Как найти натуральный логарифм примеры

#статьи

  • 6 окт 2022

  • 0

Стыдные вопросы о логарифмах: всё, что нужно знать программисту

Объясняем, почему не стоит бояться логарифмов и как их считать в Python.

Иллюстрация: Оля Ежак для Skillbox Media

Иван Стуков

Журналист, изучает Python. Любит разбираться в мелочах, общаться с людьми и понимать их.

Прежде чем начать обсуждение, давайте немного освежим знания и решим несколько стандартных задачек:

  • Чему равен log3 81?
  • А lg 2 × lb 10?
  • А сумма log216 2 + log216 3?

Если вы легко прорешали все три примера в уме, не пользуясь калькулятором, — можете сразу переходить к заключительной главе. Для тех же, кто слегка подзабыл школьные годы чудесные, — буквально пять минут ликбеза.

По большому счёту, логарифм — это просто перевёрнутая степень. Рассмотрим выражение 23 = 8. В нём:

  • 2 — основание степени;
  • 3 — показатель степени;
  • 8 — результат возведения в степень.

У возведения в степень существует два обратных выражения. В одном мы ищем основание (это извлечение корня), в другом — показатель (это логарифмирование).

Таким образом, выражение 23 = 8 можно превратить в log2 8 = 3.

Закрепляем знания: логарифм — это число, в которое нужно возвести 2 (основание степени), чтобы получить 8 (результат возведения в степень).

Форма записи неинтуитивна, и поначалу можно легко спутать основание со степенью. Чтобы избежать этого, можно использовать следующее правило:

Основание у логарифма, как и у возведения в степень, находится внизу.

Чтобы лучше запомнить структуру записи, посмотрите на эти выражения и постарайтесь понять их смысл:

  • log3 9 = 2
  • log4 64 = 3
  • log5 625 = 4
  • log7 343 = 3
  • log10 100 = 2
  • log2 128 = 7
  • log2 0,25 = −2
  • log625 125 = 0,75

В общем виде запись logAB читается так: логарифм B по основанию A.

Главная часть любого логарифма — его основание. Именно наличие общего основания у нескольких логарифмических функций позволяет проводить с ними различные операции.

Основанием натурального логарифма является число Эйлера (e) — иррациональное число, приблизительно равное 2,71828.

На всякий случай напомним, что такое иррациональные числа. Так называют числа, которые нельзя записать в виде обыкновенной дроби с целыми числителем и знаменателем. При этом знаменатель не должен быть равен нулю.

Например, 0,333… — рациональное число, потому что его можно записать как 1/3. А вот число Пи или корень из 2 — иррациональны.

Так как натуральные логарифмы часто используются, для них ввели особый способ записи: ln x — это то же самое, что loge x.

Представим кристалл, который весит 1 кг и растёт со скоростью 100% в год. Можно ожидать, что через год он будет весить 2 кг, но это не так.

Каждая новая выращенная часть начнёт растить свою собственную. Когда в кристалле будет 1,1 кг, он будет расти со скоростью 1,1 кг в год, а когда в нём будет 1,5 кг — со скоростью 1,5 кг в год. Математики подсчитали, что через год масса кристалла составит e, или ≈ 2,71828 кг.

Каждый новый отросток сразу начинает выращивать свой собственный, и скорость роста кристалла увеличивается вместе с его массой

Такой рост называется экспоненциальным. По экспоненте размножаются бактерии, увеличиваются популяции, приумножаются доходы, растут снежные комья, распадается радиоактивное вещество и остывают напитки.

Чтобы узнать, какой массы достигнет кристалл через три, пять, десять лет, нужно возвести e в соответствующую степень.

e3 ≈ 20,0855 кг

e5 ≈ 148,4132 кг

e10 ≈ 22 026,4658 кг

Но как рассчитать, когда кристалл будет весить тонну? Составим уравнение:

e= 1000

Нам известны основание степени и результат возведения в степень — осталось найти её показатель. Ничего не напоминает? Это ведь и есть логарифм x = loge 1000! Или, если использовать сокращённую запись, x = ln 1000.

Подставим в калькулятор и выясним, что x ≈ 6,9. Именно столько лет потребуется кристаллу, чтобы его масса достигла тонны.

Десятичный логарифм — логарифм, основание которого равно 10. Он обозначается lg x и очень удобен, потому что с ним легко вычислять круглые числа.

Двоичный логарифм — логарифм, основание которого равно 2. Он обозначается lb x и часто используется программистами, потому что компьютеры думают и считают в двоичной системе.

Список операций, которые можно совершать с логарифмами, ограничен. Если вы запомните все и научитесь их выполнять, то сможете щёлкать логарифмические задачки, как семечки.

У всех логарифмов есть ограничения. Их основание и аргумент должны быть больше нуля, при этом основание не может быть равно единице. На математическом языке это звучит так:

Перейдём к свойствам логарифмов. Они работают в обе стороны, и их применяют как слева направо, так и справа налево.

