Как найти натуральный логарифм предела

В этой заметке речь пойдет о пределах. С ними сталкиваются в 10-11 классах на уроках физики, когда начинают выводить частоту колебаний математического или физического маятников. В математике с пределами сталкиваются, когда учащихся знакомят с производными и дифференцированием. Поэтому эта одно из самых базовых понятий математического анализа, в котором не должно быть пробелов.

Давайте начнем с простых (условно и относительно) пределов, которые вам могут попасться на первом курсе.

Математический анализ. Учимся решать пределы

С некоторыми из них практически ничего не нужно делать, а только подставить значение…

Математический анализ. Учимся решать пределы

А другие становятся легче, если разделить на общий одночлен, который представляет собой старшую степень переменной.

Математический анализ. Учимся решать пределы

В пределах, имеющих радикалы частенько помогает домножение на “сопряженное” выражение. Также упростит понимание таких действий тот факт, если вы хорошо помните формулы сокращенного умножения, в частности разность квадратов.

Структурировать информацию лучше сразу

При переходе к функциям более сложного вида мы обязательно столкнемся с появлением выражений, значение которых не определено. Такие выражения называют неопределенностями.

Перечислим все основные виды неопределенностей:

1) ноль делить на ноль
2) бесконечность делить на бесконечность
3) ноль умножить на бесконечность
4) бесконечность минус бесконечность
5) единица в степени бесконечность
6) ноль в степени ноль формула
7) бесконечность в степени ноль

ВСЕ ДРУГИЕ ВЫРАЖЕНИЯ НЕОПРЕДЕЛЕННОСТЯМИ НЕ ЯВЛЯЮТСЯ И ПРИНИМАЮТ ВПОЛНЕ КОНКРЕТНОЕ КОНЕЧНОЕ ИЛИ БЕСКОНЕЧНОЕ ЗНАЧЕНИЕ.

Раскрывать неопределенности позволяет:

● упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
● использование замечательных пределов;
● применение правила Лопиталя;
● использование замены бесконечно малого выражения ему эквивалентным (использование таблицы эквивалентных бесконечно малых).

Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только к первому и второму из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.

Математический анализ. Учимся решать пределы

Правила Лопиталя – очень мощный метод, позволяющий быстро и эффективно устранить указанные неопределенности. Если числитель и знаменатель являются бесконечно малыми или бесконечно большими одновременно, то можно посчитать отношениях производных этих функций. При дифференцировании числителя и знаменателя значение предела не меняется.

Иногда приходится применять правило Лопиталя последовательно несколько раз (делать несколько шагов), если от неопределенности не удается избавиться на первом шаге.Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки.

Для раскрытия неопределённостей видов 0^0, 1^∞, ∞^0 пользуются следующим приёмом: находят предел (натурального) логарифма выражения, содержащего данную неопределённость. В результате вид неопределённости меняется. После нахождения предела от него берут экспоненту.

Для раскрытия неопределённостей типа ∞/∞ используется следующий алгоритм:
● Выявление старшей степени переменной;
● Деление на эту переменную как числителя, так и знаменателя.
Для раскрытия неопределённостей типа 0/0 существует следующий алгоритм:
● Разложение на множители числителя и знаменателя;
● Сокращение дроби.
Для раскрытия неопределённостей типа ∞ – ∞ иногда удобно применить следующее преобразование:
● f(x) – g(x) = 1/ (1/f(x) ) – 1/(1/g(x)) = (1/g(x) – 1/f(x))/( (1/g(x)) * (1/f(x)) )

Данный вид неопределённостей может раскрываться с использованием асимптотических разложений уменьшаемого и вычитаемого, при этом бесконечно большие члены одного порядка должны уничтожаться.

При раскрытии неопределённостей также применяются замечательные пределы и их следствия.

Ещё немного примеров для закрепления материала

Вычисление простейших пределов
Вычисление простейших пределов

В пределах могут быть и суммы вместо функций. Подумайте какой подвох в следующем пределе ? Правильно ли получен ноль ?

