Как найти напряженность электрического поля через плотность

Теорема Гаусса выражает связь между потоком вектора напряженности электрического поля через замкнутую поверхность и алгебраической суммой зарядов, заключенных в объеме, ограниченном этой поверхностью. О примерах использования теоремы Гаусса на практике поговорим в этой статье.

Присоединяйтесь к нам в телеграме, чтобы не только решать задачи, но и быть в курсе актуальных новостей для студентов всех специальностей.

Задачи на теорему Гаусса с решением

Если вам нужно сначала освежить теоретические знания, читайте подробную теорию по теореме Гаусса в нашем справочнике. Ну а перед решением задач не забудьте повторить памятку и на всякий случай держите под рукой полезные формулы.

Кстати, при решении задач на теорему Гаусса придется довольно часто брать интегралы. Хотите научиться делать это по-быстрому? У нас уже есть отдельная статья и видео на эту тему.

Задача на теорему Гаусса №1: напряженность поля плоскости

Условие

Определите напряженность поля бесконечной заряженной плоскости. Поверхностная плотность заряда сигма.

Решение

Линии напряженности перпендикулярны рассматриваемой плоскости и направлены в обе стороны от неё. Выберем в качестве гауссовой поверхности цилиндр с основанием, параллельным плоскости:

Задача на теорему Гаусса №1: напряженность поля плоскости

По теореме Гаусса:

Задача на теорему Гаусса №1: напряженность поля плоскости

Поток сквозь цилиндр равен сумме потоков сквозь боковую поверхность цилиндра и потокам сквозь оба его основания. Поток сквозь боковую поверхность равен нулю, так как линии напряженности параллельны ей:

Задача на теорему Гаусса №1: напряженность поля плоскости

Согласно теореме Гаусса:

Задача на теорему Гаусса №1: напряженность поля плоскости

Отсюда:

Задача на теорему Гаусса №1: напряженность поля плоскости

Ответ: см. выше.

Задача на теорему Гаусса №2: напряженность поля двух пластин

Условие

Электрическое поле создано двумя параллельными заряженными тонкими пластинами с поверхностными плотностями заряда + сигма  и -2 сигма. Площадь каждой пластины S, расстояние между пластинами d можно считать значительно меньшим их продольных размеров. Какова напряженность электрического поля, созданного этими пластинами?

Решение

Для электрического поля действует принцип суперпозиции: результирующее поле равно векторной сумме отдельных полей каждой пластины. Из предыдущей задачи мы знаем формулу, по которой вычисляется напряженность поля тонкой заряженной пластины, запишем для каждой из них:

Задача на теорему Гаусса №2: напряженность поля двух пластин

Векторы напряженности между пластинами совпадают по направлению, результирующая напряженность равна:

Задача на теорему Гаусса №2: напряженность поля двух пластин

Справа и слева от пластин, во внешней области, векторы направлены в разные стороны:

Задача на теорему Гаусса №2: напряженность поля двух пластин

Для наглядности приведем рисунок:

Задача на теорему Гаусса №2: напряженность поля двух пластин

Ответ: см. выше.

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

Условие

Определить напряженность электрического поля, создаваемую бесконечной тонкой нитью, равномерно заряженной с линейной плотностью заряда лямбда.

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

Решение

Напряженность будем искать при помощи теоремы Гаусса. Наша задача – определить зависимость напряженности от расстояния от нити. В качестве поверхности выберем цилиндр с боковыми стенками, параллельными нити. Будем учитывать только поток вектора напряженности через боковую поверхность, так как поток через основания цилиндра равен нулю:

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

Заряд нити внутри рассматриваемой поверхности равен заряду отрезка нити длиной l:

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

По теореме Гаусса:

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

Отсюда:

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

Ответ: см. выше.

Задача с применением теоремы Гаусса №4

Условие

Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределённым зарядом (τ = 10 нКл/м). Определить кинетическую энергию Т2 электрона в точке 2, если в точке 1 его кинетическая энергия Т1 = 200 эВ. Расстояние точки 2 от линии равно а = 0,5 см, точки 1b=1,5 см.

Задача с применением теоремы Гаусса №4

Решение

Ранее рассмотренные задачи были примерами вычисления полей с помощью теоремы Гаусса. Теперь рассмотрим задачу, которая решается сиспользованием этой информации. Из предыдущей задачи возьмем выражение для напряженности поля заряженной нити:

Задача с применением теоремы Гаусса №4

Разность потенциалов поля в двух точках будет равна:

Задача с применением теоремы Гаусса №4

При прохождении этой разницы потенциалов электрон приобретёт кинетическую энергию:

Задача с применением теоремы Гаусса №4

Конечная энергия частицы будет равна:

Задача с применением теоремы Гаусса №4

Получим:

Задача с применением теоремы Гаусса №4

Ответ: 397.6 эВ.

Задача на теорему Гаусса №5: поток электрического поля

Условие

Два точечных заряда q и –q расположены на расстоянии 2l друг от друга. Найти поток вектора напряженности через круг радиуса R. Плоскость круга проходит через его середину и перпендикулярна отрезку прямой, соединяющей заряды.

Решение

Задача на теорему Гаусса №5: поток электрического поля

Рассмотрим элементарный поток результирующего электрического поля через бесконечно малую кольцевую зону круга: 

Задача на теорему Гаусса №5: поток электрического поля

В записи потока учтено, что вектор напряженности перпендикулярен поверхности круга. Выразим напряженность электрического поля через «ро», используя подобие треугольников, показанных на рисунке:

Задача на теорему Гаусса №5: поток электрического поля

Вычисление потока сводится к взятию интеграла:

Задача на теорему Гаусса №5: поток электрического поля

Ответ: см. выше.

Примеры применения теоремы Гаусса можно найти не только в электростатике, но и в других областях физики.

Вопросы на теорему Гаусса

Вопрос 1. Сформулируйте теорему Гаусса.

Ответ. Теорема Гаусса гласит:

Поток вектора напряженности электростатического поля через замкнутую поверхность равен алгебраической сумме зарядов внутри поверхности, деленной на эпсилон нулевое (электрическую постоянную).

Вопросы на теорему Гаусса

Вопрос 2. Что такое поток вектора напряженности?

Ответ. Поток вектора напряженности – скалярная физическая величина, определяемая как число линий вектора напряженности, пронизывающих некоторую поверхность S. Поток напряженности электрического поля через поверхность S конечного размера определяется как алгебраическая сумма элементарных потоков:

Вопросы на теорему Гаусса

Вопрос 3. Что такое силовые линии напряженности?

Ответ. Это линии, с помощью которых используются для графического представления поля:

  • касательная к силовой линии в каждой точке пространства направлена вдоль вектора поля;
  • густота силовых линий пропорциональна напряженности поля в данной точке;
  • поток вектора напряженности пропорционален числу силовых линий, пронизывающих поверхность.

Вопрос 4. Где начинаются и где заканчиваются силовые линии?

Ответ. Силовые линии начинаются и заканчиваются на зарядах, оставаясь непрерывными в пустом пространстве.

Вопрос 5. Верно ли утвержление: теорема Гаусса справедлива только для неподвижных зарядов.

Ответ. Нет, так как заряд частицы не зависит от ее скорости.

Нужна помощь в решении задач и других студенческих заданий? Обратитесь в профессиональный студенческий сервис за качественным решением проблем.

I. Краткие теоретические сведения

Теорема Гаусса: поток векторасквозь замкнутую поверхность равен
алгебраической сумме зарядов внутри
этой поверхности, деленной на.

.

Число задач, легко решаемых с помощью
теоремы Гаусса, ограничено. Применять
теорему Гаусса эффективно лишь в том
случае, когда поле обладает специфической
симметрией – плоской, сферической или
цилиндрической. В этом случае легко
найти достаточно простую замкнутую
гауссову поверхность.

Для упрощения математических расчетов
во многих случаях истинное распределение
точечных дискретных зарядов заменяют
непрерывным распределением с некоторой
объемной ,
поверхностнойили линейнойплотностью.

Объемная плотность заряда:

.

Поверхностная плотность заряда:

.

Линейная
плотность заряда:

.

II. Примеры решения задач

Пример
2.1.
Найти поле равномерно заряженного
по объему зарядовой плотностьюбесконечного цилиндра на расстоянииrот его оси. Радиус цилиндраR.

Решение.

Электростатическое поле равномерно
заряженного цилиндра имеет радиальный
характер: направление вектора Eв любой точке перпендикулярно оси
цилиндра, а модуль вектораEзависит только от расстоянияrдо оси цилиндра. (рис.2.1.). Ясно, что при
такой конфигурации поля в качестве
гауссовой поверхности нужно взять
цилиндр радиусаr, ось
которого совпадает с осью данного
цилиндра (рис. 2.2.). Тогда модуль вектораEна гауссовой
поверхности всюду имеет одинаковое
значение (данный факт позволяет вынести
Eза знак интеграла).

Рассмотрим два случая:

1) Если r<R,
то поток вектораE
сквозь боковую поверхность гауссова
цилиндра примет вид:

,

где– площадь боковой поверхности гауссова
цилиндра высотойh.

Заряд, заключенный внутри гауссовой
поверхности, равен:

где V
объем цилиндра, в котором сосредоточен
заряд. В данном случаеVсовпадает с объемом гауссова цилиндра.

.

2) При r>R

.

Теперь Vне совпадает с объемом гауссова цилиндра

.

Тогда :

.

Пример 2.2.Бесконечно длинный
цилиндр радиусаRзаряжен с объемной плотностью,a– постоянная,r
расстояние от оси цилиндра. НайтиE(r).

Решение.

Все рассуждения относительно выбора
гауссовой поверхности повторяют
предыдущую задачу. Поэтому сразу перейдем
к рассмотрению двух случаев.

  1. При r<Rи.
    Так как объемная плотность является
    функцией расстоянияr,
    тонельзя
    выносить за знак интеграла, как это
    делалось ранее.

.

Тогда

.

2) При r>R

.

Следует
обратить внимание, что интегрирование
идет в пределах от 0 до R.
В пространстве отRдоrзаряда нет.

Пример
2.3.
На оси бесконечно длинного
полого цилиндра радиусаRрасположена бесконечная нить, заряженная
с линейной плотностью.
Пространство за цилиндром заряжено с
объемной плотностью,0
постоянная,r– расстояние
от оси цилиндра. НайтиE(r).

Решение.

Поле обладает цилиндрической симметрией,
поэтому выбор гауссовой поверхности
очевиден.

1) При r<Rсуществует только электростатическое
поле, созданное нитью

.

Заряд:

2) При r>Rв области существует как поле нити, так
и поле, создаваемое заряженной средой.
В силу принципа суперпозиции:

.

Заметим, что
поле среды также обладает цилиндрической
симметрией, поэтому от векторов в
принципе суперпозиции можно перейти к
модулям:

.

Определим
поле среды:

При
поле, создаваемое нитью, стремится к
нулю; поле же среды с расстоянием растет,
что связано с возрастающей от расстояния
объемной плотностью заряда.

Пример
5.4.
Внутри бесконечно длинного
равномерно заряженного цилиндра имеется
бесконечная цилиндрическая полость
(Рис.2.3). Объемная плотность заряда
цилиндра. Ось
цилиндрической полости параллельна
оси цилиндра и смещена относительно
нее на расстояние, характеризуемое
вектором.
НайтиEвнутри полости.

Решение.

При решении данной задачи пользуются
модельным представлением: вместо
цилиндра с полостью рассматривают
равномерно заряженный (для определенности
пусть
)
большой цилиндр и отрицательно заряженный
сцилиндр меньшего радиуса в нем. Такая
модель соответствует исходной постановке
задачи, так как в области полости
отрицательные и положительные заряды
компенсируют друг друга, и позволяет
использовать принцип суперпозиции, что
значительно упрощает решение задачи.

Определим напряженность поля большого
цилиндра в точке, характеризуемой
радиус-вектором
(рис. 2.4):

Аналогично,
.
В векторной форме общее поле внутри
полости имеет вид:

.

Знак «-» появился из-за того, что цилиндр
меньшего диаметра заряжен отрицательно.

.

Таким, образом, поле в полости является
однородным, и вектор
направлен параллельно вектору.
Этот вывод справедлив независимо от
соотношения радиусов цилиндров и
расстояния между их центрами.

Пример
2.5.
Две длинные параллельные нити
равномерно заряжены каждая с линейной
плотностью.
Расстояние между нитямиl.
Найти максимальное значение модуля
напряженности электрического поля в
плоскости симметрии этой системы,
расположенной между нитями.

