Как найти натуральную величину треугольников

Натуральная величина треугольника определяется 2 методами:

  1. замена плоскостей проекции;
  2. плоскопараллельное перемещение.

Это задание является обязательным для студентов в учебных заведениях и для его решения необходимо изучить тему: » Способы преобразования чертежа».

Для наглядности я использовал определенное задание и на его примере покажу как находится натуральная величина треугольника.

Алгоритм определения натуральной величины плоскости:

  • Замена плоскостей проекции

1.) Для построения чертежа использовал задание, расположенное снизу. Первоначально строятся точки по координат в плоскостях П1 и П2.

Натуральная величина треугольника

2.) Строится дополнительная горизонтальная линия 11 в верхнем изображении (проводится линия от средне расположенной точки по высоте), затем опускают дополнительные отрезки на нижнее изображение (как указано на рисунке снизу) и соединяют прямой. Эта прямая необходима для того, чтобы на ней расположить вспомогательную плоскость.

Натуральная величина треугольника_2

3.) Построив прямую на нижнем рисунке, чертится под углом 900  ось Х1 (от точки С1 располагаем на произвольном расстоянии, но не слишком далеко). Затем отмеряются расстояния:

  • от С2 до оси Х;
  • от В2 до оси Х;
  • от А0 до оси Х.

Полученные размеры откладываются от оси Х1 (размеры указаны разными цветами на рисунке снизу) и соединяют, далее подписываются точки.

Натуральная величина треугольника_3

4.) Строится еще одна дополнительная ось Х2, расположенная параллельно отрезку В4С4А4. От точек В4,С4 и А4 проводят прямые перпендикулярные оси Х2.

Натуральная величина треугольника_4

5.) Отмеряются расстояния:

  • от В1 до Х1;
  • от С1 до Х1;
  • от А1 до Х1.

Полученные результаты измерений откладываются от иси Х2 (на изображении снизу отмечены зелеными и голубым цветами).

Натуральная величина треугольника_56.) Соединяются точки и подписывают полученную плоскость заглавными «Н.В.»Натуральная величина треугольника_6

  • Плоскопараллельное перемещение

7.) Откладывается отрезок на оси Х (обозначен синим цветом).

Натуральная величина треугольника_7

8.) Переносятся точки на текущее построение. Натуральная величина треугольника_8

9.) Соединяют точки, получившиеся при переносе из плоскостей проекций. Натуральная величина треугольника_810.) Методом вращения точки А2′, С2′ переносятся на горизонтальную прямую, а точка В2′ не меняет свое положение (относительно ее и происходило вращение).Натуральная величина треугольника_911.) Откладывается точка (располагают от оси Х на небольшом расстоянии, т.е. произвольном), относительно которой и будет откладываться плоско параллельное перемещение плоскости. Натуральная величина треугольника_1012.) От точек А2′, С2′ и В2′ опускаются прямые. Далее циркулем необходимо отмерить расстояния:

  • от С1 до В1;
  • от С1 до А1.

Затем эти размеры откладываются от С1′ (обозначены красным и синим цветами).

Натуральная величина треугольника_1113.) Соединяются и подписываются точки (А1′, В1′ и С1′). Опускают прямые от С2″ и А2″Натуральная величина треугольника_1214.) От точек С1 и А1 отводят прямые до пересечения с прямыми опущенными от точек С2″ и А2″. В месте пересечения ставится точка.Натуральная величина треугольника_1315.) Завершающим шагом является соединение точек и обводка линиями всего чертежа.Натуральная величина треугольника_14Пример чертежа на тему «Натуральная величина треугольника» смотрите здесь.

Просмотрели 572

Чертежик

Метки

Натуральная величина треугольника с описанием.

Натуральная величина треугольника определяется 2 методами:

  1. замена плоскостей проекции;
  2. плоскопараллельное перемещение.

Это задание является обязательным для студентов в учебных заведениях и для его решения необходимо изучить тему: » Способы преобразования чертежа».

Для наглядности я использовал определенное задание и на его примере покажу как находится натуральная величина треугольника.