Рассуждение и оценки предела суммы одного интересного ряда
Рассуждение и оценки предела суммы одного интересного ряда

Вы еще думаете, что пределы – это просто? А как насчет предела с параметром?

Интересная задачка по математике с параметрическим интегралом.
Чему равен предел lim[ I(a) ] при a → 0 если в качестве I(a) выступает интеграл: I(a) = Int( x⁵ ⋅ ( cos(a²x) + sin(5a²x) )^(x/a²) ) dx
в пределах от 2^a до 2^(a+1).

Математический анализ. Учимся решать пределы

Так как предел считается от параметра, а параметр не зависит от переменной интегрирования, то вполне законно пронести предел внутрь выражения и применить его только к той части, которая представляет наибольшую сложность. Аппроксимация сводит выражение ко второму замечательному пределу. А дальше дело за аккуратными вычислениями интегралов по частям. Придумали другой способ? Напишите в комментариях.

Рассмотрим ещё один сложный предел, для которого вам не помогут табличные бесконечно малые функции в силу их небольшой точности

Интересный предел на базе второго замечательного предела.
Задача: вычислить предел lim(1/n + exp(-1/n))^(n²) при n → ∞

Математический анализ. Учимся решать пределы

Пределы на базе второго замечательного могут быть очень запутанные. Приведу вам ещё один пример. Что может быть интереснее, чем посидеть зимним вечером за математическим анализом с чашечкой кофе? 🙂

Задание: найти предел

Математический анализ. Учимся решать пределы

Естественно, интересно решить это аналитически. Потому что вбивать в математические пакеты сможет любой человек. Мы видим, что у нас одна зависящая от x функция возводится в степень другой зависимой от x функции. Уже это должно нам намекнуть “а не второй замечательный предел у нас тут спрятался?”

Конечно же он! Только нужно подойти к нему. Делаем искусственный прием, чтобы отсечь единичку от дроби, а оставшуюся часть заменить на некоторую переменную. Я назвал её t, но можно называть как угодно. Сразу же нужно посмотреть к чему будет стремиться данная переменная, при стремлении x —> 1. Видим, что стремление t происходит в бесконечность, а значит мы уже можем определиться с формой записи второго замечательного предела, под который будем подгонять наши преобразования.

Так как мы пытаемся перейти к t, в степени, в косинусе у нас находится голенькое x, то нам придется выразить его из предшествующей замены переменных. Получается квадратное уравнения, которое дает два корня. Эта неоднозначность не должна вас смущать, так как корень подходит только один, причем положительный для x, т.к. x —> 1 (значит x > 0)

Далее несколько преобразований приводят нас к тому, что у нас получается е в некоторой степени, лимит (предел) которой нам предстоит найти. Но степень оказывается тоже с неопределенностью в знаменателе 0 * infinity. Тогда мы искусственно перебрасываем лишнюю переменную в числитель. Применяем правило Лопиталя-Бернулли (предел отношений функций равен пределу отношения производных этих функций). И у нас получается что-то очень похожее на первый замечательный предел. Но на самом деле уже сюда достаточно подставить t = infinity и получить конечный ответ.

Решение полное будет выглядеть так:

Математический анализ. Учимся решать пределы

Под вторым замечательным пределам также могут скрывать тригонометрические функции, которые также усложняют жизнь, потому что студенты часто пытаются разрешить их простейшими преобразованиями или разложением в ряд, что не всегда кончается успехом.

Например задание:

Математический анализ. Учимся решать пределы

Интересный предел. Сложность в том, чтобы вспомнить универсальную тригонометрическую подстановку, затем не побояться её подставить и сделать правильную замену переменных, чтобы выделить второй замечательный предел.