Решение.

Модуль вектора напряженности каждой
нити легко определить с помощью теоремы
Гаусса. Действительно, выбирая в качестве
гауссовой поверхности цилиндр, получим:

.

Внекоторой точкеО(рис. 2.5), лежащей
в плоскости симметрии данной системы,
напряженность общего электростатического
поля нитей определим из принципа
суперпозиции:

,

или в проекциях
на направление вектора
:

.

Так как
,
то

.

Найдем
максимальное значение
:

.

Пример
2.6.
Шар радиусаRимеет положительный заряд, объемная
плотность которого зависит только от
расстоянияrдо его
центра как,
где0
постоянная. Найти: а) модуль напряженности
электростатического поля внутри и вне
шара как функциюr; б)
максимальное значение модуля напряженностии соответствующее ему значение.

Решение.

а) Поле шара является центрально-симметричным:
вектор напряженности электростатического
поля
направлен по радиус-векторуи проходит через центр шара, а модуль
векторазависит только от расстояниядо центра шара. В качестве гауссовой
поверхности необходимо выбрать
концентрическую сферу радиуса . Рассмотрим
два случая:

1) При r<Rнайдем поток векторасквозь гауссову сферу.

,

так
как
.

На гауссовой поверхности
,
поэтомуEможно вынести
за знак интеграла. Следовательно,,
где
площадь гауссовой сферы.

Найдем заряд q,
заключенный внутри гауссовой поверхности:

,
,

Подставим
полученные значения заряда и потока в
формулу теоремы Гаусса:

2) При r>R

.

б) Найдем максимальное значение модуля
напряженности электростатического
поля шара
.
Максимум имеется приr<R,
что следует непосредственно из вида
зависимостиE(r).
Найдем производную:

,

.

Пример
2.7.
Вычислить напряженность
электростатического поля равномерно
заряженной зарядомqсферы радиусаR.

Решение.

В качестве гауссовой поверхности
выбираем сферу радиуса r.

  1. Пусть r>R.
    Тогда

2) Пусть r<R.
В этом случае замкнутая поверхность не
содержит внутри зарядов, поэтому в этой
области всюду,
т.е. внутри заряженной сферической
поверхности электростатическое поле
отсутствует.

Пример
2.8.
Система состоит из шара радиусаR, заряженного сферически
симметрично, и окружающей среды,
заполненной зарядом с объемной плотностью,
гдеa– постоянная иrрасстояние до центра. Найти заряд шара,
при котором модуль напряженности
электрического поля вне шара не зависит
отr.

Решение.

Так как шар заряжен сферически симметрично,
то в качестве гауссовой поверхности
выбираем сферу радиуса r.

Пусть искомый заряд шара q.
Напряженность электростатического
поля приr>Rравна сумме:

.

Тогда
.

Напряженность
Eне зависит отrпри условии, что.

Пример
2
.9.Найти
напряженность электрического поля в
области пересечения двух шаров, равномерно
заполненные разноименными по знаку
зарядами с объемной плотностьюи,
если расстояние между центрами шаров
характеризуется вектором.

Решение.

При решении воспользуемся принципом
суперпозиции:
,
гдеи– напряженности полей, создаваемых
шарами с объемными плотностямии,
соответственно, в области пересечения

(Рис. 2.6). Легко определить, что

,
тогда

.

Таким образом, поле внутри области
пересечения двух разноименно заряженных
шаров однородно, и вектор напряженности
параллелен характеристическому вектору.

Пример
2.10.
Найти напряженностьполя внутри сферы радиусаR,
по которой распределен заряд с
поверхностной плотностью,
где
постоянная,
полярный угол. При решении использовать
тот факт, что такое распределение заряда
можно представить как результат малого
сдвига друг относительно друга двух
равномерно заряженных шаров, заряды
которых одинаковы по модулю и противоположны
по знаку.

Решение.

Рассмотрим два шара одинакового радиуса
R, имеющие равномерно
распределенные по объему заряды с
плотностьюи.
Пусть центры шаров смещены друг
относительно друга на вектор(Рис. 2.7). В области пересечения шаров
поле является однородным, что было
показано в предыдущей задаче:

.

При малом смещении шаров, т. е. при малой
длине вектора
мы можем перейти к представлению о
поверхностной плотности заряда на
сфере. Определим толщину заряженного
слоя в точках, определяемых углом.
Для этого рассмотрим,
по теореме косинусов:

,

где R
радиус шара. Так как по условиюR>>a,
R>>l

.

При
.

Зная толщину
слоя и объемную плотность, получаем,
что на единицу площади в этом месте
приходится заряд
,
где.
Таким образом, мы пришли к выводу, что
результат малого сдвига друг относительно
друга двух равномерно заряженных шаров
приведет к такому же результату, как
если бы у нас была сфера с поверхностной
плотностью.

Напряженность
можно представить как,
где– орт осиz, от которой
отсчитывается угол.

Пример
2.11.
Найти поле плоскости, равномерно
заряженной зарядом с поверхностной
плотностью.

Решение.

Из симметрии задачи следует, что вектор
перпендикулярен плоскости. Он направлен
от плоскости, если плоскость заряжена
положительно, и к плоскости, если ее
заряд отрицателен. В симметричных
относительно плоскости точках вектородинаков по модулю. Заметив это, построим
гауссову поверхность в виде цилиндра
с площадью оснований,
расположенными симметрично по разные
стороны плоскости. Образующие гауссова
цилиндра перпендикулярны плоскости
(Рис. 2.8).

Тогда поток вектора напряженности
электростатического поля плоскости
через одно основание цилиндра будет
,
а через оба основания.
Поток через боковую поверхность равен
нулю, т.к.ивзаимно перпендикулярны. Таким образом,.
Заряд, содержащийся внутри гауссова
цилиндра, равен:.
Следовательно,.
Т.е. напряженность поля бесконечной
равномерно заряженной плоскости не
зависит от расстояния до нее.

Пример
2.12.
Бесконечно большая пластина
толщиной 2dравномерно
заряжена с объемной плотностью,0– постоянная.
Осьxперпендикулярна
плоскости пластины, начало координат
в середине пластины. Найти напряженность
электрического поля как функцию
расстоянияx.

Решение.

Выберем начало координат в средней
плоскости пластинки, а ось xнаправим перпендикулярно к ней (Рис.
2.9). Тогда, проводя рассуждения, как в
предыдущей задаче, рассмотрим два
случая:

1) При x<d

,
,

где V
объем цилиндра, в котором находится
заряд. В данном случаеVсовпадает с объемом гауссова цилиндра.

.

2) При x>d

.

Интегрирование
в этом случае идет в пределах от
до;
в пределах отдозаряда нет, поэтому интеграл обращается
в нуль.

Если непрерывно уменьшать толщину
пластинки d, одновременно
увеличивая плотность электричества0, чтобы
величинаоставалась постоянной, то в пределе
получится бесконечная равномерно
заряженная плоскость с поверхностной
плотностью электричества,
а напряженность поля будет определяться
формулой,
полученной в предыдущей задаче.

Пример
2.13.
Какое поле создавали бы две
безграничные плоскости, если бы одна
была заряжена с поверхностной плотностью
заряда,
а другая –,
и плоскости были перпендикулярны друг
другу?

Решение.

Воспользуемся
формулой напряженности равномерно
заряженной плоскости, полученной в
задаче 2.11:.

Тогда напряженности полей плоскостей
равны:

.

Напряженность общего поля определим
по теореме Пифагора (Рис. 2.10):

.

Это поле является однородным, и вектор
напряженности
составляет некоторый угол с плоскостью
одной из пластин. Проведенные расчеты
справедливы вдали от линии пересечения
пластин.

Электростатика: элементы учебной физики
Лекция 5. Напряжённость электрического поля

Продолжение. См. № 17,
18, 19, 20/07

В.В.МАЙЕР,
ГОУ ВПО ГГПИ им. В.Г.Короленко, г. Глазов,
Республика Удмуртия

varaksina_ei@list.ru

Электростатика: элементы учебной
физики

Понятие электрического поля оказалось
плодотворным потому, что удалось ввести
количественные характеристики, которые
позволяют решать конкретные физические задачи. К
ним в первую очередь относятся напряжённость и
потенциал электрического поля.

Экспериментальные исследования
учащихся должны показать, что напряжённость
реально может быть измерена и что эта величина
действительно характеризует электрическое поле.
Относительно новое для школьников – один и тот
же прибор, электростатический динамометр, при
соответствующей градуировке может быть
использован в качестве измерителя и силы, и
напряжённости. Однако это вовсе не значит, что
этим прибором можно измерить любую
электростатическую величину: ни при какой
градуировке электростатического динамометра не
удастся получить прибор, измеряющий, скажем,
потенциал электрического поля.

Принципиально важно
экспериментальное обоснование принципа
суперпозиции электрических полей. Такое
обоснование можно было бы осуществить уже при
введении понятия электрического поля, но
предпочтительнее сделать это, когда учащиеся
будут ознакомлены с понятием напряжённости.

5.1. Напряжённость электрического
поля.
Силовой характеристикой
электрического поля является вектор
напряжённости электрического поля E,
равный отношению вектора силы, действующей в
данной точке поля на пробный положительный
заряд, к величине этого заряда:


         ( 5.1)

Напряжённость в системе единиц СИ
выражается в ньютонах на кулон (Н/Кл).

5.2. Напряжённость электрического
поля точечного заряда.
Во многих задачах
электростатики размерами заряженных тел по
сравнению с расстояниями до точек наблюдения
можно пренебречь. В таких случаях говорят о
точечных зарядах. Понятно, что на самом деле
никаких точечных зарядов или заряженных точек в
природе не существует, — это просто удобная
абстракция.

Закон Кулона, как вы знаете, справедлив
именно для точечных зарядов. Непосредственно из
закона Кулона следует, что модуль вектора
напряжённости электрического поля точечного
заряда Q:


         (5.2)

где R – расстояние до точки
наблюдения, q – пробный положительный заряд.

5.3. Силовые линии
электростатического поля.
Фарадей, который
ввёл понятие электрического поля, внутренним
взором видел заряды, окружённые полями.
Изображать их он стал линиями, вдоль которых на
пробный заряд со стороны поля действуют силы. Силовые
линии
электростатического поля часто
называют линиями напряжённости, т.к. вектор
напряжённости электрического поля в любой точке
такой линии касателен к ней. Вместо пробного
заряда для построения силовых линий удобнее
использовать электрический диполь.

Введя в электрическое поле
положительный пробный заряд на нити, по его
отклонению от положения равновесия определим
направление напряжённости поля. Уберём заряд и
вместо него в ту же точку внесём диполь. При
этом обнаружим, что он повернулся своим
положительным полюсом в направлении вектора
напряжённости электрического поля. Используя
диполь, нетрудно экспериментально доказать, что
электрическое поле можно характеризовать
силовыми линиями, т.е. такими линиями, в каждой
точке которых напряжённость поля является
касательной к ним.

Для этого создадим произвольное
электрическое поле, введём в него диполь и
отметим положение его положительного и
отрицательного полюсов. Переместим диполь так,
чтобы его, например, отрицательный полюс совпал с
точкой, в которой находился положительный.
Многократно повторяя эту операцию, получим
совокупность точек. Соединив эти точки плавной
линией, получим силовую линию исследуемого
электростатического поля.

Опыт показывает, что через каждую
точку поля проходит только одна силовая линия.
Если бы было не так, то в точке пересечения двух
силовых линий одного поля на заряд действовали
бы разные силы.

Повторяя описанные выше действия,
построим семейство силовых линий так, чтобы их
начальные точки находились на поверхности
заряженного тела на равных расстояниях друг от
друга. Обнаружим, что силовые линии
располагаются с различной густотой. Внесём в
поле пробный заряд на нити в области с
максимальной и минимальной густотой силовых
линий и обнаружим, что в этих областях
напряжённость электрического поля
соответственно максимальна и минимальна.

Силовые линии сгущаются возле зарядов,
т.е. там, где модуль вектора напряжённости
электрического поля больше. Значит, густота
силовых линий определяется напряжённостью поля.
Семейство силовых линий в принципе может
полностью охарактеризовать электрическое поле.

Проделанные опыты показывают, что
силовые линии начинаются или заканчиваются на
зарядах, идут в бесконечность или выходят из неё.
В электростатическом поле замкнутых силовых
линий нет.

5.4. Принцип суперпозиции
напряжённостей электростатических полей.