1. Логарифм единицы по любому основанию всегда равен нулю:

Например: log17 1 = 0

2. Логарифм, где число и основание совпадают, равен единице:

Например: log17 17 = 1

3. Основное логарифмическое тождество:

Например: log17 175 = 5

4. Логарифм произведения чисел равен сумме их логарифмов:

Например: log5 12,5 + log5 10 = log5 (12,5 × 10) = log5 125 = 3

5. Логарифм дроби равен разности логарифмов числителя и знаменателя:

Например: log3 63 − log3 7 = log3 63/7 = log3 9 = 2

6. Если основание или аргумент возведены в степень, то их можно удобно выносить перед логарифмом:

Из этих двух формул следует:

Например: log23 49 = 9/3 × log2 4 = 3 × 2 = 6

7. Если нам неудобно основание логарифма, то его можно изменить:

Например: log25 125 = log5 125/log5 25 = 3/2 = 1,5

Из этой формулы следует, что мы можем поменять местами основание и аргумент вот так:

Например: log16 4 = 1/log4 16 = 1/2 = 0,5

А теперь возвращаемся к задачам, которые мы дали в начале статьи.

Пример 1


log3 81

Вспомните, что 81 — это 92. А 9 — это 32. Таким образом:

log3 81 = log3 92 = log3 32+2 = log3 34

Теперь логарифм не представляет для нас никаких сложностей. Воспользуемся свойством степени и вынесём четвёрку.

log3 34 = 4 × log3 3 = 4 × 1 =4

Ответ: 4.

Пример 2


lg 2 × lb 10

Переведём сокращённые записи в полный вид:

lg 2 × lb 10 = log10 2 × log2 10

Приведём оба логарифма к одному основанию.

log10 2 × log2 10 = 1/log2 10 × log2 10 = log2 10/log2 10 = 1

Ответ: 1.

Пример 3


log216 2 + log216 3

Воспользуемся свойством суммы.

log216 2 + log216 3 = log216 2 × 3 = log216 6

Представим 216 в виде степени числа 6 и вынесем с помощью свойства степени.

log216 6 = log63 6 = 1/3 × log6 6 = 1/3 × 1 = 1/3

Ответ: 1/3.

Чтобы работать с логарифмическими выражениями в Python, необходимо импортировать модуль math:

import math

И теперь посчитаем log2 8, используя метод math.log (b, a):

print (math.log (8, 2))
>>> 3.0

Обратите внимание на два момента. Во-первых, мы сначала передаём функции аргумент и только потом — основание. Во-вторых, функция всегда возвращает тип данных float, даже если результат целочисленный.

Если мы не передаём функции основание, то логарифм по умолчанию считается натуральным:

#math.e — метод для вызова числа Эйлера.
print (math.log (math.e))
>>> 1.0

Для подсчёта десятичного и двоичного логарифма есть отдельные методы:

#Для десятичного.
print (math.log10 (100))
>>> 2.0

#Для двоичного.
print (math.log2 (512))
>>> 9.0

Ещё в Python есть специфичный метод, который прибавляет к аргументу единицу и считает натуральный логарифм от получившегося числа:

x = math.e
print (math.log1p (x-1))
>>> 1.0

Когда х близок к нулю, этот метод даёт более точные результаты, чем math.log (1+x). Сравните:

x = 0.00001

print (math.log(x+1))
>>> 9.999950000398841e-06
print (math.log1p(x))
>>> 9.99995000033333e-06

Это все основные инструменты для работы с логарифмами в Python.

Научитесь: Профессия Python-разработчик
Узнать больше

Функция натурального логарифма (синяя кривая) обратна к экспоненте (красная кривая)

График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0

Натуральный логарифм — логарифм по основанию e, где e — трансцендентная константа, равная приблизительно 2,72. Он обозначается как ln x, {displaystyle log _{e}x} или иногда просто log x, если основание e подразумевается[1]. Обычно число x под знаком логарифма вещественное, но можно расширить это понятие и на комплексные числа.

Из определения следует, что логарифмическая зависимость есть обратная функция для экспоненты {displaystyle y=e^{x}}, поэтому их графики симметричны относительно биссектрисы первого и третьего квадрантов (см. рисунок справа). Как и экспонента, логарифмическая функция относится к категории трансцендентных функций.

Натуральные логарифмы полезны для решения алгебраических уравнений, в которых неизвестная присутствует в качестве показателя степени, они незаменимы в математическом анализе. В приложениях натуральный логарифм участвует в математическом описании таких процессов, в которых скорость изменения некоторого количества в каждый момент обратно пропорциональна самому количеству. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада радиоактивного вещества. Они играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения различных задач, (например, нахождение сложных процентов).

Определение[править | править код]

Натуральный логарифм числа a — это показатель степени, в которую нужно возвести число e, чтобы получить a. Другими словами, натуральный логарифм {displaystyle ln a} есть решение x уравнения {displaystyle e^{x}=a.}

Примеры:

{displaystyle ln e=1}, потому что {displaystyle e^{1}=e};
{displaystyle ln 1=0}, потому что {displaystyle e^{0}=1}.

Вещественный натуральный логарифм[править | править код]

{displaystyle ln a} определяется как площадь под кривой {displaystyle f(x)={frac {1}{x}}} от 1 до a.

Натуральный логарифм {displaystyle ln a} для вещественного числа a определён и однозначен для любого положительного числа a.

Натуральный логарифм может быть также определён геометрически для любого положительного вещественного числа a как площадь под кривой {displaystyle y={frac {1}{x}}} на промежутке {displaystyle [1;a]}. Простота этого определения, которое согласуется со многими другими формулами, в которых применяется данный логарифм, объясняет происхождение названия «натуральный».