Алгоритм определения натуральной величины плоскости:

Замена плоскостей проекции

1.) Для построения чертежа использовал задание, расположенное снизу. Первоначально строятся точки по координат в плоскостях П1 и П2.

2.) Строится дополнительная горизонтальная линия 1 1 в верхнем изображении (проводится линия от средне расположенной точки по высоте), затем опускают дополнительные отрезки на нижнее изображение (как указано на рисунке снизу) и соединяют прямой. Эта прямая необходима для того, чтобы на ней расположить вспомогательную плоскость.

3.) Построив прямую на нижнем рисунке, чертится под углом 90 0 ось Х 1 (от точки С1 располагаем на произвольном расстоянии, но не слишком далеко). Затем отмеряются расстояния:

  • от С2 до оси Х;
  • от В2 до оси Х;
  • от А0 до оси Х.

Полученные размеры откладываются от оси Х1 (размеры указаны разными цветами на рисунке снизу) и соединяют, далее подписываются точки.

4.) Строится еще одна дополнительная ось Х2, расположенная параллельно отрезку В 4 С 4 А 4. От точек В4,С4 и А4 проводят прямые перпендикулярные оси Х2.

5.) Отмеряются расстояния:

  • от В1 до Х1;
  • от С1 до Х1;
  • от А1 до Х1.

Полученные результаты измерений откладываются от иси Х2 (на изображении снизу отмечены зелеными и голубым цветами).

6.) Соединяются точки и подписывают полученную плоскость заглавными «Н.В.»

Плоскопараллельное перемещение

7.) Откладывается отрезок на оси Х (обозначен синим цветом).

8.) Переносятся точки на текущее построение.

9.) Соединяют точки, получившиеся при переносе из плоскостей проекций. 10.) Методом вращения точки А2′, С2′ переносятся на горизонтальную прямую, а точка В2′ не меняет свое положение (относительно ее и происходило вращение).11.) Откладывается точка (располагают от оси Х на небольшом расстоянии, т.е. произвольном), относительно которой и будет откладываться плоско параллельное перемещение плоскости. 12.) От точек А2′, С2′ и В2′ опускаются прямые. Далее циркулем необходимо отмерить расстояния:

Затем эти размеры откладываются от С1′ (обозначены красным и синим цветами).

13.) Соединяются и подписываются точки (А1′, В1′ и С1′). Опускают прямые от С2″ и А2″14.) От точек С1 и А1 отводят прямые до пересечения с прямыми опущенными от точек С2″ и А2″. В месте пересечения ставится точка.15.) Завершающим шагом является соединение точек и обводка линиями всего чертежа.Пример чертежа на тему «Натуральная величина треугольника» смотрите здесь.

Построить натуральную величину треугольника авс

Натуральная величина треугольника на эпюре Монжа может быть определена: – способом прямоугольного треугольника;

Здесь поочередно применяется способ прямоугольного треугольника для определения действительных величин отрезков, составляющих треугольник, а затем, к одному из них методом засечек строятся два других.

Используем Метод преобразования проекций для определения истиной величины треугольника на эпюре Монжа:

– Способ вращения вокруг осей перпендикулярных плоскостям проекций;

– Вращение вокруг горизонтали представляющих собой линии уровня;

представляющих собой линии уровня;

– Вращение вокруг следа или способ совмещения с плоскостью проекций;

Задача на определение натуральной величины плоской фигуры относится к разделу метрические задачи.

Ниже приведены решения одной и той же задачи вышеописанными методами.

9.6.1. Задание:определить натуральную величину треугольника ABC(рис. 9.8), а также угол наклона плоскости треугольника к плоскости П1.

1) Решение методом замены плоскостей проекций (рис. 9.9).

Плоскость треугольника спроецируется в натуральную величину в том случае, если она будет параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невозможно. Она решается в два этапа: при первой замене плоскостей проекций получают плоскость треугольника ABC,перпендикулярную к новой плоскости проекций, при второй замене – получают плоскость треугольника, параллельную новой плоскости проекций.