Из принципа суперпозиции полей следует, что сила,
действующая на пробный заряд со стороны других
зарядов, равна геометрической сумме всех
действующих на заряд сил по отдельности. Но если
это так, то напряжённости электрических полей,
равные отношениям сил к величине пробного
заряда, складываются подобно силам.

Таким образом, для электрических полей
справедлив принцип суперпозиции в
следующей формулировке: напряжённость
результирующего электрического поля есть
геометрическая (векторная) сумма напряжённостей
полей, создаваемых отдельными зарядами:

E = E1 + E2 + E3 + …
         (5.3)

Применение принципа суперпозиции для
напряжённостей позволяет существенно облегчить
решение многих задач электростатики.

5.5. Поток вектора напряжённости
электрического поля.
Представим себе
точечный положительный заряд Q, находящийся
в центре сферической поверхности 1 радиусом r.
В точках этой поверхности напряжённость
электрического поля Так как площадь

поверхности сферы S = 4r2, то её
произведение на напряжённость электрического
поля не зависит ни от чего, кроме заряда:


         (5.4)

поэтому характеризует электрическое
поле в целом. Эта величина получила название потока
вектора напряжённости электрического поля.

Поток напряжённости через
концентрические сферические поверхности 1 и
2 одинаков. Так как он характеризует поле
заряда в целом, нужно, чтобы он оставался тем же и
для произвольной замкнутой поверхности 3. Но
для неё вектор напряжённости уже не является
нормалью к элементу поверхности. Поэтому для
определения потока вектора E через
элемент поверхности вместо площади этого
элемента следует брать площадь его проекции на
плоскость, перпендикулярную вектору E.
Условимся поток считать положительным, если
вектор напряжённости выходит из замкнутой
поверхности, и отрицательным, если он входит в
неё. Если заряд находится вне замкнутой
поверхности 4, то поток напряжённости через
неё равен нулю. Дело в том, что входящий внутрь
области поток по модулю равен выходящему.

5.6. Теорема Гаусса. Мысленно
переместим заряд из центра сферической
поверхности в любую точку внутри неё. Очевидно,
поток вектора напряжённости электрического поля
от этого не изменится, т.к., по самому определению,
он один и тот же для любой замкнутой поверхности,
окружающей заряд. Разместим внутри этой
поверхности не один, а несколько в общем случае
различных зарядов. По принципу суперпозиции
электрические поля этих зарядов не влияют друг
на друга, значит, потоки, созданные каждым
зарядом по отдельности, остаются неизменными.
Результирующий поток, очевидно, равен сумме
потоков от всех зарядов.

Это и есть теорема Гаусса: поток
вектора напряжённости через произвольную
замкнутую поверхность равен алгебраической
сумме зарядов, расположенных внутри этой
поверхности, делённой на электрическую
постоянную:


         (5.5)

Если алгебраическая сумма зарядов
внутри замкнутой поверхности равна нулю, то
поток напряжённости электрического поля через
эту поверхность также равен нулю. Это понятно,
поскольку положительные заряды внутри
поверхности создают положительный поток, а
отрицательные – равный ему по модулю
отрицательный.

5.7. Поверхностная плотность
заряда.
Если проводящему телу сообщить
заряд, то он будет распределён по его
поверхности. В общем случае на участках
поверхности одинаковой площади окажутся разные
заряды. Отношение заряда Q к площади поверхности S, на которой
он распределён, называется поверхностной
плотностью заряда

        
(5.6)

Поверхностная плотность заряда
выражается в кулонах на квадратный метр (Кл/м2).

5.8. Напряжённость электрического
поля заряженного шара.
Используя теорему
Гаусса, нетрудно определить напряжённость
электрического поля, созданного заряженным
проводящим шаром. Действительно, если на
поверхности сферы радиусом r > R, центр
которой совпадает с центром шара, равномерно
распределён заряд Q, то поток вектора E
через сферическую поверхность радиусом r,
согласно теореме Гаусса, равен:

Отсюда напряжённость электрического
поля на расстоянии r от центра заряженной сферы
равна


         (5.7)

Сравнивая (5.7) с (5.2), приходим к выводу,
что напряжённость электрического поля
заряженного шара равна напряжённости такого же
точечного заряда, расположенного в центре шара.

5.9. Напряжённость электрического поля
заряженной плоскости.
Рассмотрим
бесконечную плоскость, заряженную равномерно с
поверхностной плотностью заряда . Электрическое поле такой
поверхности однородно, причём силовые линии
перпендикулярны поверхности. Чтобы найти
напряжённость поля, воспользуемся теоремой
Гаусса. Для этого построим замкнутую
цилиндрическую поверхность, ось которой
параллельна силовым линиям поля, а основания
площадью S находятся по разные стороны от
поверхности. Поток напряжённости через боковую
поверхность цилиндра равен нулю, т.к. силовые
линии её не пересекают. Поэтому полный поток
напряжённости через выбранную поверхность равен
сумме потоков через основания цилиндра: N = 2 • ЕS.
Полный заряд внутри цилиндра равен Q = S. Согласно
теореме Гаусса,
Отсюда напряжённость электрического поля

 
         (5.8)

Итак, напряжённость электрического
поля заряженной плоскости равна поверхностной
плотности заряда, делённой на удвоенное значение
электрической постоянной.

5.10. Напряжённость электрического
поля разноимённо заряженных параллельных
плоскостей.
Пусть некоторая плоскость
заряжена равномерно с плотностью заряда . Параллельно этой
плоскости расположим вторую, с такой же
плотностью заряда противоположного знака.
Найдём напряжённость электрического поля в этом
случае.

Каждая плоскость создаёт поле
напряжённостью E’/(20).
Согласно принципу суперпозиции, напряжённость
результирующего электрического поля равна сумме
напряжённостей этих полей. Так как между
плоскостями напряжённости полей имеют
одинаковое направление, то результирующая
напряжённость Е = 2E’:

(5.9)

Следовательно, напряжённость
электрического поля между параллельными
плоскостями, несущими равные по модулю
разноимённые заряды, равна поверхностной
плотности заряда одной из плоскостей, делённой
на электрическую постоянную. Вне плоскостей
векторы напряжённостей направлены
противоположно и, поскольку их модули равны, поле
вообще отсутствует. Обратите внимание, что не
важно, проводят плоскости электричество или нет.

Исследование 5.1. Напряжённость
электрического поля

Проблема. Возможна ли в доступном
учебном эксперименте количественная оценка
напряжённости электрического поля, создаваемого
зарядами на наэлектризованных телах?

Задание. Используя
электростатический динамометр, разработайте
методику введения понятия напряжённости
электрического поля и предложите прибор для
измерения напряжённостей.

Вариант выполнения. Проводящему
шару сообщите заряд, для определённости
положительный. На пробный шарик
электростатического динамометра (см.
исследование 3.4) также нанесите некоторый заряд.
Введите динамометр в электрическое поле
заряженного шара и разверните так, чтобы его
показания стали максимальны. Это означает, что
пробный шарик электростатического динамометра
отклоняется в ту же сторону, куда направлена
сила, действующая на него со стороны
электрического поля.

Прикоснитесь к пробному шарику таким
же незаряженным шариком и уберите его: пробный
заряд уменьшится в два раза, показания
динамометра для того же расстояния до точки
наблюдения тоже уменьшаются в два раза.

Повторяя опыт с разными зарядами,
убедитесь, что отношение силы f, действующей
на пробный заряд q, к величине этого заряда в
данной точке поля остаётся постоянным, а при
переходе от одной точки к другой, вообще говоря,
меняется. Значит, это отношение может
характеризовать электрическое поле. Оно и
получило название напряжённости
электрического поля.
Шкалу
электростатического динамометра, которым вы
пользовались для измерения силы
электростатического взаимодействия, можно
отградуировать в единицах напряжённости. Тогда
допустимо считать этот прибор измерителем
напряжённости
электрического поля.
Градуировку нетрудно осуществить в единицах
Н/Кл, если предварительно измерить величину
пробного заряда (см. исследование 3.6).

Учащиеся должны понять, каким образом
один и тот же прибор превратился из измерителя
силы в измеритель напряжённости.

Исследование 5.2. Зависимость
напряжённости электрического поля от радиуса
заряженного шара

Задание. Разработайте
демонстрационный эксперимент, который может
служить обоснованием справедливости теоремы
Гаусса для электростатических полей.

Вариант выполнения.

Зарядите стоящий на диэлектрической
подставке небольшой проводящий шар. К нему
подведите измеритель напряжённости
электрического поля, пробный шарик которого
несёт такой же по знаку заряд, как заряд,
создающий исследуемое поле. Запомните
отклонение стрелки измерителя.

Первый шар с зарядом опустите в
полость второго проводящего шара значительно
большего диаметра, установленного на
диэлектрической подставке. Приближайте этот
второй шар к пробному шарику измерителя
напряжённости. Оказывается, когда центр второго
шара совпадает с точкой, в которой находился
центр первого шара, стрелка измерителя
отклоняется на первоначальное число делений.

Отсюда следует, что независимо от
радиуса заряженного шара на одном и том же
расстоянии от его центра напряжённость
электрического поля одна и та же. Тем самым
теорема Гаусса получила подтверждение в
демонстрационном эксперименте.

Понятно, что теорема Гаусса носит
общий характер и, строго говоря, не нуждается в
обоснованиях, подобных здесь рассмотренному. Но
в дидактических целях такое обоснование
совершенно необходимо, поскольку оно
способствует укреплению в сознании учащихся
неразрывной связи физической теории с
объективной реальностью.

Исследование 5.3. Суперпозиция
электрических полей

Информация. Чтобы убедиться в
справедливости принципа суперпозиции
электрических полей, нужно уметь определять не
только модули сил, действующих на заряды, но и их
направления. Делать это с помощью
электростатического динамометра неудобно. Кроме
того, он не позволяет графически изображать
векторы сил. Если на нити подвесить лёгкое
заряженное тело, то силу, действующую на него в
электрическом поле, можно оценить по отклонению
тела из положения равновесия. Но для измерения
этого отклонения воспользоваться линейкой не
удастся: приближение её к заряженному телу
вызывает изменение его положения. Чтобы
устранить эту трудность, можно спроецировать
заряженное тело на горизонтальную плоскость.

Задание. Разработайте и выполните
эксперимент, доказывающий справедливость
принципа суперпозиции электрических полей.

Вариант выполнения. К стеклянному
баллону маленькой лампочки приклейте тонкую
нить с лёгким проводящим шариком небольшого
радиуса на конце. Нанесите на шарик пробный
заряд. Лампочку закрепите над листом бумаги и
включите её. На листе бумаги цифрой 0
отметьте положение тени от шарика, находящегося
в положении равновесия. Приблизьте к пробному
заряду заряд Q1 и цифрой 1 отметьте
на листе положение тени отклонившегося шарика.
Уберите заряд Q1 и вместо него вблизи
пробного шарика расположите заряд Q2.
При этом тень от шарика займёт новое положение 2.

Верните заряд Q1 в
первоначальное положение. Теперь пробный шарик
находится в поле сразу двух зарядов и
отклоняется от положения равновесия так, что его
тень занимает положение 3. Проанализируйте
результат эксперимента. Очевидно, при смещении
шарика из положения равновесия его тень
смещается на величину, пропорциональную силе,
действующей на шарик в новом положении
равновесия (см. исследование 3.5). При малых
отклонениях пробного шарика эту силу
приближённо можно считать равной силе,
действующей на шарик в исходном положении. Длины
отрезков, соединяющих точку 0 с точками 1,
2 и 3, пропорциональны модулям
соответствующих сил. Соединив указанные точки
векторами, вы обнаружите, что вектор
результирующей силы, действующей на пробный
заряд, примерно равен сумме векторов сил,
действующих на него со стороны каждого заряда по
отдельности. Понятно, что точные измерения,
выполненные с более совершенными приборами,
вместо приближённого дадут точное равенство.

Поразительно единство природы: силы,
созданные электрическими полями, складываются
так же, как механические! Но если это так, то
напряжённости электрических полей, равные
отношениям сил к величине пробного заряда,
складываются подобно силам. Оставив шары
неподвижными, изменяйте их заряды в одинаковое
число раз (см. п. 2.6). При этом вы обнаружите, что
направление напряжённости результирующего поля
остаётся неизменным.

Таким образом, принцип суперпозиции
электростатических полей экспериментально
обоснован.