Свойства[править | править код]

Из определения логарифма следует основное логарифмическое тождество[2]:

{displaystyle e^{ln a}=a}

Приведём сводку формул в предположении, что все значения положительны[3]:

Формула Пример
Произведение {displaystyle ln(xy)=ln x+ln y} {displaystyle ln(4cdot 3)=ln 4+ln 3}
Частное {displaystyle ln left({frac {x}{y}}right)=ln x-ln y} {displaystyle ln left({frac {1}{e^{2}}}right)=ln(1)-ln(e^{2})=0-2=-2}
Степень {displaystyle ln(x^{p})=pln x} {displaystyle ln(64)=ln(2^{6})=6ln 2}
Корень {displaystyle ln {sqrt[{p}]{x}}={frac {ln x}{p}}} {displaystyle ln {sqrt {10}}={frac {1}{2}}ln 10}

Другие свойства:

Связь с логарифмами по другому основанию[править | править код]

Логарифм может быть определён для любого положительного основания, отличного от 1, а не только для e, но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем.

Логарифм log _{a}b по основанию a можно преобразовать[4] в натуральный логарифм и обратно:

{displaystyle ln b={frac {log _{a}b}{log _{a}e}}=log _{a}bcdot ln a}
{displaystyle log _{a}b={frac {ln b}{ln a}}}

Связь десятичного (lg x) и натурального логарифмов[5]:

ln xapprox 2{,}30259 lg x;quad lg xapprox 0{,}43429 ln x

Связь двоичного ({displaystyle operatorname {lb} x}) и натурального логарифмов:

{displaystyle ln xapprox 0,693147operatorname {lb} x;quad operatorname {lb} xapprox 1{,}442695ln x}

Логарифмическая функция[править | править код]

Графики логарифмических функций; красная кривая — натуральный логарифм

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию y=ln x. Она определена при x>0. Область значений: {displaystyle E(y)=(-infty ;+infty )}. Эта кривая часто называется логарифмикой[6]. Из формулы замены основания логарифма видно, что графики логарифмических функций с разными основаниями, бо́льшими единицы, отличаются один от другого только масштабом по оси y; графики для оснований, меньших единицы, являются их зеркальным отражением относительно горизонтальной оси.

Функция является строго возрастающей, она непрерывна и неограниченно дифференцируема всюду в своей области определения.

Ось ординат (x=0) является вертикальной асимптотой, поскольку:

{displaystyle lim _{xto 0+}ln x=-infty }

Производная натуральной логарифмической функции равна:

{frac {d}{dx}}ln x={frac {1}{x}}

Простота этой формулы — одна из причин широкого использования именно натурального логарифма в анализе и при решении дифференциальных уравнений.

Проинтегрировав формулу для производной в интервале от x=1 до x=b, мы получаем:

ln b=int limits _{1}^{b}{frac {dx}{x}}

Другими словами, натуральный логарифм {displaystyle ln {b}} равен площади под гиперболой {displaystyle y={frac {1}{x}}} для указанного интервала {displaystyle [1,b]}.

С точки зрения общей алгебры, логарифмическая функция осуществляет (единственно возможный) изоморфизм мультипликативной группы положительных вещественных чисел и аддитивной группы всех вещественных чисел. Другими словами, логарифмическая функция есть единственное (определённое для всех положительных значений аргумента) непрерывное решение функционального уравнения[7]:

f(xy)=f(x)+f(y)

Аналитические свойства функции[править | править код]

Из формулы для производной натурального логарифма следует, что первообразная для гиперболы y=1/x имеет вид:

{displaystyle int {dx over x}=ln |x|+C,}

где C — произвольная константа интегрирования. Поскольку функция y=1/x состоит из двух ветвей (одна для положительных, другая для отрицательных x), семейство первообразных для y=1/x тоже состоит из двух подсемейств, причём константы интегрирования у них независимы одна от другой.

Неопределённый интеграл от натурального логарифма легко найти интегрированием по частям:

int {ln x,mathrm {d} x}=xln x-x+C

В математическом анализе и теории дифференциальных уравнений большую роль играет понятие логарифмической производной функции f(x):

{frac {d}{dx}}ln(f(x))={frac {f'(x)}{f(x)}}

Методы вычисления логарифма[править | править код]

Разложим натуральный логарифм в ряд Тейлора вблизи единицы:

ln(1+x)=x-{frac {x^{2}}{2}}+{frac {x^{3}}{3}}-{frac {x^{4}}{4}}+dots (Ряд 1)

Этот ряд, называемый «рядом Меркатора», сходится при -1<xleqslant 1. В частности:

ln 2=1-{frac {1}{2}}+{frac {1}{3}}-{frac {1}{4}}+dots

Формула ряда 1 непригодна для практического расчёта логарифмов из-за того, что ряд сходится очень медленно и только в узком интервале. Однако нетрудно получить из неё более удобную формулу:

ln left({frac {1+x}{1-x}}right)=2left(x+{frac {x^{3}}{3}}+{frac {x^{5}}{5}}+{frac {x^{7}}{7}}+dots right) (Ряд 2)

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа {displaystyle z={frac {1+x}{1-x}}}, ибо тогда {displaystyle x={frac {z-1}{z+1}}} по абсолютной величине меньше единицы. Данный алгоритм уже пригоден для реальных численных расчётов значений логарифмов, однако не является наилучшим с точки зрения трудоёмкости.

Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона, чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.

Альтернативой для очень высокой точности расчёта является формула:[8][9]:

ln xapprox {frac  {pi }{2M(1,4/s)}}-mln 2

где M обозначает арифметико-геометрическое среднее 1 и 4/s, и

s=x,2^{m}>2^{{p/2}},

m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.

Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O(M(n) ln n). Здесь n — число цифр точности, для которой натуральный логарифм должен быть оценен, а M(n) — вычислительная сложность умножения двух n-значных чисел.

Полезные пределы[править | править код]

Приведём несколько полезных пределов, связанных с логарифмами[10]:

{displaystyle lim _{xto 0}{frac {ln(1+x)}{x}}=1}
{displaystyle lim _{xto 0+}x^{b}ln x=0quad (b>0)}
{displaystyle lim _{xto infty }{frac {ln x}{x^{b}}}=0quad (b>0)}
ln x=lim _{nto infty }nleft({sqrt[{n}]{x}}-1right)=lim _{nto infty }nleft(1-{frac {1}{sqrt[{n}]{x}}}right)
ln x=lim _{hto 0}{frac {x^{h}-1}{h}}

Трансцендентность[править | править код]

Из теоремы Линдемана — Вейерштрасса (1885) вытекает следующее следствие: если аргумент x есть алгебраическое число, отличное от единицы, то значение ln x есть не только иррациональное, но и трансцендентное число[11].

Непрерывные дроби[править | править код]

Хотя для представления логарифма отсутствуют классические непрерывные дроби, но можно использовать несколько «обобщённых непрерывных дробей», в том числе:

{displaystyle ln(1+x)={frac {x^{1}}{1}}-{frac {x^{2}}{2}}+{frac {x^{3}}{3}}-{frac {x^{4}}{4}}+{frac {x^{5}}{5}}-dots ={cfrac {x}{1-0cdot x+{cfrac {1^{2}x}{2-1cdot x+{cfrac {2^{2}x}{3-2x+{cfrac {3^{2}x}{4-3x+{cfrac {4^{2}x}{5-4x+ddots }}}}}}}}}}}
{displaystyle ln left(1+{frac {2x}{y}}right)={cfrac {2x}{y+{cfrac {x}{1+{cfrac {x}{3y+{cfrac {2x}{1+{cfrac {2x}{5y+{cfrac {3x}{1+ddots }}}}}}}}}}}}={cfrac {2x}{y+x-{cfrac {(1x)^{2}}{3(y+x)-{cfrac {(2x)^{2}}{5(y+x)-{cfrac {(3x)^{2}}{7(y+x)-ddots }}}}}}}}}

История[править | править код]

Впервые натуральные логарифмы в современном понимании появились в 1619 году, когда лондонский учитель математики Джон Спейдель переиздал логарифмические таблицы Непера, исправленные и дополненные так, что они фактически стали таблицами натуральных логарифмов[12]. В 1649 году бельгийский математик Грегуар де Сен-Венсан показал, что площадь под гиперболой {displaystyle y={frac {1}{x}}} меняется по логарифмическому закону, и предложил называть этот вид логарифмов «гиперболическим»[13].

Термин «натуральный логарифм» ввели в употребление Пьетро Менголи (1659 год) и Николас Меркатор в фундаментальном труде «Logarithmotechnia» (1668)[14][15]. Там же Меркатор описал разложение натурального логарифма в «ряд Меркатора».

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма[16]. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Д’Аламбером и Эйлером. Бернулли и Д’Аламбер считали, что следует определить log(-x)=log(x), в то время как Лейбниц доказывал, что логарифм отрицательного числа есть мнимое число[16]. Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной[17].

Комплексные логарифмы[править | править код]

Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). В отличие от вещественного случая, функция комплексного логарифма многозначна.

Определение. Натуральный логарифм mathrm {Ln} ,z комплексного числа z представляет собой[6] решение w уравнения e^{w}=z.

Ненулевое число z можно представить в показательной форме:

z=rcdot e^{{i(varphi +2pi k)}};;, где k — произвольное целое число

Тогда mathrm {Ln} ,z находится по формуле[18]:

mathrm {Ln} ,z=ln r+ileft(varphi +2pi kright)

Здесь ln ,r=ln ,|z| — вещественный логарифм. Отсюда вытекает:

Из формулы видно, что у одного и только одного из значений мнимая часть находится в интервале {displaystyle (-pi ,pi ]}. Это значение называется главным значением комплексного натурального логарифма[6]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается ln ,z. Если z — вещественное число, то главное значение его логарифма совпадает с обычным вещественным логарифмом.

Логарифм отрицательного числа находится по формуле[18]:

mathrm {Ln} (-x)=ln x+ipi (2k+1)qquad (x>0, k=0,pm 1,pm 2dots )

Примеры:

ln(1)=0;;mathrm {Ln} (1)=2kpi i
ln(-1)=ipi ;;mathrm {Ln} (-1)=(2k+1)ipi
ln(i)=i{frac {pi }{2}};;mathrm {Ln} (i)=i{frac {4k+1}{2}}pi

Следует быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:

ipi =ln(-1)=ln((-i)^{2})=2ln(-i)=2(-ipi /2)=-ipi — явная ошибка.

Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви (k=-1). Причина ошибки — неосторожное использование свойства log _{a}{(b^{p})}=p~log _{a}b, которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.

  • Функции натурального логарифма на комплексной плоскости (главная ветвь)
  • '"`UNIQ--postMath-00000073-QINU`"'

    {displaystyle z=Re(ln(x+iy))|}

  • '"`UNIQ--postMath-00000074-QINU`"'

    {displaystyle z=Im(ln(x+iy))|}

  • '"`UNIQ--postMath-00000075-QINU`"'

    {displaystyle z=|ln(x+iy)|}

  • Суперпозиция трёх предыдущих графиков

    Суперпозиция трёх предыдущих графиков

Функция натурального логарифма комплексного числа может быть также определена как аналитическое продолжение вещественного логарифма на всю комплексную плоскость, кроме нуля. Пусть кривая Gamma начинается в единице, заканчивается в z, не проходит через нуль и не пересекает отрицательную часть вещественной оси. Тогда главное значение логарифма в конечной точке w кривой Gamma можно определить по формуле[19]:

ln z=int limits _{Gamma }{du over u}

Некоторые применения[править | править код]

Теория чисел[править | править код]

Распределение простых чисел асимптотически подчиняется простым законам[20]:

  1. Число простых чисел в интервале от 1 до n приблизительно равно {frac {n}{ln n}}.
  2. k-е простое число приблизительно равно kln k.

Математический анализ[править | править код]

Логарифмы нередко возникают при нахождении интегралов и при решении дифференциальных уравнений. Примеры:

{displaystyle int {operatorname {tg} x},dx=-ln |cos x|+C;quad int {frac {dx}{sqrt {x^{2}+a}}}=-ln  left| x+{sqrt {x^{2}+a}} right|+C}

Теория вероятностей и статистика[править | править код]

В статистике и теории вероятностей логарифм входит в ряд практически важных вероятностных распределений. Например, логарифмическое распределение[21] используется в генетике и физике. Логнормальное распределение часто встречается в ситуациях, когда исследуемая величина есть произведение нескольких независимых положительных случайных переменных[22].

Для оценки неизвестного параметра широко применяются метод максимального правдоподобия и связанная с ним логарифмическая функция правдоподобия[23].

Флуктуации при случайном блуждании описывает закон Хинчина-Колмогорова.

Фракталы и размерность[править | править код]

Логарифмы помогают выразить размерность Хаусдорфа для фрактала[24]. Например, рассмотрим треугольник Серпинского, который получается из равностороннего треугольника последовательным удалением аналогичных треугольников, линейный размер каждого из которых на каждом этапе уменьшается вдвое (см. рисунок). Размерность результата определяется по формуле:

{frac {ln 3}{ln 2}}approx 1{,}58

Механика и физика[править | править код]

Принцип Больцмана в статистической термодинамике — одна из важнейших функций состояния термодинамической системы, характеризующая степень её хаотичности.

Формула Циолковского применяется для расчёта скорости ракеты.

Химия и физическая химия[править | править код]

Уравнение Нернста связывает окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, а также со стандартными электродными потенциалами окислительно-восстановительных пар.

Логарифм используется в определениях таких величин, как показатель константы автопротолиза (самоионизации молекулы) и водородный показатель (кислотности раствора).

Психология и физиология[править | править код]

Человеческое восприятие многих явлений хорошо описывается логарифмическим законом.

Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула[25] — громкости звука[26], яркости света.

Закон Фиттса: чем дальше или точнее выполняется движение организма, тем больше коррекции необходимо для его выполнения и тем дольше эта коррекция исполняется[27].

Время на принятие решения при наличии выбора можно оценить по закону Хика[en][28].

Примечания[править | править код]

  1. Mortimer, Robert G. Mathematics for physical chemistry (неопр.). — 3rd. — Academic Press, 2005. — С. 9. — ISBN 0-125-08347-5., Extract of page 9 Архивная копия от 24 июня 2016 на Wayback Machine
  2. Алгебра и начала анализа. Учебник для 10-11 классов. 12-е издание, М.: Просвещение, 2002. Стр. 233.
  3. Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187.
  4. Корн Г., Корн Т. Справочник по математике, 1973, с. 34.
  5. Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189..
  6. 1 2 3 Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
  7. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 159-160.
  8. Sasaki T., Kanada Y. Practically fast multiple-precision evaluation of log(x) (англ.) // Journal of Information Processing. — 1982. — Vol. 5, iss. 4. — P. 247—250.
  9. Ahrendt, Timm. Fast computations of the exponential function. Lecture notes in computer science (неопр.). — 1999. — Т. 1564. — С. 302—312. — doi:10.1007/3-540-49116-3_28.
  10. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 164.
  11. Рудио Ф. О квадратуре круга (Архимед, Гюйгенс, Ламберт, Лежандр). — Изд. 3-е. — М.Л.: ОГИЗ, 1936. — С. 89. — 237 с. — (Классики естествознания).
  12. Cajori, Florian. A History of Mathematics, 5th ed (неопр.). — AMS Bookstore, 1991. — С. 152. — ISBN 0821821024.
  13. Flashman, Martin. Estimating Integrals using Polynomials. Дата обращения: 30 июня 2011. Архивировано 11 февраля 2012 года.
  14. Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II. — С. 63.
  15. J J O’Connor and E F Robertson. The number e. The MacTutor History of Mathematics archive (сентябрь 2001). Дата обращения: 30 июня 2011. Архивировано 11 февраля 2012 года.
  16. 1 2 История математики, том III, 1972, с. 325-328..
  17. Рыбников К. А. История математики. В двух томах. — М.: Изд. МГУ, 1963. — Т. II. — С. 27, 230—231..
  18. 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 623..
  19. Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной, 1967, с. 45-46, 99-100..
  20. Дербишир, Джон. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2.
  21. Weisstein, Eric W. Log-Series Distribution (англ.). MathWorld. Дата обращения: 26 апреля 2012. Архивировано 11 мая 2012 года.
  22. Логарифмически нормальное распределение // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
  23. Максимального правдоподобия метод // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
  24. Иванов М. Г. Размер и размерность // «Потенциал», август 2006.
  25. Головин С. Ю. ЗАКОН ВЕБЕРА-ФЕХНЕРА // Словарь практического психолога. Дата обращения: 17 апреля 2012. Архивировано 11 июня 2013 года.
  26. Ирина Алдошина. Основы психоакустики // Звукорежиссёр. — 1999. — Вып. 6. Архивировано 24 апреля 2012 года.
  27. Закон Фиттса // Психологическая энциклопедия (недоступная ссылка — история). Дата обращения: 17 апреля 2012. Архивировано 27 мая 2012 года.
  28. Welford, A. T. Fundamentals of skill. — London: Methuen, 1968. — P. 61. — ISBN 978-0-416-03000-6.

Литература[править | править код]

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: АСТ, 2003, ISBN 5-17-009554-6.
  • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
  • Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.

Ссылки[править | править код]

  • “Разбираемся с натуральным логарифмом Архивная копия от 26 сентября 2013 на Wayback Machine” — перевод статьи Demystifying the Natural Logarithm (ln) | BetterExplained (англ.)

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 ((log_{2}(32))) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

$$ log_{2}(32)=5;$$

Аналогично, глядя в таблицу получим, что:

$$log_{2}(4)=2;$$
$$log_{2}(8)=3;$$
$$log_{2}(16)=4;$$
$$log_{2}(64)=6;$$
$$log_{2}(128)=7.$$

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа (b) по основанию положительно числа (a) называется степень (c), в которую нужно возвести число (a), чтобы получить (b)

$$log_{a}(b)=c;$$
$$a^{c}=b.$$

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм – это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

$$log_{2}(5)=???$$

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

$$log_{2}(5)=2,32192809…$$

Или логарифм шести по основанию 4:

$$log_{4}(6)= 1.2924812…$$

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм (log_{4}(6)). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6-ке:

$$ log_{4}(4) lt log_{4}(6) lt log_{4}(16);$$
$$ 1 lt log_{4}(6) lt 2. $$

Значит (log_{4}(6)) принадлежите промежутку от 1 до 2:

$$ log_{4}(6) in (1;2). $$

Как посчитать логарифм

Перед тем, как научиться считать логарифмы, нужно ввести несколько ограничений. Дело в том, что функция логарифма (log_{a}(b)) существует только при положительных значениях основания (a) и аргумента (b). И кроме этого на основание накладывается условие, что оно не должно быть равно (1).

$$ log_{a}(b) quad существует,;при quad a gt 0; ;b gt 0 ;a neq 1.$$

Почему так? Это следует из определения показательной функций. Показательная функция не может быть (0). А основание не равно (1), потому что тогда логарифм теряет смысл – ведь (1) в любой степени это будет (1).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

$$log_{3}(frac{1}{3})=-1;$$

Так как (вспоминайте определение отрицательной степени)

$$3^{-1}=frac{1}{3};$$

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень (x) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • (x) и будет искомым значением логарифма.

Давайте разберем на примерах.

Пример 1. Посчитать логарифм (9) по основанию (3): (log_{3}(9))

  • Сначала представим аргумент и основание в виде степени тройки:
    $$ 3=3^1, qquad 9=3^2;$$
  • Теперь надо разобраться в какую степень (x) нужно возвести (3^1), чтобы получить (3^2)
    $$ (3^1)^x=3^2, $$
    $$ 3^{1*x}=3^2, $$
    $$ 1*x=2,$$
    $$ x=2.$$
  • Вот мы и решили:
    $$log_{3}(9)=2.$$

Пример 2. Вычислить логарифм (frac{1}{125}) по основанию (5): (log_{5}(frac{1}{125}))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1, qquad frac{1}{125}=frac{1}{5^3}=5^{-3};$$
  • В какую степень (x) надо возвести (5^1), чтобы получить (5^{-3}):
    $$ (5^1)^x=5^{-3}, $$
    $$ 5^{1*x}=5^{-3},$$
    $$1*x=-3,$$
    $$x=-3.$$
  • Получили ответ:
    $$ log_{5}(frac{1}{125})=-3.$$

Пример 3. Вычислить логарифм (4) по основанию (64): (log_{64}(4))

  • Представим аргумент и основание в виде степени двойки:
    $$ 64=2^6, qquad 4=2^2;$$
  • В какую степень (x) надо возвести (2^6), чтобы получить (2^{2}):
    $$ (2^6)^x=2^{2}, $$
    $$ 2^{6*x}=2^{2},$$
    $$6*x=2,$$
    $$x=frac{2}{6}=frac{1}{3}.$$
  • Получили ответ:
    $$ log_{64}(4)=frac{1}{3}.$$

Пример 4. Вычислить логарифм (1) по основанию (8): (log_{8}(1))

  • Представим аргумент и основание в виде степени двойки:
    $$ 8=2^3 qquad 1=2^0;$$
  • В какую степень (x) надо возвести (2^3), чтобы получить (2^{0}):
    $$ (2^3)^x=2^{0}, $$
    $$ 2^{3*x}=2^{0},$$
    $$3*x=0,$$
    $$x=frac{0}{3}=0.$$
  • Получили ответ:
    $$ log_{8}(1)=0.$$

Пример 5. Вычислить логарифм (15) по основанию (5): (log_{5}(15))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1 qquad 15= ???;$$
    (15) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть:
    $$ log_{5}(15).$$

Внимание!

Как понять, что некоторое число (a) не будет являться степенью другого числа (b). Это довольно просто – нужно разложить (a) на простые множители.

$$16=2*2*2*2=2^4,$$

(16) разложили, как произведение четырех двоек, значит (16) будет степенью двойки.

$$ 48=6*8=3*2*2*2*2,$$

Разложив (48) на простые множители, видно, что у нас есть два множителя (2) и (3), значит (48) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается – (lg(a)).

Пример 6

$$ log_{10}(100)= lg(100)=2;$$
$$log_{10}(1000)=lg(1000)=3;$$
$$log_{10}(10)=lg(10)=1.$$

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию (e). Обозначение – (ln(x)). Что такое (e)? Так обозначают экспоненту, число-константу, равную, примерно, (2,718281828459…). Это число известно тем, что используется в многих математических законах. Просто запомните, что логарифмы с основанием (e) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Пример 7

$$ log_{e}(e^2)=ln(e^2)=2;$$
$$ log_{e}(e)=ln(e)=1;$$
$$ log_{e}(e^5)=ln(e^5)=5.$$

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Свойства логарифмов

$$1. ; log_{a}(1)=0;$$
$$2. ; log_{a}(a)=1;$$
$$3. ; log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$4. ; log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$5. ; log_{a}(b^m)= m*log_{a}(b);$$
$$6. ; log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$
$$ 7. ; log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0; ; c gt 0; ; c neq 1; $$
$$ 8. ; log_{a}(b)=frac{1}{log_{b}(a)};$$
$$ 9. ; a^{ log_{a}(b)}=b.$$

Давайте разберем несколько примеров на свойства логарифмов.

Пример 8. Воспользоваться формулой (3). Логарифм от произведения – это сумма логарифмов.

$$log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$ log_{3}(12)=log_{3}(3*4)=log_{3}(3)+log_{3}(4)=1+log_{3}(4);$$
$$ log_{3}(2.7)+log_{3}(10)=log_{3}(2.7*10)=log_{3}(27)=3;$$

Пример 9. Воспользоваться формулой (4). Логарифм от частного – это разность логарифмов.

$$ log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$ log_{7}(98)-log_{7}(2)=log_{7}(frac{98}{2})=log_{7}(49)=2;$$

Пример 10. Формула (5,6). Свойства степени.

$$log_{a}(b^m)= m*log_{a}(b);$$
$$log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$

Логично, что будет выполняться и такое соотношение:

$$log_{a^m}(b^n)=frac{n}{m}* log_{a}(b);$$

И если (m=n), то:

$$log_{a^m}(b^m)=frac{m}{m}* log_{a}(b);=log_{a}(b)$$
$$log_{4}(9)=log_{2^2}(3^2)=log_{2}(3);$$

Пример 11. Формулы (7,8). Переход к другому основанию.

$$ log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0;c gt 0;c neq 1; $$
$$ log_{a}(b)=frac{1}{log_{b}(a)};$$
$$log_{4}(5)=frac{1}{log_{5}(4)};$$
$$log_{4}(5)=frac{log_{7}(5)}{log_{7}(4)};$$

Натуральный логарифм — это логарифм по основанию e (математическая константа, приблизительно равная числу 2.718281828459…).

  • Определение натурального логарифма

  • Связь с экспоненциальной функцией

  • Свойства натурального логарифма

  • Таблица натуральных логарифмов

  • График натурального логарифма

Определение натурального логарифма

Когда e y = x, натуральный логарифм (ln) числа x выглядит следующим образом:

ln(x) = loge(x) = y

Связь с экспоненциальной функцией

Функция логарифма ln(x) является обратной к экспоненциальной функции ex.