Первый этап. Одним из условий перпендикулярности двух плоскостей является наличие прямой, принадлежащей одной из плоскостей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). Затем на произвольном расстоянии от горизонтальной проекции треугольника A1B1C1 проводят ось x1,4новой системы плоскостей проекций П14перпендикулярно к горизонтальной проекции горизонтали h1.В новой системе треугольник ABC стал перпендикулярен к новой плоскости проекций П4.

На линиях проекционной связи в новой системе откладывают координатыzточек А, В, С с фронтальной проекции исходной системы плоскостей П12.

При соединении новых проекций А4,B4, С4получают прямую линию, в которую спроецировался треугольник ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 – угол α. На чертеже это угол между осью x1,4и проекцией С4А4В4.

Второй этап. Выбираем новую плоскость проекции П5,параллельную плоскости треугольника, т.е. новую ось x4,5проводят параллельно С4А4В4на произвольном расстоянии. Получают новую систе­му П45.Полученный треугольник А5В5С5и есть искомая натуральная величина треугольника ABC.

2) Решение методом вращения вокруг проецирующей оси(рис. 9.10).

Задача решается в два этапа. На первом этапе выполняют вращение так, чтобы плоскость треугольника ABCпреобразовалась в проецирующую плоскость, т.е. стала перпендикулярна к одной из плоскостей проекций. Для этого проводят горизонталь h (h1,h2) через точку А. (построение начинают с фронтальной проекции h2,она проходит через проекцию точки A2и проекцию точки 12 при этомh2 параллельна оси х).Далее находят горизонтальную проекцию h1 горизонтали h (через проекции A1 и 11). Через точку А проводят ось i – ось вращения треугольника так, чтобы она была перпендикулярна к П1. На фронтальной проекции через вершины А2 и В2 проводят следы горизонтальных плоскостей уровня Δ и Σв которых при вращении будут перемещаться точки АиВ. Вершина С принадле­жит плоскости П1поэтому ее плоскостью вращения будет плоскость проекций П1.На горизонтальной проекции, взяв за центр вращения проекцию i1 поворачивают горизонталь А так, чтобы на плоскость П2 она спроецировалась в точку. На чертеже это выразится тем, что h’1 займет новое положение – перпендикулярно к оси х.

При этом на фронтальной проекции А2 остается неизменной, находясь на следе плоскости Σ2 и ее обозначим a2.

На гори­зонтальной проекции поворачиваем оставшиеся вершины В и С во­круг оси i так, чтобы . На фронтальной проекции вершина В перемещается по следу плоскости 2, а вершина С – по оси х. Соединив новые положения проекций всех вершин треугольника ABC, получают проекцию А’2В’2С’2,сливающуюся в линию. Плоскость треугольника ABC заняла проецирующее положение. На данном этапе, при необходимости, находят угол наклона плоскости треугольника ABC к П1 – угол α .

На втором этапе проводят ось jчерез вершинуС так, чтобы ось была фронтально проецирующая. При этом С’2j’2, а горизонтальная проекция j’1 пройдет через проекцию С’1. Вокруг оси поворачивают треугольник так, чтобы он стал параллелен горизонтальной плоскости проекций. В данной задаче вращают точки А’2 и В’1, вокруг j2 до совмещения с осью х,при этом проекции B’1 и A’1 будут перемещаться параллельно оси хи займут новое положение В”1, и А”1 вершина С оста­нется на месте. Соединив точки между собой, получают новое положение плоскости (оно соответствует натуральной величине треугольника ABC).

3) Решение методом плоскопараллельного перемещения (рис. 9.11).

Задача решается в два этапа. На первом этапе преобразуют чертеж так, чтобы плоскость треугольника ABC стала перпендику­лярна к одной из плоскостей проекций. Для этого проводят в плоскости треугольника горизонталь h (фронтальная проекция А212х,). Каждую вершину треугольника заключают в свою плоскость уровня, параллельную плоскости П1. В рассматриваемом примере вершина С принадлежит плоскости проек­ций П1, А принадлежит плоскости Σ, В — плоскости Δ.

Плоскость треугольника перемещается в пространстве до тех пор, пока горизонталь h1 треугольника не станет перпендикулярна к фронтальной плоскости проекций П2.