Исследование 5.4. Демонстрация
принципа суперпозиции напряжённостей

Проблема. Индивидуальный опыт,
выполненный в результате предыдущего
исследования, не позволяет убедиться в
справедливости принципа суперпозиции
напряжённостей электростатических полей всему
классу непосредственно на уроке. Как решить эту
проблему?

Задание. Учитывая возможности
кодоскопа, разработайте демонстрационный
вариант эксперимента, обосновывающего
справедливость принципа суперпозиции, и
методику проведения его на уроке.

Вариант выполнения. Из толстой
алюминиевой проволоки в изоляции выгните
специальный штатив высотой примерно 30 см и
поставьте его на конденсор кодоскопа. К верхнему
концу штатива привяжите конец тонкой нейлоновой
нити длиной примерно 20 см. На нижнем конце нити
закрепите шарик диаметром около 3 мм из тонкой
алюминиевой фольги. На конденсор кодоскопа на
стойках высотой 10 см, изготовленных из
полиэтиленовых трубок, поставьте пенопластовые
шары диаметром 15–20 мм, обёрнутые тонкой фольгой.
Основания стоек лучше сделать из прозрачного
оргстекла.

Уберите с конденсора стойки с шарами,
включите осветитель кодоскопа и на классной
доске получите изображение висящего на нити
пробного шарика. Одноимёнными зарядами зарядите
пробный шарик и два шара на стойках. На доске
мелом отметьте положение пробного шарика.
Поставьте на конденсор один из заряженных шаров,
отметьте его положение и положение пробного
шарика. Уберите первый заряженный шар и в
произвольное место поставьте второй, отметив на
доске новое положение пробного шарика. Верните в
первоначальное положение первый шар, обозначьте
результирующее положение пробного шарика, мелом
на доске нарисуйте соответствующие векторы сил и
предложите учащимся сделать вывод из
продемонстрированного опыта.

Исследование 5.5. Плотность заряда
на поверхности проводника

Задание. Докажите, что плотность
заряда на поверхности проводника, вообще говоря,
различна.

Вариант выполнения. Зарядите
расположенный на изолирующей подставке
проводник цилиндрической формы с остриём и
коническим углублением. Пробным шариком на
изолирующей ручке, предварительно заземлённым,
коснитесь цилиндрической поверхности
проводника и поместите его внутрь полого шара,
соединённого с электрометром. Если угол
отклонения стрелки мал, повторите перенос заряда
несколько раз. Запомните показания электрометра,
разрядите его и пробный шарик. Попробуйте снять
заряд из конического углубления в поверхности
проводника, и вы убедитесь, что там он
практически отсутствует. Повторите опыт, касаясь
пробным шариком теперь уже точки поверхности,
расположенной на острие проводника. В этом
случае угол отклонения стрелки электрометра
будет значительно больше, чем в первом опыте. Так
как вблизи острия пробный шарик заряжается до
большей величины, то в этой области плотность
распределения заряда по поверхности проводника
больше.

Зарядите металлический диск,
закреплённый за изолирующую ручку в штативе.
Проведя опыты, аналогичные описанным, покажите,
что плотность заряда во всех точках плоской
поверхности диска вдали от его края одинакова, а
на краю возрастает.

Исследование 5.6. Напряжённость
электрического поля вблизи заряженного
проводника

Задание. Поставьте опыт,
показывающий, что напряжённость электрического
поля вблизи заряженного проводника определяется
поверхностной плотностью заряда.

Вариант выполнения. Вблизи
проводника сложной формы расположите
электростатический динамометр и перемещайте его
так, чтобы расстояние до поверхности проводника
оставалось постоянным, а сила действовала на
шарик динамометра по нормали к поверхности. Опыт
должен показать, что там, где на поверхности
проводника плотность заряда больше, вблизи этой
поверхности больше и напряжённость
электрического поля (см. исследование 5.5).
Проанализируйте полученные результаты и
сделайте соответствующие выводы.

Исследование 5.7. Электрическое
поле вблизи заряженных плоскостей

Задание. Прямым экспериментом
подтвердите, что равномерно заряженная
плоскость даёт электрическое поле по обе стороны
от неё, а две параллельно установленные
плоскости, несущие равные заряды
противоположных знаков, создают электрическое
поле только в области между ними.

Вариант выполнения. На нитях
подвесьте два одинаковых обёрнутых алюминиевой
фольгой пенопластовых шарика так, чтобы они
касались металлического диска с противоположных
сторон. Зарядите диск от пьезоэлектрического или
иного источника. При этом шарики отойдут от диска
на равные расстояния, свидетельствуя о том, что
электрическое поле существует по обе стороны от
заряженного диска.

Точно такой же диск зарядите равным по
модулю и противоположным по знаку зарядом.
Постепенно приближайте второй диск к первому
так, чтобы они оставались параллельными. Вы
заметите, что отклонение шарика, находящегося
вне дисков, уменьшается, а находящегося между
дисками – увеличивается. Наконец, первый шарик
касается диска, показывая, что поле вне дисков
практически исчезло, а второй шарик отклоняется
на угол, примерно в два раза превышающий
первоначальный.

Исследование 5.8. Точное
подтверждение закона Кулона

Информация.

На диэлектрической стойке закрепите
металлический шар и заключите его между двумя
проводящими полусферами, одна из которых имеет
отверстие. Через отверстие проводником на
изолированной нити соедините шар с полусферами.
Зарядите полусферы. За нить удалите проводник.
Разомкнув шар и полусферы, разведите полусферы в
стороны, разрядите их, а к шару подсоедините
чувствительный электрометр: никакого заряда на
шаре вы не обнаружите. Значит, эксперимент ещё
раз показывает, что на проводнике, находящемся
внутри другого проводника, заряда нет.

Это справедливо потому, что справедлив
закон Кулона. Действительно, внутри проводящей
равномерно заряженной сферы выберем
произвольную точку А и вертикальными
конусами вырежем на сфере площадки S1 и S2. Из геометрии
известно, что Но
эти площадки имеют заряды, пропорциональные их
величинам:
Небольшие площадки создают в точке А поля
напряжённостями  
и отношение
которых

Значит, поскольку напряжённости полей,
созданных любыми подобными парами площадок на
сфере, равны по модулю и противоположно
направлены, результирующая напряжённость поля,
созданного в точке А всей заряженной сферой,
должна быть равна нулю.

Это и показывает эксперимент. Если бы
на опыте был обнаружен хотя бы слабый заряд на
внутреннем шаре, то оказалась бы неверной
формула для напряжённости поля точечного заряда
(5.2) и, следовательно, в законе Кулона (3.1) сила
взаимодействия между зарядами не была бы обратно
пропорциональна квадрату расстояния между ними.
Так как заряд можно измерить с гораздо более
высокой точностью, чем силу взаимодействия между
зарядами, а из закона Кулона следует, что поле
внутри тела отсутствует независимо от его формы,
то рассмотренный эксперимент корректнее
доказывает справедливость закона Кулона, чем
ранее описанные опыты.

Задание. Разработайте и поставьте
доступный вариант рассмотренного эксперимента,
с максимальной убедительностью показывающий,
что внутри заряженного полого проводника
электрическое поле отсутствует.

Вариант выполнения. Чтобы
обнаружить электрическое поле, можно
воспользоваться явлением электростатической
индукции. Внесём в поле два соприкасающихся
проводящих тела на изолированных ручках. В них
произойдёт перераспределение зарядов. Не удаляя
из поля, разъединим эти тела – на них останутся
заряды противоположных знаков. Эти заряды можно
измерить электрометром, находящимся вне
исследуемого поля.

Эксперимент можно поставить так. На
подставке из диэлектрика закрепите полый
металлический шар. Проводником в хорошей
изоляции соедините его с одним из кондукторов
электрофорной машины. К шару приблизьте второй
кондуктор и приведите машину в действие. При этом
возникнут мощные искровые разряды длиной до 10 см.
Аккуратно введите внутрь шара одинаковые
металлические пластинки на ручках из оргстекла.
Приведите пластинки в соприкосновение, затем
разъедините, аккуратно достаньте из полости шара
и по очереди введите в шар электрометра. Вы
обнаружите, что никакого заряда на пластинках
нет! Значит, внутри проводящего шара
электрическое поле отсутствует, несмотря на то,
что шар в целом несёт значительный заряд,
сообщаемый ему работающей электрофорной
машиной. Повторите опыт, прикоснувшись пробным
шариком изнутри к металлу заряженного шара, – вы
вновь не обнаружите никакого заряда. Таким
образом, весь электрический заряд сосредоточен
на поверхности проводящего тела. Объясняется
этот результат тем, что справедлив закон Кулона.
В свою очередь, этот экспериментальный факт с
высокой точностью подтверждает справедливость
закона Кулона.

Вопросы для самоконтроля

1. В чём суть методики введения и
формирования понятия напряжённости
электрического поля?

2. Сравните метод построения силовых
линий посредством диполя с методом визуализации
электростатического поля мелким порошком,
взвешенным в жидком диэлектрике.

3. Изложите методику демонстрации на
уроке принципа суперпозиции электростатических
полей.

4. Каким экспериментом можно
подтвердить справедливость теоремы Гаусса?

5. Как зависят плотность заряда и
напряжённость электрического поля от формы
проводника?

6. Предложите демонстрационный опыт,
прямо показывающий зависимость плотности заряда
от площади проводника.

7. В чём дидактическая ценность
опыта с обнаружением электрического поля вблизи
одной и двух параллельных заряженных проводящих
пластин?

8. Нужно ли в школе рассматривать
метод точного подтверждения закона Кулона?

Литература

Бутиков Е.И., Кондратьев А.С.
Физика: Учеб. пособие: В 3-х кн. Кн. 2.
Электродинамика. Оптика. – М.: Физматлит, 2004.

Демонстрационный эксперимент по
физике в старших классах средней школы: Т. 2.
Электричество. Оптика. Физика атома: Под ред.
А.А.Покровского. – М.: Просвещение, 1972.

Кабардин О.Ф., Орлов В.А., Эвенчик
Э.Е
. Физика: Учеб. для 10 кл. шк. и кл. с углубл.
изуч. физики: Под ред. А.А.Пинского. – М.:
Просвещение, 1997.

Учебное оборудование для кабинетов физики
общеобразовательных учреждений: Под ред.
Г.Г.Никифорова. — М.: Дрофа, 2005. (Cм. также «Физика»
(«ПС») № 10/2005; № 4/2007.)

Продолжение см. в № 22/07

Подготовка к олимпиаде. Применение теоремы Гаусса для вычисления напряженности электрического поля заряженных тел


Опубликовано ср, 08/14/2019 – 10:50 пользователем fizportal.ru

Применение теоремы Гаусса для вычисления напряженности электрического поля заряженных тел

Рассмотрим применение теоремы Гаусса для вычисления напряженности электрического поля заряженных тел простой формы: плоскости, сферы, шара, нити, цилиндра

1. Поле равномерно заряженной бесконечной плоскости

Когда заряд распределен по какой-либо поверхности, то для расчета полей удобно ввести поверхностную плотность заряда $sigma$. Выделим на плоской поверхности маленький участок площадью $Delta S$. Пусть заряд этого участка равен $Delta q$. Поверхностной плотностью заряда называют отношение заряда $Delta q$ к площади поверхности, по которой он распределен

$sigma = frac{Delta q}{Delta S}$.

Эта плотность может непрерывно изменяться вдоль поверхности. Конечно, электрический заряд имеет дискретную (прерывную) структуру, так как сосредоточен в элементарных частицах. Но если на поверхности площадью $Delta S$ содержится огромное число элементарных зарядов, то дискретную структуру заряда можно не принимать во внимание. Мы ведь пользуемся понятием плотности, считая, что масса непрерывно распределена в пространстве. А на самом деле все тела состоят из дискретных образований – атомов.

В случае равномерного распределения заряда $q$ по поверхности площадью $S$ поверхностная плотность заряда постоянна и равна $sigma = frac{q}{S} = const$.

Задача 1. Найдите напряженность электрического поля, создаваемого равномерно заряженной бесконечной плоскостью. Поверхностная плотность заряда $sigma$.

Решение

Для использования этой теоремы для определения напряженности поля, необходимо рассмотреть симметрию поля, которая, очевидно связана с симметрией зарядов. Распределение зарядов не изменится, если плоскость сместить на любой вектор $vec{a}$, лежащий в самой плоскости. Поэтому при таком смещении не изменится и напряженность поля (рис.).