Математический анализ. Учимся решать пределы

Есть и задачи, где можно применить первый замечательный предел

Очередная интересная задача на нахождение предела. Не особо очевидное применение первого замечательного предела. Конечно же применение правила Бернулли — Лопиталя, возможно, упростило бы нахождение ответа, но разве ценителям математики интересны простые пути? 🙂

Математический анализ. Учимся решать пределы

На сегодня закончим, ведь тут итак есть над чем задуматься. А с каким самым сложным пределом сталкивались вы на занятиях математикой? Расскажите об этом в комментариях!

Еще много полезного и интересного вы сможете найти на ресурсах:

Репетитор IT mentor в VK

Репетитор IT mentor в Instagram

Physics.Math.Code в контакте (VK)

Physics.Math.Code в telegram

Physics.Math.Code в YouTube

Пределы с логарифмами: примеры решений

Часто в контрольных работах нужно вычислить пределы с логарифмами. Такие задачи можно решить двумя способами:

  1. С помощью следствия второго замечательного предела: $$ lim limits_{x to 0} frac{ln(1+f(x))}{f(x)} = 1 text{, если } f(x) to 0 $$
  2. С помощью свойства бесконечно малой эквивалентной функции: $$ ln(1+f(x)) sim f(x) text{, если } f(x) to 0 $$

Оба метода решения допустимы к сдаче преподавателю на проверку. Выберите для себя самый удобный, который будете легко понимать

Пример 1
Вычислить предел с логарифмом: $ limlimits_{x to 0} frac{ln(1+8x)}{2x} $
Решение

Метод 1: Воспользуемся следствием замечательного предела и приведем предел к виду похожему на него: $$ limlimits_{x to 0} frac{ln(1+8x)}{2x} = limlimits_{x to 0} frac{frac{ln(1+8x)}{8x}cdot small 8x}{2x} = $$

Замечаем, что $ lim limits_{x to 0} frac{ln(1+8x)}{8x} = 1 text{, так как } 8x to 0 $

Продолжаем решение с учетом замечания:

$$ = lim limits_{x to 0} frac{8x}{2x} = frac{8}{2} = 4 $$

Метод 2: Используем свойство б.м.э. функции для преобразования натурального логарифма:

$$  ln(1+8x) sim 8x text{, при } 8x to 0  $$

Решаем с учетом вышеприведенной эквивалентности:

$$ lim limits_{x to 0} frac{ln(1+8x)}{2x} = limlimits_{x to 0} frac{8x}{2x} =frac{8}{2} = 4 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ limlimits_{x to 0} frac{ln(1+8x)}{2x} = 4 $$
Пример 2
Найти предел $ limlimits_{x to 2} frac{ln(x^2-7x+11)}{x-2} $
Решение

Метод 1: Выполняем преобразование под следствие замечательного предела:

$$ limlimits_{x to 2} frac{ln(x^2-7x+11)}{x-2} = limlimits_{x to 2} frac{frac{ln(1 + x^2-7x+10)}{x^2-7x+10}cdot small (x^2-7x+10)}{x-2} = $$

Видно, что $ limlimits_{x to 2} frac{ln(1 + x^2-7x+10)}{x^2-7x+10} = 1 $ по след. замеч. предела. С учетом этого, продолжим вычислять интеграл:

$$ = limlimits_{x to 2} frac{x^2-7x+10}{x-2} = $$

Логарифм пропал. Решим квадратное уравнение в числителе и распишем его на множители:

$$ = limlimits_{x to 2} frac{(x-2)(x-5)}{x-2} = limlimits_{x to 2} (x-5) = 2-5=-3 $$

Метод 2: Решение начнем с преобразования предела:

$$ limlimits_{x to 2} frac{ln(x^2-7x+11)}{x-2} = limlimits_{x to 2} frac{ln(1 + (x^2-7x+10))}{x-2} = $$