Для этого на свободном поле чертежа вычерчивают горизонтальную проекцию треугольника A1 ′ B1 ′ C1 с условием, чтобы А111П2, а значит А1 ′ 11х. При этом вершины треугольника, перемещаясь каждая в своей плоскости, займут новое положение – (фронтальная проекция А2В2С2 заменится А’2В’2С’2).Соединив эти точки, получают новое положение треугольника ABC, спроецированного в линию, т.е. перпендикулярного к плоскости П2.

На втором этапе, чтобы получить натуральную величину треугольника ABC, его плоскость поворачивают до тех пор, пока она не будет параллельна одной из плоскостей проекций. В рассматриваемом решении фронтальную проекцию треугольника А2‘В2‘С2располагают на произвольном расстоянии от оси хпараллельно плоскости П1. При этом вершины А, Ви С треугольника заключают в горизонтально проецирующие плоскости θ, Т, Р. По следам этих плоскостей будут перемещаться горизонтальные проекции вершин А1‘В1‘С1. От нового положения фронтальной проекции А2“В2“С2 проводят линии проекционной связи до пресечения с соответствующими следами плоскостей, в которых они перемещаются (θ1,T1,P1), и получая проекции точек А1” В1” C1. Соединив эти проекции, получают тре­угольник ABC в натуральную величину.

4) Решение методом вращения вокруг линии уровня(рис.9.12)

Для решения задачи этим способом необходимо повернуть плоскость треугольника вокруг линии уровня, в данном случае вокруг горизонтали, до положения, параллельного горизонтальной плоскости проекции. Через точку А в плоскости треугольника ABC проводят горизонталь h, фронтальная проекция которой будет параллельна оси х. Отмечают точку 12 и находят ее горизонтальную проекцию 11. Прямая A111 является горизонтальной проекцией h1горизонтали h. Вокруг горизонтали будут вращаться точки В и С. Определяют натуральную величину радиуса вращения точки С .

Для определения натуральной величины радиуса вращения используют любой метод (в данном случае способ прямоугольного треугольника) строят прямоугольный треугольник, в котором O1C1 – один из катетов. Вто­рой катет – разность координат Δzотрезка О2С2, взятого с фронталь­ной проекции. В построенном треугольнике гипотенуза O1C – нату­ральная величина радиуса вращения.

На продолжении перпендикуляра O1C1 откладывают |RBp.| и полу­чают новое положение вершины С после вращения — С . Проекция вер­шины В получается пересечением луча C 11 и перпендикуляра к горизонтальной проекции h1 проведенного через проекцию точки В1.

Треугольник A B C есть искомая натуральная величина тре­угольника ABC.

5) Решение методом совмещения(рис. 9.13).

Для решения задачи методом совмещения необходимо построить следы плоскости Σ, которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь f и находят горизонтальный след этой фронтали – N1. По условию задачи вершина С треугольника принадлежит горизонтальной плоскости проек­ций П1. Тогда горизонтальный след Σ1 плоскости Σпроводят через проекции N1 и C1. Соединив эти две точки и продлив отрезок до пересечения с осью х, находят точку схода следов Σх. Учитывая, что все фронтали плоскости параллельны ее фронтальному следу, фронтальный след Σ2 плоскости Σпроводят через точку Σхпараллельно проекции фронтали f2.

Для нахождения натуральной величины треугольника ABCнеобходимо построить совмещенное положение плоскости Σ с горизонтальной плоскостью проекций П1. Для этого через вершину Апроводят горизонталь h1. На фронтальном следе Σ2 фиксируют точку 22. Ее горизонтальная проекция – точка 21. Точка 2 вращается в плоскости, перпендикулярной к горизонтальному следу плоскости Σ. Поэтому, чтобы построить точку 2 в совмещенном положении 2 , проводят из 21перпендикуляр к горизонтальному следу Σ, а из центра Σх дугу окружности радиусом Σх22 до пересечения с направлением перпендикуляра. Соединив Σх с 2 , получают совмещенное положение фронтального следа Σ – Далее через точку 2 проводят горизонталь h всовмещенном положении. На этой горизонтали находят точку А , проведя перпендикуляр из точки A1 к горизонтальному следу Σ1.

