Например, для случая объемного напряженного состояния:

При плоском напряженном состоянии:

  1. Когда оба напряжения растягивающие
  2. По одной грани напряжение растягивающее, по другой сжимающее
  3. Оба напряжения сжимающие.

При линейном напряженном состоянии единственное напряжение всегда обозначается как σ1 или просто σ.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

iSopromat.ru

Теория напряженного состояния в окрестности точки деформируемого тела рассматривает совокупность напряжений, действующих по площадкам, проведенным через исследуемую точку.

На площадках общего положения действуют нормальные и касательные напряжения (рис. 1).

Правило знаков для этих напряжений в сопротивлении материалов принимается следующим: положительные нормальные напряжения направлены от сечения, а положительные касательные напряжения стремятся повернуть элемент по направлению хода часовой стрелки.

Площадки, на которых отсутствуют касательные напряжения, называются главными площадками, а нормальные напряжения, действующие по этим площадкам, — главными напряжениями.

В любой точке деформируемого тела можно выделить три взаимно перпендикулярные главные площадки, по которым действуют главные напряжения σ1, σ2 и σ3, причем σ1 ≥ σ2 ≥ σ3.

Если два главных напряжения из трех равны нулю, то такое напряженное состояние называется линейным или одноосным. Оно соответствует центральному (осевому) растяжению или сжатию и рассмотрено в предыдущем разделе.

Если одно из трех главных напряжений равно нулю, то такое напряженное состояние называется плоским или двуосным. Пример плоского напряженного состояния показан на рис. 2.

Одноименные напряжения на параллельных гранях бесконечно малого элемента численно равны друг другу. При плоском напряженном состоянии две противоположные грани всегда свободны от напряжений (на рис. 2 это фасадная и тыльная грани).

По закону парности касательных напряжений касательные напряжения на взаимно перпендикулярных площадках равны по величине и противоположны по знаку, т.е. τxy=-τyx.

При повороте прямоугольного элемента на угол α напряжения на его гранях изменяются и вычисляются по формулам:

По закону парности касательных напряжений τα= -τβ.

Величины σ связаны законом суммы нормальных напряжений

т.е. сумма величин нормальных напряжений, действующих по взаимно перпендикулярным площадкам, есть величина постоянная.

При некотором угле α0 касательные напряжения равны нулю, нормальные напряжения по данной площадке в данной точке максимальны ( σmax), а на перпендикулярной площадке – минимальны ( σmin).

Положение главных площадок определяется по формуле

Значения главных напряжений вычисляются по выражению

Наибольшие касательные напряжения действуют на площадках, наклонных к главным под углом 45 0 и рассчитываются по формулам:

Нормальные напряжения на этих площадках можно найти по формуле

Относительные линейные и угловые деформации ребер элемента можно вычислить на основании обобщенного закона Гука. Для плоского напряженного состояния

где

— модуль сдвига материала. Для стали G=80ГПа.

Относительное изменение объема материала в окрестностях исследуемой точки определяется по формуле

Удельная потенциальная энергия для плоского напряженного состояния

Напряженное состояние называется объемным или трехосным (рис. 3), если

Относительное изменение объема

где K – модуль объемной деформации

Удельная потенциальная энергия упругой деформации:
— полная

— изменения объема

— изменения формы

Относительные деформации и напряжения связаны обобщенным законом Гука:

Теории прочности

Для проверки прочности материала при плоском и объемном напряженном состояниях используются гипотезы (теории) прочности.

Каждая гипотеза прочности высказывает свое предположение о том, какой фактор вызывает появление опасного (предельного) состояния.

В зависимости от принятой гипотезы определяют эквивалентное напряжение σэкв и сравнивают его с допустимым напряжением на растяжение [ σ], то есть условие прочности записывается следующим образом:

Приведем зависимости для вычисления эквивалентных напряжений по трем гипотезам прочности, наиболее широко применяемым в современной расчетной практике.

Гипотеза наибольших касательных напряжений (III теория прочности)

Четвертая (энергетическая) гипотеза прочности

Гипотеза прочности Мора

где коэффициент k представляет собой отношение предельных напряжений при одноосном растяжении и сжатии. Можно принять

III и IV гипотезы применяют для оценки прочности пластичных материалов, а гипотезу Мора – как для пластичных, так и для хрупких.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

iSopromat.ru

Рассмотрим понятие о напряженном состоянии в точке и гипотезы прочности. Связь между напряжениями и внутренними силами. Объемное, плоское и линейное напряженное состояния.

Понятие о напряжениях в точке

На основании допущения о сплошности тела можно считать, что внутренние силы непрерывно распределены по всему сечению.

Выделим в произвольной точке малую площадку ΔA, а равнодействующую внутренних сил на этой площадке обозначим ΔR. Отношение

представляет собой среднее напряжение на данной площадке.

Если площадку ΔA уменьшить, то в пределе получим полное напряжение в точке

Полное напряжение р может быть разложено на три составляющие: по нормали к плоскости сечения и по двум осям в плоскости сечения. Проекция вектора полного напряжения р на нормаль обозначается через σ и называется нормальным напряжением.

Составляющие в плоскости сечения называются касательными напряжениями и обозначаются τ. В зависимости от расположения и наименования осей обозначения σ и τ снабжаются системой индексов.

Связь между напряжениями и внутренними силами

Установим связь между напряжениями и внутренними силами, возникающими в поперечном сечении стержня. Для этой цели выделим на сечении бесконечно малую площадку dA и приложим к ней элементарные силы σ dA, τx dA, τy dA.

Знак «А» у интеграла показывает, что интегрирование проводится по всей площади поперечного сечения. Приведённые формулы позволяют определить равнодействующие внутренних сил через напряжения, если известен закон распределения последних по сечению.

Обратную задачу с помощью только одних этих уравнений решить нельзя, так как одной и той же величине внутреннего усилия, например N, могут соответствовать различные законы распределения нормальных напряжений по сечению.

Одной из основных задач сопротивления материалов является задача об определении напряжений через равнодействующие внутренних сил. При этом оказывается, что решить эту задачу можно только, рассматривая параллельно с условиями равновесия и условия деформации бруса.

Объемное напряженное состояние

Совокупность напряжений, действующих по площадкам, проведенным через исследуемую точку, составляет напряженное состояние в рассматриваемой точке. На площадках общего положения действуют нормальные и касательные напряжения (рис. 3.1).

Значения касательных напряжений на взаимно перпендикулярных площадках подчиняются закону парности касательных напряжений:

Площадки, на которых отсутствуют касательные напряжения, называются главными, а нормальные напряжения, действующие по этим площадкам, называются главными напряжениями (рис. 3.2).

Обозначение главных напряжений:

Напряженное состояние называется объемным или трехосным, если

Относительное изменение объема:

где К – модуль объемной упругости,

Удельная потенциальная энергия упругой деформации:

Плоское напряженное состояние

Напряженное состояние называется плоским или двухосным, если одно из главных напряжений равно нулю (рис. 3.3).

Напряжения на наклонной площадке (рис. 3.4,а)

Величина и направление главных напряжений (рис. 3.4,б)

Линейное напряженное состояние

Напряженное состояние называется линейным или одноосным, если два главных напряжения равны нулю.

Проверка прочности при линейном напряженном состоянии проводится по условию прочности:

В сложном напряженном состоянии проверку прочности проводят по гипотезам прочности по эквивалентному напряжению:

Величина σэкв определяется, исходя из принятого критерия эквивалентности, лежащего в основе одной из гипотез разрушения или гипотез прочности, при котором сложное напряженное состояние заменяется эквивалентным ему растяжением или сжатием.

Гипотезы прочности

Существует 5 гипотез прочности:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Напряжение в точке тела

Напряженное состояние в точке тела является ключевым понятием в сопромате. Необходимость введения понятия напряжения в точке для суждения об интенсивности внутренних сил в некоторой точке сечения стержня вызвана неравномерным распределением внутренних сил по длине и поперечному сечению в общем случае нагружения.

Напряжение в точке тела K (обозначено буквой p) – это интенсивность внутренней силы изображение Напряжение сопромат, возникающей на бесконечно малой площадке изображение Напряжение сопроматв окрестности данной точки (рис. 1.4, а).

В количественном выражении изображение Напряжение сопромат.

изображение Напряжение сопромат

Понятие о напряжении в точке твердого тела в некотором смысле напоминает понятие о давлении, действующем, например, внутри жидкости. Однако давление в точке жидкости одинаково во всех направлениях. Если проведем через точку K тела другое сечение, иной будет внутренняя сила. Следовательно, иным будет и напряжение, хотя оно возникает в той же самой точке K.

Напряжение в точке тела в разных направлениях (на разных площадках, проходящих через данную точку тела) может быть различным (в частности, оно может возникать только в одном направлении).

Понятие о напряжении в точке деформируемого твердого тела ввел в 1822 г. французский ученый Огюстен Луи Коши.

Основную роль в расчетах прочности играет не полное напряжение p, а его проекции на оси координат x, y и z: нормальное напряжение (изображение Напряжение сопромат – сигма), направленное по перпендикуляру к площадке (параллельно оси z), и касательные напряжения (изображение Напряжение сопромат – тау), лежащие в плоскости сечения и направленные, соответственно, вдоль осей x и y (рис. 1.4, б). Первый индекс у касательных напряжений характеризует нормаль к площадке z, на которой они возникают.

Между полным (изображение Напряжение сопромат), нормальным (изображение Напряжение сопромат) и касательными напряжениями (изображение Напряжение сопромат и изображение Напряжение сопромат) существует зависимость:

изображение Напряжение сопромат.

Касательные напряжения служат мерой тенденции одной части сечения смещаться (или скользить) относительно другой его части.

Единицы нормальных и касательных напряжений в СИ – паскаль (Па). Один паскаль – это напряжение, при котором на площадке в один квадратный метр возникает внутренняя сила, равная одному ньютону (то есть равная, приблизительно, весу одного яблока). Как мы увидим в дальнейшем, эта единица напряжения мизерно мала. В сопромате чаще используются другие единицы:

1 МПа = 106 Па; 1 кН/см2 = 107 Па.

В технической системе единиц напряжения измеряются в килограммах силы на миллиметр (сантиметр) в квадрате (кгс/мм2 или кгс/см2) . Следует запомнить, что 1 кН/см2 » 1 кгс/мм2.

Напряжения в сопромате

1.5. ПОНЯТИЕ О НАПРЯЖЕНИЯХ Напряжение в точке по сечению – внутренняя сила взаимодействия, приходящаяся на единицу площади у этой точки. Напряжение – величина, характеризующая интенсивность внутренних усилий в точке. Рассмотренные ранее усилия N, Qy, Qz, My, Mz, T являются интегральным эквивалентом внутренних сил, распределенных по площади сечения. Эти силы характеризуются их интенсивностью (рис. 1.11) Напряжение нормальное σ – перпендикулярное к сечению, характеризует интенсивность сил отрыва или сжатия частиц элементов конструкции. Напряжение касательное τ – действующее в плоскости сечения, характеризует интенсивность сил, сдвигающих эти части в плоскости сечения. Напряжение полное p=σ +τ22 . Суммируя элементарные усилия σ•dA, τy•dA, τz•dA (рис. 1.12), распределенные по сечению и их моменты относительно координатных осей, получим (рис. 1.14) Единица измерения давления и механического напряжения паскаль (обозначение Па). Паскаль – давление, вызываемое силой 1 Н, равномерно распределенной по поверхности площадью 1 м2. 1 Па = 1 Н/м2; 1 МПа = 0,102 кгс/мм2; 1 МПа = 10,2 кгс/см2; 1 МПа = 1 Н/мм2; 1 кгс/мм2 = 9,81 МПа.

Добавить комментарий