Так как $ x^2-7x+10 = 0 text{при} x = 2 $ , то имеем:

$$ ln(1 + (x^2-7x+10)) sim x^2-7x+10 $$

С учетом эквивалентности продолжаем решать:

$$ = limlimits_{x to 2} frac{x^2-7x+10}{x-2} = $$

Выполним разложение многочлена второй степени на множители:

$$ =  limlimits_{x to 2} frac{(x-2)(x-5)}{x-2} = $$

Далее, выполняем сокращение на $ x-2 $:

$$ limlimits_{x to 2} frac{(x-2)(x-5)}{x-2} = limlimits_{x to 2} (x-5) = 2-5 = -3 $$

Ответ
$$ limlimits_{x to 2} frac{ln(x^2-7x+11)}{x-2} = -3 $$

Содержание:

Замечательные пределы

Сравнение бесконечно малых функций

Признак существования предела (теорема о 2-х милиционерах)

Теорема: Если значения функции Замечательные пределы - определение и вычисление с примерами решения

значениями функций Замечательные пределы - определение и вычисление с примерами решения

Рассмотрим геометрический смысл данной теоремы (Рис. 62). Из рисунка видно, что в случае, когда функции Замечательные пределы - определение и вычисление с примерами решения стягиваются к прямой у=А, то они “вынуждают” функцию Замечательные пределы - определение и вычисление с примерами решения также приближаться к той же самой прямой (“куда идут два милиционера, ведущие арестованного, туда идет и сам арестованный”). Замечательные пределы - определение и вычисление с примерами решения

Рис. 62. Иллюстрация теоремы о “2-х милиционерах”.

Доказательство: Пусть Замечательные пределы - определение и вычисление с примерами решения – точка сгущения для функций Замечательные пределы - определение и вычисление с примерами решения в общей области определения. Это означает, что в некоторой Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решениявыполняется неравенство Замечательные пределы - определение и вычисление с примерами решения В Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решения выполняется неравенство Замечательные пределы - определение и вычисление с примерами решения Так как значения функции Замечательные пределы - определение и вычисление с примерами решения заключены между значениями функций Замечательные пределы - определение и вычисление с примерами решения то в некоторой Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решения меньшей из Замечательные пределы - определение и вычисление с примерами решения-окрестностей будет выполняться неравенство Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что выполняется неравенство Замечательные пределы - определение и вычисление с примерами решения или Замечательные пределы - определение и вычисление с примерами решения

Первый замечательный предел

Определение: Предел отношения синуса какого-либо аргумента к этому аргументу при стремлении аргумента к нулю равен единице, т.е. Замечательные пределы - определение и вычисление с примерами решения и называется первым замечательным пределом.

Пример:

Пределы являются первыми замечательными пределами Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения

Доказательство: Для вывода этой формулы построим окружность с центром в точке О(0; 0) и радиусом R = 1. Выберем угол Замечательные пределы - определение и вычисление с примерами решенияв первой координатной четверти и сравним площади трех фигур: треугольник АОВ, сектор АОВ и треугольник AOD (Рис. 63): Замечательные пределы - определение и вычисление с примерами решения

Рис. 63. Иллюстрация вывода формулы первого замечательного предела.

Из рисунка видно, что площади указанных фигу р связаны соотношением:

Замечательные пределы - определение и вычисление с примерами решения

Вычислим эти площади Замечательные пределы - определение и вычисление с примерами решения

Следовательно, вышеприведенное неравенство приводится к виду Замечательные пределы - определение и вычисление с примерами решения В силу того, что Замечательные пределы - определение и вычисление с примерами решения получаем Замечательные пределы - определение и вычисление с примерами решения Разделим полученное неравенство на Замечательные пределы - определение и вычисление с примерами решения знак всех неравенств не изменится: Замечательные пределы - определение и вычисление с примерами решения Переходя к обратным неравенствам, Замечательные пределы - определение и вычисление с примерами решения или в силу того, что Замечательные пределы - определение и вычисление с примерами решения то по теореме о 2-х милиционерах Замечательные пределы - определение и вычисление с примерами решения

Аналогично проводится доказательство для любого значения угла Замечательные пределы - определение и вычисление с примерами решения

Таким образом, наличие в пределе, сводящемся к неопределенности Замечательные пределы - определение и вычисление с примерами решения тригонометрических функции может указывать на первый замечательный предел.

При вычислении первого замечательного предела используют следующие формулы:

Замечательные пределы - определение и вычисление с примерами решения а также следующие таблицы:

Табл. 1. Значения синуса и косинуса на интервале Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решения

Табл. 2. Формулы приведения.

Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельной величины переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулой Замечательные пределы - определение и вычисление с примерами решения и преобразуем данный предел следующим образом: Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулой Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения тогда данный предел равен:Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Введём замену Замечательные пределы - определение и вычисление с примерами решения (при Замечательные пределы - определение и вычисление с примерами решения) и воспользуемся следующей формулой Замечательные пределы - определение и вычисление с примерами решения Предел преобразуется к виду:

Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулами Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решения получим: Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

Число e и натуральные логарифмы. Второй замечательный предел

Рассмотрим логарифмическую функцию Замечательные пределы - определение и вычисление с примерами решения Выбирая различные значения основания, будем вычислять тангенсы угла наклона касательной к графику этой функции в точке Замечательные пределы - определение и вычисление с примерами решения(см. график логарифмической функции в Лекции № 22).

Определение: Натуральным логарифмом называется логарифм, для которого основание выбрано так, чтобы тангенс угла наклона касательной к положительному направлению оси абсцисс (Ох) был равен 1.

Основанием натурального логарифма является число Замечательные пределы - определение и вычисление с примерами решения Это число трансцедентное, т.е. не является решением ни одного алгебраического уравнения. Установим связь между натуральными Замечательные пределы - определение и вычисление с примерами решения и десятичными Замечательные пределы - определение и вычисление с примерами решения логарифмами: Замечательные пределы - определение и вычисление с примерами решения

Определение: Вторым замечательным пределом называется предельное равенствоЗамечательные пределы - определение и вычисление с примерами решения (первая форма)

или

Замечательные пределы - определение и вычисление с примерами решения(вторая форма).

Замечание: Первая форма второго замечательного предела переходит во вторую с помощью замены Замечательные пределы - определение и вычисление с примерами решения с учетом теоремы о связи бесконечно большой функции с бесконечно малой функцией.

Замечание: Наличие неопределенности Замечательные пределы - определение и вычисление с примерами решения указывает на второй замечательный предел, т.е. если пределы функций Замечательные пределы - определение и вычисление с примерами решения что указывает на второй замечательный предел.

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х не имеем неопределенности Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения – не второй замечательный предел.

Пример:

Найти lim Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Проведём преобразование подлимитной функции: Замечательные пределы - определение и вычисление с примерами решения( – первая форма второго замечательного предела, преобразуем данное выражение под вид второго замечательного предела) Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения (роль функции Замечательные пределы - определение и вычисление с примерами решения играет выражение Замечательные пределы - определение и вычисление с примерами решения возведем круглую скобку в эту степень, а за квадратной скобкой возведем в обратную степень для тождественности проводимых преобразований, получим) =

Замечательные пределы - определение и вычисление с примерами решения = (выражение в квадратных скобках стремится к числу е, а показатель степени – к числу -4/5 (см. раскрытие неопределённости Замечательные пределы - определение и вычисление с примерами решения для полиномов примере из пункта Вычисление пределов и раскрытие неопределенностей поэтому окончательный ответ имеет вид)= Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Проведём преобразование подлимитной функции:

Замечательные пределы - определение и вычисление с примерами решения (вторая форма второго замечательного предела, преобразуем данное выражение под вид второго замечательного предела)= Замечательные пределы - определение и вычисление с примерами решения = (роль функции Замечательные пределы - определение и вычисление с примерами решения играет выражение (2-2х))= Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения=(выражение в квадратных скобках стремится к числу е, а показатель степени – к числу -2 (подставить в показатель степени вместо переменной х ее предельное значение 1), поэтому окончательный ответ имеет вид) Замечательные пределы - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Сравнение бесконечно малых функций

Сравнить две бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения и Замечательные пределы - определение и вычисление с примерами решения означает вычислить предел Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К не существует, то бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения и Замечательные пределы - определение и вычисление с примерами решенияназываются несравнимыми.

Пример:

ПустьЗамечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что эти бесконечно малые функции несравнимые.

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения -данный предел не существует, так как нельзя указать предельное значение для подлимитной функции cosx на бесконечности.

Определение: Если предел К равен нулю, то бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения называется бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения Следовательно, бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решенияпри Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен Замечательные пределы - определение и вычисление с примерами решения то бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения называется бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения

Следовательно, бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен конечному числу Замечательные пределы - определение и вычисление с примерами решения то бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения называются бесконечно малыми функциями одного порядка малости.

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются бесконечно малыми функциями одного порядка малости.

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения

Следовательно, бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются бесконечно малыми функциями одного порядка малости при Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен 1, то бесконечно малые функции а(х) и Д(х) называются эквивалентными.

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными.

Решение:

Вычислим предел Замечательные пределы - определение и вычисление с примерами решения Следовательно, бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными при Замечательные пределы - определение и вычисление с примерами решения Рассмотрим признак эквивалентности бесконечно малых функций.

Теорема: Для того чтобы бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения были эквивалентными, необходимо и достаточно, чтобы разность бесконечно малых функций Замечательные пределы - определение и вычисление с примерами решения была бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения.

Доказательство:

1. Необходимость. Пусть бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решенияявляется бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения т.е. пределы Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения Докажем, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны. Преобразуем первый из этих пределов: Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что Замечательные пределы - определение и вычисление с примерами решения т.е. бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны. Аналогично преобразуется второй пре- дел.

2. Достаточность. Пусть бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными, т.е. Замечательные пределы - определение и вычисление с примерами решения Докажем, что разность двух бесконечно малых функций Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения Преобразуем данный предел следующим образом: Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения Аналогично доказывается, что функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения

Замечание: При вычислениях одна бесконечно малая функция может быть заменена на эквивалентную бесконечно малую функцию. Например, функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны функции х при Замечательные пределы - определение и вычисление с примерами решения

—вышмат

Замечательные пределы

Первый замечательный предел

Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице:

Замечательные пределы - определение и вычисление с примерами решения Следовательно,

Замечательные пределы - определение и вычисление с примерами решения

Пример №25

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Применим первый замечательный предел:Замечательные пределы - определение и вычисление с примерами решения

Второй замечательный предел

Числом е называется предел функции

Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

(Для запоминания: 2<е<3; 1828 – год рождения Л.Н. Толстого) Следовательно, Замечательные пределы - определение и вычисление с примерами решения

Задача о непрерывном начислении процентов

Первоначальный вклад в банк составил Замечательные пределы - определение и вычисление с примерами решения денежных единиц. Банк выплачивает ежегодно Замечательные пределы - определение и вычисление с примерами решения годовых. Необходимо найти размер вклада Замечательные пределы - определение и вычисление с примерами решения через t лет.

Решение:

Размер вклада будет увеличиваться ежегодно вЗамечательные пределы - определение и вычисление с примерами решения раз и

через t лет составит Замечательные пределы - определение и вычисление с примерами решения Если же начислять проценты n раз в году,

то будущая сумма составит Замечательные пределы - определение и вычисление с примерами решения Предположим, что проценты по вкладу начисляются каждое полугодие (n=2), ежеквартально (n=4), ежемесячно (n=12), каждый день (n=365), каждый час (n=8760) и, наконец, непрерывно (nЗамечательные пределы - определение и вычисление с примерами решения). Тогда за год размер вклада составит:Замечательные пределы - определение и вычисление с примерами решения

а за t лет: Замечательные пределы - определение и вычисление с примерами решения

Пример №26

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Т.к. Замечательные пределы - определение и вычисление с примерами решения имеем неопределенность вида Замечательные пределы - определение и вычисление с примерами решения Для ее раскрытия воспользуемся вторым замечательным пределом, выделив предварительно у дроби целую часть:

Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

Пример №27

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Преобразуя выражение и используя непрерывность показательно-степенной функции, получим:

Замечательные пределы - определение и вычисление с примерами решения

  • Непрерывность функций и точки разрыва
  • Точки разрыва и их классификация
  • Дифференциальное исчисление
  • Исследование функций с помощью производных
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции

Содержание:

  1. Предел показательно-степенной функции
  2. Примеры с решением

Предел показательно-степенной функции

Показательно-степе иным и называют функции вида Предел логарифма. Примерами таких функций могут служить Предел логарифма и т. д.

Функция Предел логарифмаопределена в области, где Предел логарифма или где Предел логарифма Если Предел логарифма, то

Предел логарифма

Отсюда ясно, что показательно-степенная функция непрерывна при тех значениях х, при которых функции Предел логарифма непрерывны, причем Предел логарифма

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Если существуют пределы Предел логарифма причем Предел логарифма, то

Предел логарифма В этом равенстве а либо число, либо Предел логарифма, либо Предел логарифма, либо Предел логарифма. Остановимся теперь на особых случаях.

a) Предел логарифма. В этом случае

Предел логарифма Точно так же доказывается, что если Предел логарифма то Предел логарифма

б) Предел логарифма Здесь Предел логарифма

и потому Предел логарифма Точно так же доказывается, что если Предел логарифмаПредел логарифма

Мы опускаем разбор остальных случаев и приводим следующую таблицу значений предела Предел логарифма

Возможно вам будут полезны данные страницы:

В случаях, соответствующих зачерненным клеткам, ответ неоднозначен и зависит от того, как именно стремятсяПредел логарифма к своим пределам. Эти случаи будут рассмотрены ниже.

Предел логарифма

Примеры с решением

Пример 1.

Вычислим предел

Предел логарифма Решение:

Так как (см. п. 35)

Предел логарифма то искомый предел равен Предел логарифма

Пример 2.

Вычислим предел:

Предел логарифма Решение:

а) Так как

Предел логарифма то искомый предел равен 0.

б) Здесь Предел логарифма и потому Предел логарифма

Пример 3.

Вычислим предел:

Предел логарифма Решение:

а) Так как

Предел логарифма то искомый предел равен нулю. б) Здесь Предел логарифма и потому Предел логарифма

66. Предел Предел логарифма п. 40 было доказано существование предела Предел логарифма Этот предел мы обозначили буквой Предел логарифма Предел логарифма

Последовательность с общим членом Предел логарифма получается, если придавать аргументу функции Предел логарифма лишь натуральные значения. Мы покажем сейчас, что, если х стремится к бесконечности произвольным образом, предел этой функции также равен е. Иными словами, докажем, что

Предел логарифма Для этого достаточно показать, что

Предел логарифма Начнем с первого случая. Пусть Предел логарифма Возьмем произвольное Предел логарифма и обозначим целую часть Предел логарифма через Предел логарифма. Тогда Предел логарифмаПредел логарифма и, следовательно, Предел логарифма , а потому

Предел логарифма Из неравенств Предел логарифма следует, что Предел логарифмаПредел логарифма

а из неравенств Предел логарифма следует, что Предел логарифма

Итак, мы доказали, что

Предел логарифма

где, напомним, Предел логарифма Но

Предел логарифма

и Предел логарифма Когда Предел логарифма (пишут обычно Предел логарифма), а потому левая и правая части в (2) стремятся к е. Поэтому по теореме о пределе промежуточной функции (см. с. 80) имеем:

Предел логарифма Рассмотрим предел Предел логарифма. Положим Предел логарифма

Когда Предел логарифма и

Предел логарифма Итак, иПредел логарифма Значит, мы доказали равенство (1).

Если в этом равенстве положить Предел логарифма, то получаем:

Предел логарифма

Пример 4.

Вычислим

Предел логарифма

Решение:

Имеем:

Предел логарифма

Пример 5.

Вычислим

Предел логарифма

Решение:

Имеем:

Предел логарифма Преобразуем выражение функции, содержащейся под знаком предела, следующим образом:

Предел логарифма и положимПредел логарифма Вычислим Предел логарифма

и Предел логарифма Для вычисления первого предела введем новую переменную Предел логарифма

Если Предел логарифма, и мы получаем:

Предел логарифма Вычислим второй предел:

Предел логарифма (см. п. 35). В п. 65 мы отметили, что

Предел логарифма Значит,

Предел логарифма

  • Вычисление пределов, связанных с показательной и логарифмической функциями. Формулы (1) и (3) лежат в основе вычисления большинства пределов, связанных с показательной и логарифмической функциями.

Прологарифмировав обе части равенства (3) по основанию е, получаем Предел логарифма

Заметим теперь, что в силу непрерывности логарифмической функции для любого а > 0 имеем: Предел логарифма Поэтому если Предел логарифма, то

Предел логарифма В частности,

Предел логарифма Итак, мы доказали, что

Предел логарифма Это равенство означает, что при Предел логарифма функции Предел логарифма являются эквивалентными бесконечно малыми (см. п. 53): Предел логарифма если Предел логарифма

Введем новую переменную z, положив Предел логарифма Тогда Предел логарифма Поэтому Предел логарифма и из формулы (4) следует, что

Предел логарифма Мы доказали, что при Предел логарифма функции Предел логарифма — эквивалентные бесконечно малые: Предел логарифма Так как, в частности, Предел логарифма Иными словами, получаем, что Предел логарифма

Наконец докажем, что

Предел логарифма Для этого заметим, что Предел логарифма, и потому Предел логарифма Предел логарифма Значит,

Предел логарифма Равенство (6) означает, что Предел логарифма

Мы доказали в этом пункте следующие соотношения эквивалентности бесконечно малых (в дополнение к тем, что были получены выше в п. 53 и 58): если Предел логарифма, то

Предел логарифма

Пример 6.

Вычислим предел

Предел логарифма Решение:

Так как Предел логарифма — бесконечно малая Предел логарифма Точно так же из Предел логарифма. Поэтому, заменяя числитель и знаменатель дроби эквивалентными бесконечно малыми, получаем:

Предел логарифма Итак, искомый предел равен Предел логарифма.

Пример 7.

Вычислим предел

Предел логарифма Решение:

Снова заменяем числитель и знаменатель эквива-лентными бесконечно малыми. Числитель запишем в виде Предел логарифма а знаменатель — в виде Предел логарифма. Применяя соотношение Предел логарифма получаем:

Предел логарифма Значит,

Предел логарифма В п. 65 были вычислены пределы показательно-степенных функций Предел логарифма Там остались неразобранными следующие случаи: х-»о

а) Предел логарифма (неопределенность вида Предел логарифма);

б) Предел логарифма(неопределенность вида Предел логарифма);

в) Предел логарифма (неопределенность вида Предел логарифма).

Для вычисления таких пределов заменяют Предел логарифма, т. е. на eПредел логарифма и вычисляют предел

Предел логарифма

Тогда искомый предел равен Предел логарифма:

Предел логарифма

Предел логарифма

Предел логарифма

Лекции:

  • Исследовать сходимость ряда по признаку Даламбера
  • Линейная комбинация векторов
  • Площадь поверхности шара
  • Производная сложной функции примеры решений
  • Определение предела функции
  • Криволинейный интеграл 2 рода
  • Замечательные пределы, содержащие тригонометрические функции
  • Уравнение в полных дифференциалах
  • Действия со степенями
  • Найти три первых отличных от нуля

Добавить комментарий