По такой же схеме строят совмещенное положение точки В . Совмещенное положение точки С совпадает с ее горизонтальной проекцией С1 т.е. С1С . Соединив построенные точки, получают треугольник А В С – это и есть натуральная величина треугольника ABC.

Не нашли то, что искали? Воспользуйтесь поиском:

Метки

Натуральная величина треугольника с описанием.

Натуральная величина треугольника определяется 2 методами:

  1. замена плоскостей проекции;
  2. плоскопараллельное перемещение.

Это задание является обязательным для студентов в учебных заведениях и для его решения необходимо изучить тему: » Способы преобразования чертежа».

Для наглядности я использовал определенное задание и на его примере покажу как находится натуральная величина треугольника.

Алгоритм определения натуральной величины плоскости:

Замена плоскостей проекции

1.) Для построения чертежа использовал задание, расположенное снизу. Первоначально строятся точки по координат в плоскостях П1 и П2.

2.) Строится дополнительная горизонтальная линия 1 1 в верхнем изображении (проводится линия от средне расположенной точки по высоте), затем опускают дополнительные отрезки на нижнее изображение (как указано на рисунке снизу) и соединяют прямой. Эта прямая необходима для того, чтобы на ней расположить вспомогательную плоскость.

3.) Построив прямую на нижнем рисунке, чертится под углом 90 0 ось Х 1 (от точки С1 располагаем на произвольном расстоянии, но не слишком далеко). Затем отмеряются расстояния:

  • от С2 до оси Х;
  • от В2 до оси Х;
  • от А0 до оси Х.

Полученные размеры откладываются от оси Х1 (размеры указаны разными цветами на рисунке снизу) и соединяют, далее подписываются точки.

4.) Строится еще одна дополнительная ось Х2, расположенная параллельно отрезку В 4 С 4 А 4. От точек В4,С4 и А4 проводят прямые перпендикулярные оси Х2.

5.) Отмеряются расстояния:

  • от В1 до Х1;
  • от С1 до Х1;
  • от А1 до Х1.

Полученные результаты измерений откладываются от иси Х2 (на изображении снизу отмечены зелеными и голубым цветами).

6.) Соединяются точки и подписывают полученную плоскость заглавными «Н.В.»

Плоскопараллельное перемещение

7.) Откладывается отрезок на оси Х (обозначен синим цветом).

8.) Переносятся точки на текущее построение.

9.) Соединяют точки, получившиеся при переносе из плоскостей проекций. 10.) Методом вращения точки А2′, С2′ переносятся на горизонтальную прямую, а точка В2′ не меняет свое положение (относительно ее и происходило вращение).11.) Откладывается точка (располагают от оси Х на небольшом расстоянии, т.е. произвольном), относительно которой и будет откладываться плоско параллельное перемещение плоскости. 12.) От точек А2′, С2′ и В2′ опускаются прямые. Далее циркулем необходимо отмерить расстояния:

Затем эти размеры откладываются от С1′ (обозначены красным и синим цветами).

13.) Соединяются и подписываются точки (А1′, В1′ и С1′). Опускают прямые от С2″ и А2″14.) От точек С1 и А1 отводят прямые до пересечения с прямыми опущенными от точек С2″ и А2″. В месте пересечения ставится точка.15.) Завершающим шагом является соединение точек и обводка линиями всего чертежа.Пример чертежа на тему «Натуральная величина треугольника» смотрите здесь.

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p – a ) b + c

lb = 2√ acp ( p – b ) a + c

lc = 2√ abp ( p – c ) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

[spoiler title=”источники:”]

http://planshet-info.ru/kompjutery/postroit-naturalnuju-velichinu-treugolnika-avs

http://ru.onlinemschool.com/math/formula/triangle/

[/spoiler]

Натуральная величина треугольника

Натуральная величина треугольника на эпюре Монжа может быть определена:
– способом прямоугольного треугольника;

Натуральная величина треугольника

Натуральная величина треугольника

Здесь поочередно применяется способ прямоугольного треугольника для определения действительных величин отрезков, составляющих треугольник, а затем, к одному из них методом засечек строятся два других.