Для х > 0,

(-1(x)) = eln(x) = x

или

-1((x)) = ln(ex) = x

Свойства натурального логарифма

Свойство Формула Пример
Логарифм умножения ln (x ⋅ y) = ln (x) + ln (y) ln (3 ⋅ 7) = ln (3) + ln (7)
Логарифм деления ln (x / y) = ln (x) – ln (y) ln (3 / 7) = ln (3) – ln (7)
Логарифм степени ln (x y) = y ⋅ ln (x) ln (28) = 8 ⋅ ln (2)
Логарифм корня Натуральный логарифм числа Натуральный логарифм числа
Производная логарифма f (x) = ln (x)f ‘ (x) = 1 / x
Интеграл логарифма ∫ ln (x) dx = x ⋅ (ln (x) – 1) + C
Логарифм отрицательного числа ln (x) не определен, если x ≤ 0
Логарифм числа 0 ln (0) не определен
Логарифм числа 1 ln (1) = 0
Логарифм комплексного числа log z = ln (r) + i (θ + 2nπ) = ln (√(x 2 + y 2)) + i · arctan (y/x)),
для комплексного числа z = re = x + iy
Логарифм бесконечности lim ln (x) = ∞, если x → ∞
Тождество Эйлера ln (-1) = i ⋅ π

microexcel.ru

Таблица натуральных логарифмов

x ln x
0 не определен
0+ – ∞
0.0001 -9.210340
0.001 -6.907755
0.01 -4.605170
0.1 -2.302585
1 0
2 0.693147
e ≈ 2.7183 1
3 1.098612
4 1.386294
5 1.609438
6 1.791759
7 1.945910
8 2.079442
9 2.197225
10 2.302585
20 2.995732
30 3.401197
40 3.688879
50 3.912023
60 4.094345
70 4.248495
80 4.382027
90 4.499810
100 4.605170
200 5.298317
300 5.703782
400 5.991465
500 6.214608
600 6.396930
700 6.551080
800 6.684612
900 6.802395
1000 6.907755
10000 9.210340

График натурального логарифма

Функция натурального логарифма задается как y = ln x. Существует только при неотрицательных значениях переменной x. График выглядит так:

График натурального логарифма

Содержание:

  • Свойства и основные формулы натурального логарифма
  • Примеры решения задач
  • Дополнительный материал

Для различного рода теоретических и практических исследований наиболее удобным
основанием логарифма
является иррациональное число $e$.

Определение

Логарифмом числа $b$
по основанию $a$
( $log _{a} b$ ) называется такое число
$c$, что
$b=a^{c}$.
Логарифм имеет смысл, если $a>0, a neq 1, b>0$.

Натуральным логарифмом называется логарифм по основанию $e$.
Такие логарифмы обозначаются символом ln. Запись $ln x$
означает тоже самое, что и $log _{e} x$.

Основание натурального логарифма – число е.

Свойства и основные формулы натурального логарифма

1  $ln 1=0$

Натуральный логарифм единицы равен нулю (Заметим, что логарифм по любому основанию от 1 равен 0).

2  $ln e=1$

3  $ln (x y)=ln x+ln y$

4  $ln frac{x}{y}=ln x-ln y$

5  $ln x^{n}=n cdot ln x$

6  График функции $y=ln x$ :

График натурального логарифма, функции

Примеры решения задач

Пример

Задание. Вычислить $frac{2 ln 3 e-ln 9}{3 ln 5 e-frac{3}{2} ln 25}$

Решение. Преобразуем данное выражение, применяя к первым логарифмам в числителе и
знаменателе свойство суммы логарифмов, а ко вторым свойство логарифма степени.

$frac{2 ln 3 e-ln 9}{3 ln 5 e-frac{3}{2} ln 25}=frac{2(ln 3+ln e)-ln 3^{2}}{3(ln 5+ln e)-frac{3}{2} ln 5^{2}}=$

$=frac{2 ln 3+2 ln e-2 ln 3}{3 ln 5+3 ln e-3 ln 5}=frac{2 ln e}{3 ln e}=frac{2 cdot 1}{3 cdot 1}=frac{2}{3}$

Ответ. $frac{2 ln 3 e-ln 9}{3 ln 5 e-frac{3}{2} ln 25}=frac{2}{3}$

Дополнительный материал

7  $(ln x)^{prime}=frac{1}{x}$

8  $int ln x mathrm{d} x=x ln x-x+C$

9  $lim _{x rightarrow 0+} ln x=-infty$

10  Ряд Маклорена для натурального логарифма:

$ln (1+x)=x-frac{x^{2}}{2}+frac{x^{3}}{3}-ldots+(-1)^{n+1} cdot frac{x^{n}}{n}+ldots,|x| lt 1$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Разложить в ряд Маклорена функцию $f(x)=ln left(1+x^{2}right)$

Решение. Сделаем замену $x^{2}=t$, тогда
$f(x)=ln (1+t)$. Используя приведенное выше разложение, получаем:

$f(x)=ln (1+t)=t-frac{t^{2}}{2}+frac{t^{3}}{3}-ldots+(-1)^{n+1} cdot frac{t^{n}}{n}+ldots,|t| lt 1$

Делаем обратную замену, получаем:

$f(x)=ln left(1+x^{2}right)=x^{2}-frac{left(x^{2}right)^{2}}{2}+frac{left(x^{2}right)^{3}}{3}-ldots+(-1)^{n+1} cdot frac{left(x^{2}right)^{n}}{n}+ldots,left|x^{2}right| lt 1$

или $f(x)=ln left(1+x^{2}right)=x^{2}-frac{x^{4}}{2}+frac{x^{6}}{3}-ldots+(-1)^{n+1} cdot frac{x^{2 n}}{n}+ldots, |x| lt 1$

Читать дальше: десятичный логарифм.

Добавить комментарий