Следовательно, напряженность поля может зависеть только от расстояния до плоскости $h$. Любая прямая, перпендикулярная плоскости является осью симметрии, то есть при повороте плоскости на любой угол относительно любой оси, перпендикулярной плоскости, распределение зарядов не изменяется – следовательно, и вектор напряженности при таком повороте не изменится, поэтому этот вектор должен быть перпендикулярен плоскости. Наконец, заряженная плоскость является плоскостью симметрии для поля. Поэтому в симметричных точках векторы напряженности также симметричны. Выявленные свойства симметрии электрического поля позволяют выбрать поверхность, для которой можно выразить поток вектора напряженности в простой форме. Итак, в качестве такой поверхности выберем поверхность прямого цилиндра, образующие которого перпендикулярны плоскости, а основания площадью $S$ параллельны ей и находятся на равных расстояниях от плоскости.

Прежде всего, заметим, что поток вектора напряженности через боковую поверхность цилиндра равен нулю, так как во всех точках боковой поверхности векторы напряженности $vec{E}$ и нормали $vec{n}$ взаимно перпендикулярны (поэтому $cosalpha = 0$) (рис.).

Поток через верхнее основание цилиндра может быть записан в виде

$Ф_1 = E_1 cdot S$,

так модуль напряженности поля на основании цилиндра постоянен, а по направлению совпадает с вектором нормали. Такое же значение имеет поток через нижнее основание.

Таким образом, суммарный поток вектора напряженности электрического поля через поверхность цилиндра равен

$Ф = E_1 cdot S + E_2 cdot S = 2E cdot S$.

С другой стороны, по теореме Гаусса

$Ф = frac{q}{varepsilon_0}$,

где $q$ – заряд, заключенный внутри поверхности цилиндра:

$q = sigma cdot S$.

Следовательно, $E = frac{sigma}{2varepsilon_0}$.

Главная составляющая успеха – анализ симметрии поля, позволивший разумно выбрать поверхность, для использования теоремы Гаусса. Также обратите внимание, что напряженность данного поля одинакова во всех точках, следовательно, это поля является однородным. Подчеркнем, независимость напряженности поля от расстояния до плоскости $h$ никак не следует из симметрии поля, это результат нашего расчета.

Примечание.

Для плоскости, заряженной отрицательно, результат будет таким же, лишь направление вектора $vec{E}$ изменится на противоположное.

2. Поле равномерно заряженной сферы

Задача 2. Найдите напряженность электрического поля, создаваемого равномерно заряженной сферой радиуса $R$. Суммарный заряд сферы $q$.

Решение

Опять начнем с рассмотрения симметрии поля. Очевидно, что поле, также как распределение зарядов имеет сферическую симметрию. Это означает, что модуль вектора напряженности зависит только от расстояния до центра сферы (или во всех точках, находящихся от центра сферы на одном расстоянии, модуль напряженности постоянен), а направление – радиальное, от центра сферы к точке наблюдения. Выберем в качестве замкнутой поверхности, к которой применим теорему Гаусса, сферу, концентрическую с заряженной оболочкой (рис.).

Пусть радиус сферы $r$ больше радиуса оболочки $r > R$. Тогда во всех точках этой сферы вектор напряженности направлен вдоль нормали к поверхности, а его модуль постоянен. Поэтому поток вектора напряженности $vec{E}$ через сферу равен произведению модуля напряженности на площадь сферы

$Ф = E cdot S = E cdot 4pi r^2$.

По теореме Гаусса это поток равен $Ф = frac{q}{varepsilon_0}$. Следовательно,

$E cdot 4pi r^2 = frac{q}{varepsilon_0}$, $E = frac{1}{4pi varepsilon_0}frac{q}{r^2}$.

Полученная формула, соответствует формуле закона Кулона для точечного заряда, следовательно, вне сферы, поле равномерно заряженной сферы, совпадает с полем точечного заряда, помещенного в центре сферы.

Поле внутри заряженной сферической оболочки также должно обладать сферической симметрией. Поэтому, поток вектора напряженности электрического поля через сферу, концентрическую с заряженной оболочкой и расположенную внутри нее (рис.)

также выражается формулой

$Ф = E cdot 4pi r^2$.

Однако внутри этой сферы электрических зарядов нет, поэтому, из теоремы Гаусса следует, что напряженность поля внутри сферы равна нулю. Подчеркнем, если бы теорема Гаусса была не справедлива, то внутри равномерно заряженной оболочки существовало бы электрическое поле.

Таким образом, функция, описывающая напряженность поля равномерно заряженной сферы радиуса $R$, имеет вид:

$E(r) = 0$, при $r < R$;

$E(r) = frac{kq}{r^2}$, при $r > R$.

Примечание.

1) Очевидно, что для сферы, заряженной отрицательно, формулы остаются справедливыми, только векторы напряженности будут направлены в противоположные стороны (к центру сферы).

2) Если вместо заряда q задана поверхностная плотность заряда $sigma$, то заряд будет равен $q = sigma S = sigma cdot 4pi R^2$, а напряженность

$E = frac{1}{4pi varepsilon_0}frac{1}{r^2}sigma 4pi R^2 = frac{sigma R^2}{epsilon_0 r^2}$.

3. Поле равномерно заряженного шара

Для характеристики распределения заряда по объему используется понятие объемной плотности заряда. Объемной плотностью заряда называется отношение заряда $Delta q$ к объему $Delta V$, в котором он распределен:

$rho = frac{Delta q}{Delta V}$.

Эта плотность может непрерывно изменяться внутри заряженного тела. Если заряд $q$ равномерно распределен по объему $V$, то объемная плотность заряда постоянна и равна:

$rho = frac{q}{V} = const$.

Задача 3. Вычислить напряженность электрического поля, создаваемого равномерно заряженным шаром радиуса $R$. Объемная плотность заряда $rho$.

Решение

Поле, создаваемое таким шаром, будет центрально-симметричным. Легко понять, что вне шара для поля получится такой же результат, что и для поля вне сферы (см. задачу 2),

$E = frac{1}{4pi varepsilon_0}frac{q}{r^2}$.

Полный заряд шара

$q = rho V = rho frac{4}{3}pi R^3$.

Тогда

$E = frac{1}{4pi varepsilon_0}frac{q}{r^2} = frac{1}{4pi varepsilon_0}frac{4pi R^3 rho}{3r^2} = frac{rho R^3}{3varepsilon_0 r^2}$

(при условии, что $r > R$).

Для нахождения поля внутри шара нужно применить теорему Гаусса к потоку напряженности через сферическую поверхность радиусом $r < R$ (рис.).

Поток вектора напряженности поля через поверхность этой сферы

$Ф = E cdot 4pi r^2$.

С другой стороны, по теореме Гаусса

$Ф = frac{q^/}{varepsilon_0}$,

где $q^/ = rho frac{4}{3}pi r^3$

– заряд, заключенный в сфере радиуса $r$. Следовательно,

$E cdot 4pi r^2 = frac{q^/}{varepsilon_0}, E = frac{1}{4pi varepsilon_0}frac{q^/}{r^2} = frac{1}{4pi varepsilon_0}frac{1}{r^2}rho frac{4}{3}pi r^3 = frac{rho cdot r}{3varepsilon_0}$.

Таким образом, внутри равномерно заряженного шара напряженность поля растет линейно с расстоянием от его центра.

Функция, описывающая напряженность поля равномерно заряженного шара радиуса $R$, имеет вид:

$E(r) = frac{rho}{3varepsilon_0}r$, при $r leq R$,

$E(r) = frac{rho R^3}{3varepsilon_0}frac{1}{r^2}$, при $r > R$.

Примечание.

Если вместо объемной плотности заряда $rho$ задан заряд $q$, то объемной плотности заряда будет равна

$rho = frac{q}{V} = frac{q}{frac{4}{3}pi R^3}$,

а напряженность

$E(r) = frac{r}{3varepsilon_0}frac{q}{frac{4}{3}pi R^3} = frac{q}{4pi varepsilon_0 R^3}cdot r = kfrac{q}{R^3}cdot r$, при $r leq R$,

$E(r) = frac{R^3}{3varepsilon_0}frac{1}{r^2}frac{q}{frac{4}{3}pi R^3} = frac{q}{4pi varepsilon_0}cdot frac{1}{r^2} = kfrac{q}{r^2}$, при $r > R$,

4. Поле равномерно заряженной нити

Для характеристики распределения заряда по длине используется понятие линейная плотности заряда. Линейной плотностью заряда называется отношение заряда $Delta q$ к длине $Delta l$, в которой он распределен:

$tau = frac{Delta q}{Delta l}$.

Эта плотность может непрерывно изменяться внутри заряженного тела. Если заряд $q$ равномерно распределен по длине $l$, то линейная плотность заряда постоянна и равна:

$tau = frac{q}{l} = const$.

Задача 4. Найдите напряженность электрического поля, создаваемого в вакууме бесконечно длинной заряженной нитью с линейной плотностью заряда t.

Решение

Проще всего решить задачу с помощью теоремы Гаусса. Вычислим поток напряженности через цилиндр, ось которого совпадает с заряженной нитью (рис.).

Радиус цилиндра $r$, а его высота $l$.

Из соображений симметрии очевидно, что линии напряженности $vec{E}$ перпендикулярны боковой поверхности цилиндра. Поэтому поток напряженности через боковую поверхность цилиндра равен

$Ф = ES = Ecdot 2pi rl$,

поток через основания цилиндра равен нулю ($alpha = frac{pi}{2}$).

С другой стороны, по теореме Гаусса

$Ф = frac{q}{varepsilon_0}$,

где $q = tau cdot l$ – заряд, заключенный внутри цилиндра. Следовательно,

$E cdot 2pi rl = frac{ltau}{varepsilon_0}$,

$E = frac{tau}{2pi varepsilon_0 r} = frac{2kcdot tau}{r}$.

5. Поле равномерно заряженного бесконечного цилиндра

Задача 5. Бесконечно длинный круговой цилиндр радиусом $R$ равномерно заряжен по объему с плотностью $rho$. Найти напряженность электростатического поля в точке, удаленной на расстояние $r$ от оси цилиндра.

Решение

Используя симметрию распределения заряда и теорему Гаусса, найдем напряженность электрического поля внутри и вне цилиндра. В качестве поверхности, через которую будем определять поток вектора $vec{E}$, выберем цилиндр радиусом $r$ и высотой $h$, имеющий ту же ось симметрии, что и заданный цилиндр (рис.).

Во всех точках боковой поверхности цилиндра вектор $vec{E}$ совпадает с внешней нормалью к этой поверхности и имеет одинаковую величину. Поток вектора $vec{E}$ через боковую поверхность цилиндра

$Ф = E_1 cdot S = E_1 cdot 2pi rh$,

поток через основания цилиндра равен нулю ($alpha = frac{pi}{2}$).

Из теоремы Гаусса следует, что

$Ф = frac{q}{varepsilon_0}$,

где $q = rho V = rho pi r^2h$ – заряд, заключенный внутри цилиндра.

Следовательно,

$E_1 cdot 2pi rh = frac{rho pi r^2h}{varepsilon_0}$, и $E_1 = frac{rho r}{2varepsilon_0}$.

Чтобы найти $E_2$ для $r > R$, окружим заданный цилиндр цилиндрической поверхностью радиусом $r > R$ и высотой $h$, ось симметрии которой совпадает с осью цилиндра (см. рис.).

Во всех точках боковой поверхности цилиндра вектор $vec{E}$ совпадает с внешней нормалью к этой поверхности и имеет одинаковую величину. Поток вектора $vec{E}$ через боковую поверхность цилиндра

$Ф = E_2 cdot S = E_2 cdot 2pi rh$,

поток через основания цилиндра равен нулю ($alpha = frac{pi}{2}$).

Из теоремы Гаусса следует, что

$Ф = frac{q}{varepsilon_0}$,

где $q = rho V = rho pi R^2h$ – заряд, заключенный внутри цилиндра. Следовательно,

$E_2 cdot 2pi rh = frac{rho pi R^2h}{varepsilon_0}$, и $E_2 = frac{rho R^2}{2varepsilon_0 r}$.

6. Дополнительные задачи

Задача 6. Докажите, что система свободных зарядов не может находиться в состоянии устойчивого равновесия. (Теорема Иршноу.)

Решение

Предположим противное, то есть какой-либо из зарядов, для определенности положительный, находится в состоянии устойчивого равновесия. По определению устойчивого равновесия, при выведении заряда из этого положения в любом направлении на сколь угодно малую величину, возникает сила, направленная к положению равновесия.

Окружим заряд, замкнутой поверхностью, например, сферой, так, чтобы внутрь ее не попадали другие заряды (рис.).

Очевидно, что для устойчивости необходимо, чтобы поле, создаваемое всеми прочими зарядами кроме рассматриваемого, на поверхности сферы было направлено к положению равновесия (только в этом случае возникает сила, возвращающая заряд в положение равновесия). Отсюда находим, что поток вектора $vec{E}$ через замкнутую поверхность отрицателен.

Но это противоречит теореме Гаусса, согласно которой данный поток, создаваемый зарядами вне сферы, равен нулю. Таким образом, теорема доказана.

Задача 7. С какой силой расталкиваются равномерно заряженные грани куба? Поверхностная плотность заряда $sigma$, длина ребра куба $l$.

Решение

Для определенности рассмотрим силу, действующую на верхнюю грань куба. Разобьем эту грань на малые площадки $Delta S_i$ и представим силу, действующую на грань, как сумму $vec{F_i}$ сил, действующих на каждую площадку $Delta S_i$:

$vec{F} = sum vec{F_i}$.

Обозначим через $vec{E_i}$ напряженность электрического поля, создаваемого в области нахождения площадки $Delta S_i$ зарядами всех граней, кроме самой верхней грани (рис.).

Тогда сила

$vec{F_i} = q^/ cdot vec{E_i} = sigma cdot Delta S_i cdot vec{E_i}$,

ее проекция на нормаль к грани $vec{n}$ равна

$F_{in} = sigma cdot Delta S_i cdot E_i^/ cdot cosalpha_i$,

а суммарная сила, действующая на верхнюю грань вдоль нормали $vec{n}$:

$F_n = sum F_{in} = sigma cdot sum{E_i^/ Delta S_i cdot cosalpha_i} = sigma cdot Ф^/$, (1)

где $sum{E_i^/ Delta S_i cdot cosalpha_i} = Ф^/$ – поток вектора $vec{E}$ через верхнюю грань куба, создаваемый зарядами всех других граней.

В качестве замкнутой поверхности для применения теоремы Гаусса выберем куб, размеры которого на бесконечно малую величину превышают размеры рассматриваемого куба, то есть их грани практически совпадают. Тогда поток через верхнюю грань куба внешнего куба равен

$Ф = Ф^/ + Ф^{//}$,

где

$Ф^{//} = E^{//} cdot S_1 = frac{sigma}{2varepsilon_0} cdot S_1 = frac{sigma}{2varepsilon_0} cdot l^2$

поток, создаваемый заряженной верхней гранью куба.

Тогда

$Ф = Ф^/ + frac{sigma}{2varepsilon_0} cdot l^2$, (2)

Воспользуемся теоремой Гаусса для всего куба

$Ф_0 = 6Ф = frac{q}{varepsilon_0}$,

где $q = sigma cdot 6l^2$ – заряд куба.

Тогда

$6Ф = frac{6l^2 cdot sigma}{varepsilon_0}$. (3)

Выразим $Ф^/$ из (2), а $Ф$ из (3)

$Ф^/ = Ф – frac{sigma}{2varepsilon_0} cdot l^2 = frac{sigma}{varepsilon_0} cdot l^2 – frac{sigma}{2varepsilon_0} cdot l^2 = frac{sigma}{2varepsilon_0} cdot l^2$.

Учитывая уравнение (1), окончательно находим:

$F_n = frac{sigma^2 cdot l^2}{2varepsilon_0}$.

Задача 8. Грани куба с ребром $a$ однородно заряжены с поверхностной плотностью $sigma$. В центр куба помещен заряд $Q$. С какой силой этот заряд взаимодействует с каждой из граней?

Решение

По теореме Гаусса вычислим $Ф$ – поток вектора напряженности, создаваемой зарядом $Q$, через поверхность куба. Он равен $frac{Q}{varepsilon_0}$. С другой стороны

$Ф = 6 cdot displaystylesum_{Delta S} frac{Q}{r^2} cdot Delta S cdot cosalpha$.

В этом выражении $Delta S$ – площадь малого элемента поверхности куба, $r$ – длина вектора, соединяющего заряд $Q$ с этим элементом, $alpha$ – угол, который составляет этот вектор с нормалью к элементу $Delta S$. Суммирование идет по одной из граней куба. Заметим, что сила $F$, действующая на грань куба, задается выражением:

$F = sigma cdot displaystylesum_{Delta S} frac{Q}{r^2} cdot Delta S cdot cosalpha$

Следовательно,

$F = sigma cdot frac{Ф}{6} = frac{sigma Q}{6varepsilon_0}$.

Теорема Гаусса и постулат Максвелла, представленные в интегральной форме, дают возможность решить ряд задач в тех случаях, когда условия симметрии таковы, что в каждой точке замкнутой поверхности интегрирования (поверхности симметрии), охватывающей заряды, вектор напряженности поля (или электрического смещения )

имеет одно и то же значение и может быть вынесен из-под интеграла.

Пример 1. Точечный заряд q = 10-9 Кл помещен в начале сферической системы координат. Определить напряжение между точками а (Ra = 4см, qа = 45°, jа = 0°) и b (Rb = 8см, , qb = 180°, jb = 90°) и напряженность в тех же точках, если окружающей средой является воздух.

Решение.

Решение будем проводить с помощью теоремы Гаусса (1.9), так как среда однородна.

Поскольку поле точечного заряда характеризуется сферической симметрией, то, если в качестве поверхности интегрирования взять поверхность сферы с центром в точке, где расположен заряд (в нашем случае это начало системы координат), то в любой точке на поверхности этой сферы напряженность поля будет иметь одно и то же значение. Направление же вектора будет совпадать с направлением радиуса, то есть перпендикулярно к поверхности сферы. В связи с этим, интеграл по этой поверхности, составленный по теореме Гаусса, можно преобразовать следующим образом:

.

Поскольку данный интеграл (согласно теореме Гаусса) равен отношению заряда, помещенного внутри сферы, к диэлектрической проницаемости среды, то напряженность поля будет определяться соотношением

Еr = q/(4pe0r2).

Здесь индекс r у напряженности проставлен для того, чтобы показать, что напряженность поля имеет одну составляющую, направленную по радиусу.

Отметим, что данная формула полностью соответствует выражению (1.1), полученному из закона Кулона.

Поскольку напряженность электрического поля в данном случае имеет только радиальную составляющую, величина которой является функцией радиуса и не зависит от угловой координаты, то в указанных в исходном задании точках она будет равна:

E(ra)=q/(4pe0ra2)=10-9/(4p?8.85·10-12·0.042)=5.62кВ/м.

E(rв)=q/(4pe0rв2)=10-9/(4p8.85·10-12·0.082)=1.405кВ/м.

Разность потенциалов между точками а и в определяется при помощи выражения (1.6). Эта разность в потенциальном поле не зависит от пути интегрирования. Поэтому, если разбить путь интегрирования на две части и сначала проводить интегрирование вдоль радиуса от точки а до точки, которая является точкой пересечения продолжения этого радиуса с поверхностью воображаемой сферы с центром в начале координат и радиусом rв, а затем проводить интегрирование по любой линии, лежащей на поверхности этой серы от данной точки до точки в, то интеграл вдоль этой линии будет равен нулю, поскольку вектор напряженности поля имеет одну составляющую, направленную вдоль радиуса, а подинтегральным выражением в формуле (1.6) является скалярное произведение вектора напряженности поля и вектора dl, который совпадает с касательной к поверхности сферы.

Таким образом, разность потенциалов между точками а и в будет равна

В.

Пример 2. Уединенный проводящий шар радиусом R0 = 6 см, поверхностная плотность заряда которого s = 0,1*10-6 Кл/м2, помещен в диэлектрик (er = 3).

Определить закон изменения напряженности поля и потенциала в функции расстояния r от центра шара, приняв потенциал равным нулю в бесконечности. Рассчитать напряжение между точками, одна из которых лежит на поверхности шара, а другая – на расстоянии 20 см от его поверхности. Вычислить емкость шара.

Решение.

Поле внутри проводящего шара отсутствует. Поле вне шара обладает сферической симметрией, поэтому рассчитывается с помощью теоремы Гаусса точно так же как и для точечного заряда.

Здесь в качестве поверхности интегрирования взята поверхность сферы радиуса r ?

R0 с центром, совпадающим с центром шара.

Заряд шара определяется через поверхностную плотность

q = s·4p·R02.

Таким образом, напряженность поля вне шара имеет только одну радиальную составляющую и равна

Еr = s·R02/(ere0r2) =

0,1·10-6·0,062/(3·8,85·10-12r2).

Потенциал в любой точке вне шара, находящейся на расстоянии r от его центра, определяется с помощью выражения (1.5), которое с учетом того, что напряженность поля направлена вдоль радиуса, будет иметь следующий вид:

Потенциал шара равен потенциалу любой точки, лежащей на поверхности шара (r = R0) U =

13,56/0,06 = 173,8 В.

Разность потенциалов между любыми точками А (r = RA) и В (r = RВ) определяется с помощью следующей формулы:

UA – UВ = 13,56· (1/RA – 1/RВ).

Таким образом, разность потенциалов между точкой, лежащей на поверхности шара, и точкой, отстоящей от поверхности на расстоянии 20 см, равна

UAВ = 13,56· (1/0,06 – 1/0,26) = 173,8 В.

Емкость шара можно определяется выражением (1.19)

С = 4·p·ere0·R0 = 4·p·3·8,85·10-12·0,06 = 2·10-11 Ф.

Пример 3.

Шар из диэлектрика (er = 4) заряжен и расположен в воздухе. Объемная плотность заряда является функцией расстояния r от центра шара: r = k*r,

где k = 0,05p [Кл/м4].

Радиус шара R = 2см. Рассчитать и построить графики изменения потенциала и напряженности поля вдоль радиуса.

Решение. В

данном случае поле также обладает сферической симметрией, но область не однородна. Поэтому здесь удобнее применять постулат Максвелла (1.10).

Так, при 0 ? r ? R где s – сферическая поверхность радиусом r с

центром, совпадающим с центром шара; v – объем, заключенный внутри этой поверхности.

Перепишем уравнение с учетом симметрии поля

Отсюда находим радиальную составляющую вектора электрического смещения:

Dr = 0,25·k·r2.

Напряженность электрического поля, которая также как и вектор электрического смещения направлена по радиусу, внутри шара будет равна

(1.8):

E1r = Dr/ere0 = 0,25·k·r2/ere0.

Вне шара (r ? R) электрическое смещение, исходя из постулата Максвелла, определяется следующим образом:

Следовательно, электрическое смещение и напряженность поля будут равны:

Dr = 0,25·k·R4/r2; Er = Dr/e0.

Графики изменения напряженности поля и вектора электрического смещения представлены на рис.1.4. Значения напряженности поля и вектора электрического смещения даны в относительных единицах. За базисные значения приняты значения этих величин на поверхности шара, которые для заданных исходных данных соответственно равны Erb = 4,435·105В/м; Drb = 1,571·10-5Кл/м2.

Потенциал поля внутри шара можно определить по формуле

,

где С1 – постоянная интегрирования.

Принимая потенциал бесконечно удаленной точки равным нулю, определим потенциал любой произвольной точки в области вне шара.

.

Постоянную интегрирования С1 можно определить из условия равенства потенциалов U1 и U2 на поверхности шара (при r = R)

.

Отсюда

.

График изменения потенциала вдоль радиуса также в относительных единицах показан на рис.1.4. За базисное значение потенциала принято значение потенциала на поверхности шара Ub = 35.5кВ.

Отметим, что если бы объемная плотность заряда r оставалась постоянной, то напряженность поля и потенциалы поля в соответствующих подобластях определялись бы следующими выражениями:

E1 = r·r/(3·ere0); U1 = – r·r2/(6·ere0) + C1;

E2 = r·R3/(3·e0·r2);

U2 = r·R3/(3·e0·r).

Постоянная С1 в этом случае определяется также из условия равенства потенциалов U1 и U2 на поверхности шара

С1 = r·R3· (1+2·er)/(6·e0·er).

Пример 4. Сферический конденсатор с двухслойным диэлектриком имеет радиус внутренней сферы r1=12 мм, внутренний радиус наружной сферы – r3=22 мм и радиус поверхности раздела диэлектриков – r2=16 мм.

Относительное значение диэлектрической проницаемости внутреннего слоя диэлектрика er1=5, наружного слоя – er2=3. Разрез конденсатора показан на рис.1.5. Заряд конденсатора q = 10-8Кл.

Определить и построить график изменения напряженности поля вдоль радиуса. Найти разность потенциалов между электродами. Вычислить емкость конденсатора. Изменяя радиус поверхности раздела диэлектриков r2 и значение диэлектрической проницаемости наружного слоя er2 получить конденсатор с наилучшим использованием двухслойного диэлектрика. Рассчитать емкость данного конденсатора и сопоставить ее с емкостью исходного конденсатора.

Решение. Используя постулат Максвелла для любой сферической поверхности радиусом r, построенной внутри k-го слоя (k=1,2) диэлектрика с диэлектрической проницаемостью erk, получим выражение для вектора электрического смещения и напряженности электрического поля

Dk = q/(4pr2); Ek = Dk/(erk·e0) = q/(4pr2·erk·e0).

Максимальное значение напряженности поля в первом слое, очевидно, будет на поверхности внутреннего электрода

E1max = q/(4p·r12·er1e0)=10-8/(4p·122·10-6·5·8,85·10-12) = 1,249·105 В/м.

Максимальное значение напряженности поля во втором слое на сферической поверхности раздела диэлектриков

E2max = q/(4pr22·er2·e0)=10-8/(4p162·10-6·3·8,85·10-12) =1,171*105 В/м.

Графики изменения напряженности поля в диэлектрике вдоль радиуса представлены на рис.1.6. Значения напряженности на графиках приведены в относительных единицах. За базисное значение принято максимальное значение напряженности в первом слое Eb= E2max.

Разность потенциалов между электродами определяется при помощи следующего выражения:

Емкость конденсатора равна (1.15)

C=q/U12 = 10-8/885,6 = 1,129·10-11Ф.

Отметим, что емкость сферического конденсатора с двухслойным диэлектриком можно определить и по такой формуле

С=С1С2/(С12),

где С1 – емкость сферического конденсатора с однослойным диэлектриком с радиусами обкладок r1 и r2 и диэлектрической проницаемостью диэлектрика, равной диэлектрической проницаемости первого слоя; С2 – емкость сферического конденсатора с однослойным диэлектриком с радиусами обкладок r2 и r3 и диэлектрической проницаемостью диэлектрика, равной диэлектрической проницаемости второго слоя.

Поскольку емкость сферического конденсатора с однослойным диэлектриком определяется с помощью выражения (1.18), то емкости С1, С2 и С будут равны:

С1 = 4·p·8,85·10-12·5·0,012·0,016/(0,016-0,012) = 2,669·10-11Ф;

С2=4·p·8,85·10-12·3·0,016·0,022/(0,022-0,016) = 1,957·10-11Ф;

С=2,669·1,957·10-11(2,669+1,957) = 1,129·10-11Ф.

Для наилучшего использования диэлектриков в конденсаторе необходимо так подобрать толщину слоев, чтобы максимальное значение напряженности поля было одинаковым. Поскольку напряженность поля имеет максимальное значение у внутренней поверхности слоя, то для выполнения этого условия, необходимо, чтобы произведение квадрата внутреннего радиуса слоя на его диэлектрическую проницаемость было постоянным, то есть r12e1= r22e2=const.

Если значение диэлектрической проницаемости оставлять неизменным, а изменять толщину слоев, то с помощью данного выражения можно определить радиус поверхности раздела диэлектриков.

м.

Разность потенциалов U12 и емкость такого конденсатора будут равны: U12=910,13В; C=1,099*10-11Ф.

Пример 5.

Бесконечно длинная тонкая заряженная нить расположена в воздухе вдоль оси z цилиндрической системы координат (рис. 1.7). Линейная плотность заряда t=10-9Кл/м. Рассчитать и построить график изменения напряженности поля вдоль радиуса. Определить разность потенциалов между точками

m (rm=10cм; qm=270°) и n (rn=40cм; qn=180°).

Решение. В этом случае поле характеризуется цилиндрической симметрией, то есть во всех точках цилиндрической поверхности, охватывающей заряженную нить, произвольного радиуса r напряженность поля имеет одно и то же значение и направлена перпендикулярно к поверхности. Поэтому, если окружить нить цилиндрической поверхностью длиной l и радиусом r и использовать теорему Гаусса, то можно получить выражение для напряженности поля Е.

График изменения напряженности поля вдоль радиуса представлен на рис. 1.8.

Значение напряженности поля на графике даны в относительных единицах. За базисное значение принято значение напряженности на расстоянии одного миллиметра от начала координат (Еb=1,798·104 В/м).

Потенциал поля в любой точке m, расположенной на расстоянии rm от оси провода, равен:

.

Здесь rp – расстояние от оси провода до некоторой фиксированной точки пространства р, в которой потенциал принимается равным нулю.

Если за такую точку принять точку, расположенную на расстоянии одного метра от оси провода, то потенциал точки m будет равен:

.

Изменение потенциала вдоль радиуса представлено на рис. 1.8. Значения потенциала даны также в относительных единицах. За базисное значение потенциала принято значение потенциала в той же точке, что и базисное значение напряженности поля (Ub=124,226 В).

Разность потенциалов между точками, указанными в условии задачи, равна 24,931 В.

Пример 6.

Бесконечно длинный цилиндрический конденсатор с двухслойным диэлектриком имеет радиус внутреннего электрода r1=1 мм , внутренний радиус внешнего электрода – r3=4 мм и радиус поверхности раздела диэлектриков – r2=2 мм.

Относительное значение диэлектрической проницаемости внутреннего слоя диэлектрика er1=5, наружного слоя – er2=2,5. Поперечное сечение конденсатора показано на рис.1.9. Линейная плотность заряда конденсатора t = 10-8 Кл/м.

Определить и построить график изменения напряженности поля вдоль радиуса. Найти разность потенциалов между электродами.

Вычислить емкость конденсатора на единицу длины.

Решение. Для решения задачи используем обобщенную теорему Гаусса. В качестве поверхности интегрирования возьмем замкнутую цилиндрическую поверхность длиной l и радиусом r (r1?r?r3).

.

Ввиду цилиндрической симметрии (вектор электрического смещения на этой поверхности не изменяется по величине и направлен по радиусу) последнее уравнение можно переписать следующим образом:

D·2·p·r·l = t·l,

откуда

D = Dr = t/(2·p·r).

Напряженность поля в первом слое диэлектрика (r1 ?r ? r2) будет при этом равна:

E1 = D/(er1e0) = t/(2·p·er1e0·r).

Во втором слое (r2 ?r ? r3) –

E2 = D/(er2e0) = t/(2·p·er2e0·r).

График изменения напряженности поля представлен на рис.1.10. На графике значения напряженности поля представлены в относительных единицах. За базисное значение принято значение напряженности в первом слое при r = r1, ( Eb = 35,970 кВ/м).

Как видно из рис. 1.10, напряженность поля на границе раздела диэлектриков испытывает скачек. Для лучшего использования изоляции стараются подобрать толщину слоев диэлектрика и их диэлектрическую проницаемость таким образом, чтобы максимальное значение напряженности поля в обоих слоях было одинаково. Это будет соблюдаться при условии r1e1 = r2e2, как в данном примере.

Разность потенциалов между электродами определяется при помощи выражения (1.6), которое для цилиндрического конденсатора можно переписать в следующем виде:

74,792В.

Емкость конденсатора на единицу его длины будет равна:

С = t/U = 10-8/74,792 = 0,1337 нФ/м.

Отметим, что емкость цилиндрического конденсатора с двухслойным диэлектриком можно определить и по такой формуле

С=С1С2/(С1+С2),

где С1 – емкость цилиндрического конденсатора с однослойным диэлектриком с радиусами обкладок r1 и r2 и диэлектрической проницаемостью диэлектрика, равной диэлектрической проницаемости первого слоя; С2 – емкость цилиндрического конденсатора с однослойным диэлектриком с радиусами обкладок r2 и r3 и диэлектрической проницаемостью диэлектрика, равной диэлектрическойпроницаемости второго слоя.

Поскольку емкость цилиндрического конденсатора с однослойным диэлектриком определяется с помощью выражения (1.23), то емкости С1, С2 и С будут равны:

С = С1·С2/(С1 + С2) = 0,1337 нФ/м.

Пример 7.

Бесконечно длинный цилиндр, выполненный из диэлектрика, относительное значение диэлектрической проницаемости которого er1 = 4, заряжен и находится в минеральном масле (er2 = 2,5).

Радиус цилиндра r0 = 5мм (рис. 1.11). Объемная плотность заряда является функцией расстояния от оси цилиндра r = r/10.

Найти законы изменения потенциала и напряженности поля внутри и вне цилиндра в функции расстояния r от оси, приняв потенциал равным нулю на оси цилиндра (r = 0). Построить графики этих функций.

Решение. В

качестве поверхности интегрирования выбирается боковая поверхность цилиндра длиной один метр, радиусом r и с осью, совпадающей с осью исходного цилиндра. При 0 ? r ? r0 внутри этой поверхности будет находиться заряд, величина которого может быть определена с помощью следующего выражения:

Таким образом, с учетом цилиндрической симметрии поля,

получим

Отсюда

где А1=9.416·108 В/м3.

В области вне цилиндра (r0?r??)

Из этого выражения легко определяется напряженность поля вне цилиндра

где А2=183.432 В.

Потенциал электрического поля внутри цилиндра (при условии, что точка, в которой потенциал поля принимается равным нулю, лежит на оси цилиндра) можно определить следующим образом:

Потенциал поля в области вне цилиндра равен

Здесь В2 – постоянная интегрирования, которую можно найти из условия равенства потенциалов на поверхности цилиндра.

В.

Распределение напряженности электрического поля и потенциала представлено в относительных единицах на рис. 1.12. За базисные значения напряженности поля и потенциала приняты максимальное значение напряженности на границе раздела сред (Еmax=3.669·104 В/м) и значение потенциала при r=0.019 м (jв=-284 В).

В частном случае, когда объемная плотность заряда r является постоянной величиной, решение упрощается, и выражения для функции напряженности поля и потенциала будут иметь вид:

где

Пример 8.

Рассчитать электростатическое поле, создаваемое зарядом, который равномерно распределен между двумя цилиндрическими бесконечно длинными поверхностями.

Объемная плотность заряда r=10-6 Кл/м3.

Радиус внешнего цилиндра R1=20 см, внутреннего – R2 =4 см, расстояние между осями цилиндров – а=10 см. Относительное значение диэлектрической проницаемости окружающей среды и обоих цилиндров равно er1=1.

Определить распределение составляющих напряженности электрического поля и потенциала вдоль осей Х и Y (рис. 1.13).

Решение.

Данная задача решается методом наложения. Сначала рассчитывается поле в любой точке М от заряда с объемной плотностью +r, равномерно распределенного по объему всего большого цилиндра. Затем в этой же точке рассчитывается поле от заряда, объемная плотность которого равна -r, равномерно распределенного по объему малого цилиндра. Результирующая напряженность поля Е в любой точке М определяется как векторная сумма напряженности Е1 и Е2. Потенциал любой точки определяется также как сумма потенциалов U1 и U2.

Так, в точке М, которая находится на расстоянии r1 от оси большого цилиндра и r2 от оси малого цилиндра и имеет координаты r1 и a (рис. 1.14) модули напряженности поля от соответствующих зарядов определяются согласно теореме Гаусса по следующим формулам:

Вектор напряженности Е1 направлен по радиусу r1 от оси О большого цилиндра, а вектор Е2 – по радиусу r2 к оси О1 малого цилиндра (рис. 1.14).

Потенциалы поля при этом будут равны:

Здесь С1 и С2 – постоянные интегрирования.

Потенциал поля в области между цилиндрами определяется следующим выражением:

Принимая потенциал равным нулю на оси большого цилиндра (r1=0; r2=a), найдем постоянную интегрирования С.

С учетом этого, выражение для потенциала в области между цилиндрами окончательно можно записать в следующем виде:

Если поле определяется в области, лежащей внутри малого цилиндра, то напряженность поля в произвольной точке этой области будет определяться при помощи следующего выражения:

Здесь i – единичный орт, направленный вдоль оси Х.

Таким образом, внутри малого цилиндра напряженность поля будет иметь только одну составляющую, направленную вдоль оси Х и являющуюся постоянной величиной.

Потенциал поля при этом будет равен

где В – постоянная интегрирования.

Эта постоянная определяется исходя из равенства потенциалов для точки, лежащей на поверхности малого цилиндра, один из которых рассчитывается по последнему уравнению, а второй – по выражению, справедливому для точек, находящихся в области между цилиндрами.

Определяя с помощью теоремы косинусов r2 через r1, выражения для потенциала и напряженности поля можно преобразовать.

.

Если точка, в которой определяется поле, лежит в области вне цилиндров (r1?R1), то модули напряженности поля будут определяться при помощи следующих выражений:

где t1 и t2 – линейная плотность зарядов большого и малого цилиндров.

Направление векторов напряженности поля определяется так же, как и для области, лежащей между цилиндрами.

Потенциал поля для области вне цилиндров будет равен

Постоянная интегрирования В1 определяется из условия равенства потенциалов на поверхности большого цилиндра (r1=R1, r2=R1-a), один из которых рассчитывается по последнему уравнению, а второй – по выражению, справедливому для точек, находящихся в области между цилиндрами.

Следовательно, окончательно можно записать следующее выражение для определения потенциала в данной области:

Построим графики изменения модуля напряженности поля и потенциала вдоль оси Y при х=0, для чего положим r1=y; r2=(y2+a2)0,5.

При этом выражения для напряженности поля и потенциала можно несколько преобразовать. Так, при 0?y?R1 они будут иметь следующий вид:

В области вне цилиндров (у?R1) эти выражения можно записать следующим образом:

Графики изменения данных функций представлены на рис. 1.15.

На графиках все величины даны в относительных величинах. За базисные значения потенциала и напряженности поля приняты значения соответствующих функций на поверхности цилиндра радиусом R1 (x=0; y=R1), которые оказались равными Uб=-1057 В,

Еб=10,94 кВ/м.

На рис. 1.16 представлены графики распределения потенциала и напряженности поля (в относительных единицах) вдоль оси Х (при Y=0).

Пример 9.

Рассчитать электростатическое поле от двух бесконечно длинных, равномерно заряженных, параллельных, тонких проводников, расположенных в воздухе на расстоянии 2d=6 м друг от друга. Проводники имеют одинаковые по величине, но противоположные по знаку заряды, линейная плотность которых равна t=4*10-9 Кл/м.

Построить график изменения напряженности поля вдоль оси Y (при х=0) и вывести уравнения для построения эквипотенциальных линий и линий поля.

Решение.

Поскольку среда линейна, то данную задачу можно решить методом наложения.

Вначале рассчитываем напряженность поля в любой точке М от правого провода (рис. 1.17), а затем в этой же точке от левого провода. Задача по расчету поля от бесконечно длинного заряженного провода решена в примере 5. Поэтому сразу запишем выражения для определения напряженности поля от правого и левого провода

Направление векторов напряженности поля показано на рис. 1.17. Результирующая напряженность поля определяется как векторная сумма этих векторов

Модуль данной результирующей напряженности поля рассчитывается по формуле

где

E1x, E2x,

E1y, E2y

проекции векторов напряженности поля на соответствующие декартовы оси координат.

Здесь yм и xм – координаты произвольной точки М.

В частности, если точка М лежит на оси Y, то (r1=r2) результирующая напряженность поля будет направлена вдоль оси Х (Е=Ех). График распределения данной величины вдоль оси Y представлен на рис. 1.18. Значения напряженности поля на графике даны в относительных единицах, при этом за базисное значение принято значение напряженности в начале координат (x=0, y=0), которое оказалось равным 47,956 В/м.

Потенциал поля в любой точке М определяется также, как сумма потенциалов поля от одного и другого провода

Здесь С – постоянная интегрирования. Эта постоянная будет равна нулю, если принять потенциал точки, которая находится в начале координат, равным нулю.

В этом случае ось OY будет являться эквипотенциальной линией нулевого потенциала.

Все остальные линии равного потенциала являются окружностями с центрами, лежащими на оси ОХ. Координаты этих центров и радиусы окружностей определяются с помощью следующих формул:

Таким образом, если необходимо провести линию равного потенциала через точку, потенциал которой задан (например, 100 В), то надо определить k, используя формулу для потенциала

При построении картины поля, для того чтобы приращение потенциала при переходе от любой линии равного потенциала к соседней оставалось постоянным, должно соблюдаться условие

Здесь В – постоянная; n – порядковый номер линии равного потенциала.

Таким образом, число k при возрастании порядкового номера линии равного потенциала n должно изменяться в геометрической прогрессии.

Линиями поля данной системы заряженных проводников являются дуги окружностей, пересекающихся с проводниками. При этом, центры этих дуг лежат на оси OY и имеют координаты, которые определяются при помощи следующей формулы:

Чтобы при построении картины поля подразделить поле на трубки равного потенциала, необходимо при переходе от любой линии напряженности поля к соседней изменять угол J на постоянную величину.

Пример 10.

Два одинаковых бесконечно длинных проводящих цилиндра расположены в воздухе. Радиус цилиндров R=0.04 м, расстояние между геометрическими осями 2h=0.12 м (рис.1.19).

Напряжение, приложенное к цилиндрам U12=100 В.

Рассчитать электростатическое поле, построить графики изменения напряженности поля и потенциала вдоль оси х.

Найти емкость системы проводов на единицу длины.

Решение.

Поле внутри проводящих проводов отсутствует. Поле же в воздухе будет точно таким, как и поле от двух бесконечно тонких линейных проводников, проходящих через электрические оси данных проводов.

Таким образом, задача по расчету поля двух проводов круглого сечения сводится к нахождению электрических осей проводов, поскольку в дальнейшем расчет поля в воздухе будет аналогичным расчету поля, проведенному в предыдущем примере.

Поскольку поверхность проводящих проводов является поверхностью равного потенциала, то, используя выражения для координаты центра и радиуса линий равного потенциала, которые приведены в примере 9, можно получить формулу для определения координат центра электрических осей проводов b.

В условии задачи задана не линейная плотность зарядов, а разность потенциалов между проводами (разность потенциалов между точками m и n).

Поэтому, прежде всего, следует определить линейную плотность зарядов t. Для этого используем выражение для потенциалов, которое также приведено в предыдущем примере

Здесь r1 и r2 – расстояние от электрической оси первого (левого) и второго провода, соответственно, до точки m, которая находится на поверхности первого провода, а r1/ и r2/ – расстояние от электрической оси первого и второго провода, соответственно, до точки n, которая находится на поверхности второго провода.

С учетом последних соотношений, можно записать выражение для определения линейной плотности зарядов

После определения линейной плотности зарядов и расположения электрических осей проводов, выражения для расчета напряженности поля и потенциала в области вне проводов полностью аналогичны тем, которые приведены в примере 9.

Графики распределения напряженности поля и потенциала вдоль оси ОХ (при y=0) приведены на рис. 1.20. Все значения на графике даны в относительных единицах, причем, за базисные значения приняты значения напряженности поля и потенциала на поверхности правого провода, которые оказались равными Еб=2904 В/м, jб=-50 В.

С учетом того, что ось OY является осью симметрии для напряженности поля и осью антисимметрии для потенциала, графики построены только для положительных значений х.

Емкость между двумя проводниками на единицу их длины определяется при помощи следующего выражения:


Пример 11. Рассчитать

электростатическое поле от двух параллельных бесконечно длинных заряженных несоосных проводящих цилиндров, расположенных в воздухе. Радиусы цилиндров R1=0.02 м и R2=0.04 м. Расстояние между геометрическими осями D=0.08 м (рис. 1.21). Цилиндры имеют одинаковый по величине, но противоположный по знаку заряд, линейная плотность которого t1=-t2=t=10-8 Кл/м.

Определить разность потенциалов между цилиндрами, емкость системы на единицу длины.

Построить график изменения потенциала поля вдоль оси ОХ (при y=0).


Решение.

Расположим оси цилиндров (О1 и О2) так, чтобы их поверхности совпали с поверхностями равного потенциала. Обозначим через h1 и h2 расстояние от геометрических осей первого и второго цилиндра до плоскости постоянного (нулевого) потенциала, а через b – расстояние от электрических осей-до этой плоскости. После определения данных величин задача по расчету поля в области вне цилиндров сводится к расчету электростатического поля от двух заряженных бесконечно длинных линейных проводов, проходящих через центры зарядов, и оказывается, таким образом, полностью аналогичной задачам, рассмотренным в предыдущих примерах.

Используя выражение для определения координат центров зарядов, справедливое как для одного, так и для второго провода, составим следующее уравнение:

или

При заданном расположении цилиндров (рис. 1.21) имеем

h1+h2=D

и, следовательно,

.

В этом случае

Разность потенциалов между двумя цилиндрами можно определить по следующей формуле (как и в примере 10):

Здесь r1/ и r2/ – расстояние от центра электрических осей первого и второго цилиндра, соответственно, до точки n, лежащей на поверхности первого цилиндра; r1// и r2// – расстояние от центра электрических осей первого и второго цилиндра, соответственно, до точки m, лежащей на поверхности второго цилиндра

r1/ = (R1 + b – h1) = 0.0131м; r2/ = 2b – r1/ = 0.0381м;

r2// = (R2 + b – h2) = 0.0181м; r1// = 2b – r2// = 0.0331м.

Потенциал любой произвольной точки d будет равен

где r1 и r2 – расстояние от электрических осей первого и второго провода до точки d.

Если точка d лежит на оси ОХ между цилиндрами, то

r2 = b – x; r1 = b + x;

График изменения потенциала вдоль оси ОХ (при (R1 – h1) < x < (h2 – – R2)) показан на рис. 1.22.

Емкость системы цилиндров на единицу длины определяется по следующей формуле:

Построение линий равного потенциала и линий поля в области вне цилиндров проводится таким же образом, как и для линейных проводов, которые совпадают с электрическими осями (см. пример 9).

Пример 12. Бесконечно длинный проводящий цилиндр радиусом R1=2см расположен внутри другого бесконечно длинного проводящего цилиндра радиусом R2=6см.

Расстояние между геометрическими осями цилиндров D=3см (рис. 1.23). Область между цилиндрами заполнена диэлектриком с относительным значением диэлектрической проницаемости er=2.

Цилиндры имеют одинаковый по величине, но противоположный по знаку заряд, линейная плотность которого t1=-t2=t=10-8Кл/м.

Определить разность потенциалов между цилиндрами, емкость системы на единицу длины. Построить график изменения напряженности поля вдоль оси Х (при Y=0) между цилиндрами.

Решение.

Решение данной задачи, как и в предыдущих примерах, сводится к отысканию положения электрических осей.

Полагая, что оси проводов расположены так, что их поверхности совпадают с эквипотенциальными поверхностями электростатического поля, будем иметь:

где h1 и h2 – расстояние от геометрических осей цилиндров до плоскости постоянного (нулевого) потенциала; b – расстояние от электрических осей до этой же плоскости.

Последнее выражение можно переписать следующим образом:

Но, поскольку при расположении цилиндров один внутри другого, выполняется равенство

то


Таким образом, выражения для определения h1, h2, и b будут иметь следующий вид:

После нахождения положения электрических осей задача по расчету поля в диэлектрике между цилиндрами становится полностью аналогичной задаче по расчету поля от линейных проводов, совпадающих с электрическими осями цилиндров.

Так, потенциал любой точки М, находящейся в области между цилиндрами, будет равен

где r1 и r2 – расстояние от электрических осей первого и второго цилиндров соответственно до точки М.

Разность потенциалов между цилиндрами (между точками m и n) при этом будет равна

Здесь r1/ и r2/ – расстояние от электрических осей первого и второго цилиндров соответственно до точки m, а r1// и r2// – расстояние от электрических осей этих цилиндров до точки n.

При заданном расположении цилиндров указанные расстояния будут равны

Таким образом, разность потенциалов между цилиндрами Umn будет составлять величину, равную 67.1В.

Напряженность электрического поля в любой точке, лежащей на оси ОХ между цилиндрами (между точками m и n), находится методом наложения

График изменения данной величины вдоль оси ОХ представлен на рис. 1.24.

Для удобства изображения все величины на рисунке представлены в относительных единицах. За базисное значение напряженности поля принято значение напряженности поля на поверхности малого цилиндра в точке m (Ebm=8020 В/м), а за базисное значение переменной х – абсолютное значение координаты этой же точки (хb=|хm|= 0.0183 м).

Емкость системы проводов на единицу их длины определяется с помощью следующей формулы:

Зная разность потенциалов между цилиндрами и линейную плотность зарядов t емкость С, согласно определению, можно найти и как отношение линейной плотности зарядов к разности потенциалов

Для построения силовых линий и линий равного потенциала можно воспользоваться рекомендациями, данными в предыдущих примерах.

Добавить комментарий