Используем Метод преобразования проекций для определения истиной величины треугольника на эпюре Монжа:

– Способ плоскопараллельного перемещения;

Натуральная величина треугольника

Натуральная величина треугольника

– Способ вращения вокруг осей перпендикулярных плоскостям проекций;

Натуральная величина треугольника

Натуральная величина треугольника

– Вращение вокруг горизонтали представляющих собой линии уровня;

Натуральная величина треугольника

Натуральная величина треугольника

или фронтали,

Натуральная величина треугольника

Натуральная величина треугольника

представляющих собой линии уровня;

– Вращение вокруг следа или способ совмещения с плоскостью проекций;

Натуральная величина треугольника

Натуральная величина треугольника

– Перемена плоскости проекции.

Натуральная величина треугольника

Натуральная величина треугольника

Задача на определение натуральной величины плоской фигуры относится к разделу метрические задачи.

+

Как найти натуральную величину треугольника

Геометрическая фигура может быть изображена вращающейся, то есть занимающей определенное положение по отношению к неподвижной системе плоскостей проекции. В качестве оси вращения может использоваться любая прямая. Зная исходные данные вращающейся фигуры, можно определить ее натуральную величину, а также найти расстояние от заданной точки до треугольника.

Как найти натуральную величину треугольника

Вам понадобится

  • – учебник «Геометрия»;
  • – линейка;
  • – простой карандаш;
  • – тетрадь.

Инструкция

Решите данную задачу путем замены плоскостей проекции. Прямые плоскости, проходящие перпендикулярно к линиям уровня данной плоскости, в геометрии получили название линий наибольшего наклона плоскости к соответствующей ей плоскости проекций. Проведите на рисунке горизонталь h и фронталь f. Ввиду того, что линия наибольшего наклона плоскости является перпендикулярной плоскости проекции П1 (эта перпендикулярность сохранена на горизонтальной проекции), ее горизонтальная проекция будет проходить через точку С1, то есть перпендикулярно проекции h1. Поскольку линия наибольшего наклона перпендикулярна к проекции плоскости П2, фронтальная проекция треугольника должна быть перпендикулярна проекции f2.

Как найти натуральную величину треугольника

Для того чтобы преобразовать проецирующую плоскость в плоскость уровня, постройте еще одну плоскость проекций: она должна располагаться параллельно проекции треугольника с вершинами А4, В4 и С4. Затем проведите связующие линии и отложите координаты точек, которые взяты из плоскости П1. Полученная на рисунке проекция треугольника А5В5С5 будет соответствовать натуральной величине треугольника АВС.

Найдя натуральную величину треугольника ABC, с легкостью сможете определить расстояние от некой точки D до треугольника. Для этого опустите перпендикуляр из точки D на плоскость той проекции, которая является проецирующей. После этого найдите длину опущенного перпендикуляра.

Видео по теме

Обратите внимание

Помните: параллельный перенос геометрических фигур не изменяет ориентацию плоскости и не сохраняет неподвижных точек.

Полезный совет

Плоскости считаются параллельными, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым, принадлежащим другой плоскости. В то же время две прямые являются параллельными в том случае, если их одноименные проекции параллельны между собой.

Источники:

  • Начертательная геометрия – решение задачи №3

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Определение
натуральной величины плоской фигуры
(грани пирамиды или треугольника)
сводится к решению четвертой основной
задачи на преобразование комплексного
чертежа – преобразованию плоскости
общего положения в плоскость уровня.

Пример
№4
. Определить
натуральную величину треугольника АВС.

Рис. 9.

Во-первых, решим
эту задачу способом замены плоскостей
проекций (рис.9). Для этого:

  1. проведем в плоскости
    треугольника АВС
    фронталь f
    (линия С-1),
    а затем, заменяя π1,
    введем новую плоскость проекций π3,
    проходящую
    через ось Х1
    и
    перпендикулярную к фронтальной проекции
    фронтали f”
    (С“-I”).
    На π3
    заданная плоскость треугольника АВС
    спроецируется в прямую линию, т.е.,
    станет проецирующей по отношению к
    этой плоскости проекций;

  2. второй заменой
    плоскости проекций π2
    на новую плоскость проекций π4,
    проходящую через ось Х2
    и параллельную проекции А”′В“′С“′
    нашего треугольника, найдем на плоскости
    π4
    натуральную величину треугольника ABС
    – фигуру А1VВ1VС1V.

Разумеется,
в плоскости треугольникаАВС
может быть проведена и другая линия
уровня, например горизонталь или
профильная прямая, а затем она преобразована
в проецирующую прямую и т.д.

Рис. 10.

Во-вторых, решим
эту задачу способом плоскопараллельного
перемещения (рис.10). В качестве линии
уровня выберем горизонталь h
(линия C-1)
и преобразуем чертеж так, чтобы в новом
положении эта горизонталь стала
фронтально – проецирующей прямой, а
плоскость треугольника
при этом – фронтально – проецирующей
плоскостью. Вторым преобразованием
этой плоскости в плоскость уровня,
параллельную плоскости π1,
найдем натуральную величину треугольника
АВС
– фигуру
′.

В-третьих, решим
задачу способом вращения вокруг
проецирующих прямых (рис.11).

Проведем в плоскости
треугольника АВС
горизонталь h
(линия A-1)
до пересечения с продолжением стороны
ВС.
Затем через точку 1 и перпендикулярно
плоскости проекций π1
проведем
ось вращения i.
Повернем вокруг этой оси треугольник
АВС
до положения, при котором горизонталь
h
(A-1)
станет фронтально – проецирующей прямой
.
В результате плоскость треугольника,
содержащая эту горизонталь, станет
фронтально – проецирующей плоскостью.
Найдем по проекциям

и А””є
фронтальную проекцию

треугольника АВС.
Выбрав новую ось вращения j,
проходящую через точку
и перпендикулярную плоскости π2
повернем треугольник

до положения, параллельного горизонтальной
плоскости проекций, на которую он
спроецируется в натуральную величину
– фигуру
′.

Рис. 11.

Решение
задачи способом вращения вокруг
проецирующих прямых требует такого
выбора осей вращения, чтобы в результате
поворота фигуры не происходило наложения
проекций. Поэтому, в данном случае,
горизонталь h
проведена через вершину А,
что позволило отодвинуть ось вращения
i
подальше от треугольника АВС.

В-четвертых,
решим задачу способом вращения вокруг
линии уровня (рис.12). Проведем в плоскости
треугольникаАВС
линию уровня, например, фронталь f
(С-1), через которую можно провести
фронтальную плоскость γ . Вращением
вокруг этой фронтали треугольник АВС
можно совместить с плоскостью γ . В этом
случае точки 1 и С
останутся на оси вращения i
, а вершина В
треугольника АВС
будет вращаться по дуге окружности,
плоскость δ
которой будет перпендикулярна линии
фронтали f
в точке О
– центре вращения точки В.
При совмещении плоскости треугольника
АВС
с плоскостью γ радиус вращения точки
В
– отрезок OB
– спроецируется на плоскость в натуральную
величину. Таким образом, найдя натуральную
величину отрезка
и отложив его в направлении плоскости
вращения δ
от точки 0,
осуществим как бы поворот треугольника
АВС
до совмещения с плоскостью γ, параллельной
фронтальной плоскости проекций.

Рис. 12. Рис. 13.

На
чертеже натуральная величина радиуса
ОВ
вращения точки В
получена способом прямоугольного
треугольника.

Фигура


представляет
собой натуральную величину треугольника
АВС.
Построение ясно из чертежа.

Полученная
таким образом натуральная величина
треугольника АВС
может быть носителем не только натуральной
величины грани, но и дает “решающее
положение” для определения расстояния
от точки до прямой (например, отрезок
“),
натуральной величины угла (например,
угол β0
=
”)
(рис.13).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий