Методы поиска неисправностей
Негласно среди ремонтников в любой отрасли существуют два метода:
- Обезьяний метод. Это метод, при котором проверяется каждый узел сломанного устройства визуально или «методом тыка». «А что будет, если я сделаю так и эдак?». То есть ставим опыты и смотрим на реакцию сломанного устройства. Чаще всего такой метод очень сильно экономит время и нервы.
- Метод умного специалиста. Надеваем очки и делаем умный вид). Берем книжки с инструкциями и описаниями, измерительные приборы, схемы, карты Таро и тд))). Сначала внимательно изучаем схемы, читаем книги, все анализируем в голове и только уже потом начинаем ковырять устройство. Этот метод очень длительный и муторный, но со временем дает хороший результат. Он в основном применяется интеллектуалами. Его также используют и простые ремонтники, после того, как не сработал первый метод)
Алгоритм поиска неисправности
Анализируем ситуацию
Анализ ситуации предполагает обзор и исследование возникшей проблемы. Будьте Шерлоками Холмсами! Ответьте себе на все вопросы: где, куда, откуда, как, почему, когда, зачем??? Нужно внимательно осмотреть пациента, перед тем как его вскрывать. Может кто смотрел сериал Доктор Хаус? Всю серию они анализируют ситуацию, и только уже потом лечат. Если вы все-таки не знаете с чего начать, вот вам небольшой план:
- обсудите неисправность с владельцем данного электронного устройства
- может вы раньше ремонтировали что то подобное, вспомните что-нибудь похожее из своей практики, бывает так, что узлы радиоэлектронных устройств строятся по одинаковому принципу.
- а если все-таки неисправности нет, просто у владельца нет толка общения с данным устройством. Помню как то у мужичка громкость не добавлялась на мобиле, так он оказывается ее не теми кнопками пытался добавить))).
- определите различия между поломанным устройством и с тем какое оно должно быть при правильной работе.
- оцените ситуацию и сделайте правильные выводы из всего выше сказанного
Определяем причину
Самый большой по времени и серьезный шаг. Начните с подготовки соответствующих схем. Не старайтесь сократить этот этап, бросаясь сразу работать и тратя много времени на исправление устройства, в то время как простое чтение руководства по техническому обслуживанию может способствовать скорейшему решению проблемы. Когда вы подготовились, выполните следующие операции:
- опишите проблему про себя
- сравните ситуацию с условиями работы устройства до возникновения неисправности
- вспомните различные симптомы которые были замечены при возникновении дефекта. Это может быть какой-то шум, запах, искры, дым и тд.
- сравните компоненты. Какие компоненты в порядке, а какие нет. Например, большой резистор во включенной аппаратуре должен быть чуть нагретый.
- сделайте тестирование оборудования с помощью мультика и других приборов.
Принимаем решение
На этом этапе рассматриваем различные варианты решения проблем. Ремонтировать его или выкинуть? Что дешевле и проще? Покупать микросхему или выпаять ее из другого устройства? Смотрим, что будет экономнее по времени и по деньгам. Решать вам.
Помните о необходимости всегда выполнять эти три фазы. Для того, чтобы стать первоклассным специалистом, нужно строго им следовать.
Поиск неисправности лабораторного блока питания
Анализ ситуации
Поиск неисправностей начинаем с анализа ситуации.
Итак, у нас в ремонте лабораторный блок питания. Ну что, ситуацию я проанализировал. Перегрузка по питанию, в результате чего он стал выдавать 24 Вольта, вместо положенных 0-15 Вольт. Напряжение не регулируется. Значит, помер какой-то радиоэлемент. Для того, чтобы определить причину возникновения неисправности, мы должны найти на него схему и вскрыть наш блок питания. Как говорится, «вскрытие покажет».
Вскрываем наш блок питания
Находим причину возникновения неисправности
На этом этапе мы должны определить причину возникновения поломки, а также параллельно анализировать ситуацию. Как обычно, начинаем осмотр с источника питания. Трансформатор у нас в норме, как и по схеме, он выдает нам переменное напряжение 20 Вольт. После диодного моста на конденсаторе напряжение 35 Вольт. Идем таким путем, проверяя все элементы на своем пути. Для того, чтобы научиться проверять радиоэлементы, нужно прочитать статьи:
Как измерить:
- ток мультиметром
- как проверить и измерить напряжение
- сопротивление мультиметром
Как проверить:
- биполярный транзистор мультиметром
- диод мультиметром
- конденсатор мультиметром
- предохранитель мультиметром
а лучше вообще прочитать все статьи сайта)
Ваши органы чувств — ваши помощники
Для того, чтобы определить неисправность, очень часто помогают наши пять чувств, но будем пользоваться четырьмя:
- Зрение (глаза)
- Осязание (кожа)
- Обоняние (запах)
- Слух (уши)
Используйте их как можно чаще. Визуальный осмотр может дать Вам 80% нахождения неисправности. Это может быть сгоревший элемент, или печатная дорожка, а также обрыв или наоборот короткое замыкание. Не поленитесь, осмотрите хорошенько со всех сторон сломанную вещь.
Осязание может также сильно помочь вам в поиске неисправности. Если прибор включить в сеть и потрогать большие резисторы ( их мощность рассеивания, как правило, большая), то они должны быть теплые или даже чуток горячие. Если холодные, значит или в резисторах обрыв, либо напряжение до них не доходит. Микросхемы должны быть холодноватые или чуточку теплые. Процессоры или мощные микросхемы горяченькие. Если уж слишком горячие — то следовательно микросхеме или процессору хана. Холодными должны быть конденсаторы и катушки индуктивности.
Все это приходит с опытом. Используйте осязание как можно чаще, но будьте очень осторожны. Если коснетесь выводов элементов, то вас хорошенько может «дернуть» током, ну смотря, конечно, в какой цепи какой ток.
Читай интересную статью про мощность электрического тока.
Настоящий электронщик должен знать запах горелого кремния, проводов, запах горелого трансформатора, горелой платы и тд наизусть. Напрягите свой нюх и попробуйте уловить «аромат» неисправности. Если аппаратура сгорела при вас, то сразу принюхивайтесь и визуально осмотрите ее.
Прислушайтесь к работе неисправной аппаратуры. Может слышится какое-то потрескивание, писк, гудение или еще что-то. Например, гудение асинхронного двигателя говорит о том, что может быть оборвана одна из фаз или не крутятся подшипники. Если гудит трансформатор, то это может значить короткое замыкание в обмотках.
Определяем дефектный узел
Вскрыв блок питания, я обнаружил, что у меня микросхема греется очень сильно при включении блока питания в сеть и нажатия кнопки POWER на самом блоке. Скорее всего в ней возникло короткое замыкание. Находим в интернете даташит на эту микросхему. В моем случае — это LM723. Она является регулятором напряжения.
Но беда не приходит одна. Сгорел еще и транзистор — BD140.
Принимаем решение
Пошел в магазин за новыми запчастями. Итого, микросхема 20 рублей, транзистор — 10 рублей. Вместе 30 рублей.
Ну что же, надо отпаять микросхему, для этого используем наш оловоотсос. На фото вид платы снизу микросхемы.
Получаем
Выдергиваем микросхему с помощью нехитрого инструмента экстрактора
Подготавливаем новую микросхему, и лудим ее выводы флюсом ЛТИ-120
Вставляем ее в наши отверстия, где находилась микросхема. Вставляйте точно также, как стояла дохлая микросхема! Кто не помнит, как она стояла, производители аппаратуры часто рисуют ее образ на плате. Получается, что выемка микросхемы должна быть справа.
Вставляем ее как надо
Смазываем площадки гелевым флюсом
И запаиваем по очереди каждую контактную площадку капелькой припоя на кончике паяльника.
Все те же самые операции проводим и с транзистором.
Блок питания у меня заработал как надо. Можно, конечно, его доработать, но на это требуется время и соответствующие знания. Но меня пока что вполне устраивает.
Заключение
Поиск неисправностей приходит с опытом и с годами. Следуйте этим простым этапам определять работоспособность компонентов, и вы никогда не будете носить аппаратуру мастеру-электронику, который сдерет с вас ого-го! Во-первых, вы сэкономите деньги, во-вторых, свою репутацию, ну и в-третьих, получите реальные знания на опыте.
И буду благодарен, если ты прочитаешь что такое протон.
Первый вариант опубликован 2007-09-01 и назывался : Методы поиска и устранения неисправностей. А также причин неработоспособности в РЭА.
Здесь я планирую описать практические методы поиска и устранения неисправностей в электронике, по возможности, без привязки к конкретному оборудованию. Под причинами неработоспособности подразумеваются выход из строя элемента, ошибки разработчиков, монтажников и т.д. Методы являются взаимосвязанными между собой, и почти всегда необходимо их комплексное применение. Порой поиск очень тесно связан с устранением. В процессе работы над текстом стало выясняться, что методы очень взаимосвязаны и зачастую имеют схожие черты. Может быть, можно сказать, что методы дублируют друг друга. Тем не менее, было принято решение не объединять схожие методы в один, чтобы осветить проблемы с разных сторон и более полно описать процесс поиска и устранения неисправности.
Основные концепции поиска неисправностей.
1.Действие не должно наносить вреда исследуемому устройству.
2.Действие должно приводить к прогнозируемому результату: – выдвижение гипотезы о исправности или неисправности блока, элемента и пр. – подтверждение или опровержение выдвинутой гипотезы и, как следствие, локализации неисправности;
3. Необходимо различать вероятную неисправность и подтвержденную (обнаруженную неисправность), выдвинутую гипотезу и подтвержденную гипотезу.
4. Необходимо адекватно оценивать ремонтопригодность изделия. Например, платы с элементами в корпусе BGA имеют очень низкую ремонтопригодность вследствие невозможности или ограниченной возможности применения основных методов диагностики.
5. Нужно адекватно оценивать выгодность и необходимость ремонта. Зачастую ремонт не выгоден с точки зрения затрат, но необходим с точки зрения отработки технологии, изучения изделия или по каким-то иным причинам.
Схема описания методов:
- Суть метода
- Возможности метода
- Достоинства метода
- Недостатки метода
- Применение метода
1. Выяснения истории появления неисправности.
Суть метода: История появления неисправности очень много может рассказать о локализации неисправности, о том, какой модуль является источником неработоспособности системы, а какие модули вышли из строя вследствие первоначальной неисправности, о типе неисправного элемента. Также знание истории появления неисправности позволяет сильно сократить время тестирования устройства, повысить качество ремонта, надежность исправленного оборудования. Выяснение истории позволяет выяснить, не является ли неисправность результатом внешнего воздействия, как то: климатические факторы (температура, влажность, запыленность и пр.), механические воздействия, загрязнение различными веществами и пр.
Возможности метода: Метод позволяет очень оперативно выдвинуть гипотезу о локализации неисправности.
Достоинства метода:
- Нет необходимости знать тонкости работы изделия;
- Сверхоперативность;
- Не требуется наличие документации.
Недостатки метода:
- Необходимость получить информацию о событиях, растянутых во времени, при которых вы не присутствовали, неточность и недостоверность предоставляемой информации;
- Требует подтверждения и уточнения другими методами; в некоторых случаях велика вероятность ошибки и неточность локализации;
Применение метода:
- Если неисправность сначала проявлялась редко, а затем стала проявляться все чаще ( в течении недели или нескольких лет), то, скорее всего, неисправен электролитический конденсатор, электронная лампа или силовой полупроводниковый элемент, чрезмерный разогрев которого приводит к ухудшению его характеристик.
- Если неисправность появилась в результате механического воздействия, то, вполне вероятно, ее удастся выявить внешним осмотром блока.
- Если неисправность появляется при незначительном механическом воздействии, то ее локализацию следует начать с использования механических воздействий на отдельные элементы.
- Если неисправность появилась после каких-либо действий (модификация, ремонт, доработка и др.) над прибором, то следует обратить особое внимание на часть изделия, в которой производились действия. Следует проконтролировать правильность этих действий.
- Если неисправность появляется после климатических воздействий, воздействия влажности, кислот, паров, электромагнитных помех, бросков питающего напряжения, необходимо проверить соответствие эксплуатационных характеристик изделия в целом и его компонентов условиям работы. При необходимости – принять соответствующие меры. (изменение условий работы или изменения в изделии, в зависимости от задач и возможностей )
- О локализации неисправности очень много могут рассказать проявления неисправности на разных этапах ее развития.
2. Внешний осмотр.
Суть метода: Внешним осмотром зачастую пренебрегают, но именно внешний осмотр позволяет локализовать порядка 50% неисправностей, особенно в условиях мелкосерийного производства. Внешний осмотр в условиях производства и ремонта имеет свою специфику.
Возможности метода:
- Метод позволяет сверхоперативно выявить неисправность и локализовать ее с точностью до элемента при наличии внешнего проявления.
Достоинства метода:
- Сверхоперативность;
- Точная локализация;
- Требуется минимум оборудования;
- Не требуется наличие документации (или наличие в минимальном количестве).
Недостатки метода:
- Позволяет выявлять только неисправности, имеющие проявление во внешнем виде элементов и деталей изделия;
- Как правило, требует разборки изделия, его частей и блоков;
- Требуется опыт исполнителя и отличное зрение.
Применение метода:
- В условиях производства особое внимание необходимо уделять качеству монтажа. Качество монтажа включает в себя: правильность размещение элементов на плате, качество паянных соединений, целостность печатных проводников, отсутствие инородных включений в материал платы, отсутствие замыканий (порой замыкания видны только под микроскопом или под определенным углом ), целостность изоляции на проводах, надежное крепление контактов в разъемах. Иногда неудачный конструктив провоцирует замыкания или обрывы.
- В условиях ремонта следует выяснить, работало ли устройство когда-нибудь правильно. Если не работало(случай заводского дефекта), то следует проверить качество монтажа.
- Если же устройство работало нормально, но вышло из строя (случай собственно ремонта), то следует обратить внимание на следы тепловых повреждений электронных элементов, печатных проводников, проводов, разъемов и пр. Также при осмотре необходимо проверить целостность изоляции на проводах, трещины от времени, трещины в результате механического воздействия, особенно в местах, где проводники работают на перегиб (например, слайдеры и флипы мобильных телефонов). Особое внимание следует обратить на наличие загрязнений, пыли , вытекания электролита и запах(горелого, плесени, фекалий и пр.). Наличие загрязнений может являться причиной неработоспособности РЭА или индикатором причины неисправности ( например, вытекание электролита).
- Осмотр печатного монтажа требует хорошего освещения. Желательно применение увеличительного стекла. Как правило,замыкания между пайками и некачественные пайки видны только под определенным углом зрения и освещения.
Естественно, во всех случаях следует обратить внимание на любые механические повреждения корпуса, электронных элементов, плат, проводников, экранов и пр. пр.
3. Прозвонка.
Суть метода: Суть метода в том, что при помощи омметра, в том или ином варианте, проверяется наличие необходимых связей и отсутствие лишних соединений (замыканий).
Возможности метода:
- Предупреждение неисправностей при производстве, контроль качества монтажа;
- Проверка гипотезы о наличии неисправности в конкретной цепи;
Достоинства метода:
- простота;
- не требуется высокая квалификация исполнителя;
- высокая надежность;
- точная локализация неисправности;
Недостатки метода:
- высокая трудоемкость;
- ограничения при проверке плат со смонтированными элементами и подключенных жгутов, элементов в составе схемы.
- необходимость получить прямой доступ к контактам и элементам.
Применение метода:
- На практике, как правило, достаточно проверить наличие необходимых связей. Отсутствие замыканий проверяется только по цепям питания.
- Отсутствие лишних связей также обеспечивается технологическими методами: маркировка и нумерация проводов в жгуте.
- Проверку на наличие лишних связей проводят в случае, когда есть подозрение на конкретные проводники, или подозрение на конструкторскую ошибку.
- Проводить проверку на наличие лишних связей чрезвычайно трудоемко. В связи с этим ее проводят, как один из заключительных этапов, когда возможная область замыкания (например, нет сигнала в контрольной точке) локализована другими методами.
- Очень точно локализовать замыкание можно при помощи миллиомметра, с точностью до нескольких сантиметров.
- Хотя данная методика имеет определенные недостатки, она очень широко применяется в условиях мелкосерийного производства, в связи со своей простотой и эффективностью.
- Прозванивать лучше по таблице прозвонки, составленной на основании схемы электрической принципиальной. В этом случае исправляются возможные ошибки конструкторской документации и обеспечивается отсутствие ошибок в самой прозвонке.
4. Снятие рабочих характеристик
Суть метода. При применении этого метода изделие включается в рабочих условиях или в условиях, имитирующих рабочие. И проверяют характеристики, сравнивая их с необходимыми характеристиками исправного изделия или теоретически рассчитанными. Также возможно и снятие характеристик отдельного блока, модуля, элемента в изделии.
Возможности метода:
- Позволяет оперативно диагностировать изделие в целом или отдельный блок;
- Позволяет примерно оценить расположение неисправности, выявить функциональный блок, работающий неправильно, в случае, если изделие работает неправильно;
Достоинства метода:
- Достаточно высокая оперативность;
- Точность, адекватность;
- Оценка изделия в целом;
Недостатки метода:
- Необходимость специализированного оборудования или, как минимум, необходимость собрать схему подключения;
- Необходимость стандартного оборудования;
- Необходимость достаточно высокой квалификации исполнителя ;
- Необходимо знать принципы работы прибора, состав прибора, его блок-схему (для локализации неисправности).
Применение метода:Например :
- В телевизоре проверяют наличие изображения и его параметры, наличие звука и его параметры, энергопотребление, тепловыделение. По отклонению тех или иных параметров судят о исправности функциональных блоков.
- В мобильном телефоне на тестере проверяют параметры RF тракта и по отклонению тех или иных параметров судят о исправности функциональных блоков.
- Естественно, необходимо быть уверенным в исправности всех внешних блоков и правильности входных сигналов. Для этого работу изделия (элемента, блока) сравнивают с работой исправного в этих же условиях и в этой схеме включения. Имеется в виду не теоретически такая же схема, а практически это же «железо». Или нужно сравнить все входные сигналы.
5. Наблюдение прохождения сигналов по каскадам.
Суть метода: При помощи измерительной аппаратуры (осциллограф, тестер, анализатор спектра и др.) наблюдают правильность распространения сигналов по каскадам и цепям устройства. Для этого проводят измерения характеристик сигналов в контрольных точках.
Возможности метода:
- оценка работоспособности изделия в целом;
- оценка работоспособности по каскадам и функциональным блокам;
Достоинства метода:
- высокая точность локализации неисправности;
- адекватность оценки состояния изделия в целом и по каскадам;
Недостатки метода:
- большая затрудненность оценки цепей с обратной связью;
- необходимость высокой квалификации исполнителя;
- трудоемкость;
- неоднозначность результата при неправильном использовании;
Применение метода:
- В схемах с последовательным расположением каскадов пропадание правильного сигнала в одной из контрольных точек говорит о возможной неисправности либо выхода, либо замыкания по входу, либо о неисправности связи.
- В начале вычленяют встроенные источники сигналов (тактовые генераторы, датчики, модули питания и пр.) и последовательно находят узел, в котором сигнал не соответствует правильному, описанному в документации или определенному при помощи моделирования.
- После проверки правильности функционирования встроенных источников сигналов на вход (или входы) подают испытательные сигналы и вновь контролируют правильность их распространения и преобразования. В ряде случаев для более эффективного применения метода требуется временная модификация схемы, т.е. если необходимо и возможно – разрыв цепей обратной связи, разрыв цепей связи входа и выхода подозреваемых каскадов
.
Рис.1 Временная модификация устройства для устранения неоднозначности нахождения неисправности. Крестиками обозначен временный обрыв связей.
- В цепях с обратными связями очень тяжело получить однозначные результаты.
6.Сравнение с исправным блоком.
Суть метода: Заключается в том, что сравниваются различные характеристики заведомо исправного изделия и неисправного. По отличиям внешнего вида, электрических сигналов, электрического сопротивления судят о локализации неисправности. Возможности метода:
- Оперативная диагностика в комбинации с другими методами;
- Возможность ремонта без документации.
Достоинства метода:
- Оперативный поиск неисправностей;
- Нет необходимости использовать документацию;
- Исключает ошибки моделирования и документации;
Недостатки метода:
- Необходимость в наличии исправного изделия;
- Необходимость в комбинации с другими методами
Применение метода: Сравнение с исправным блоком – очень эффективный метод, потому что документированны не все характеристики изделия и сигналы не во всех узлах схемы. Необходимо начать сравнение со сравнения внешнего вида, расположения элементов и конфигурации проводников на плате, отличие в монтаже говорит о том , что конструктив изделия был изменен и, вполне вероятно, допущена ошибка. Затем сравнивают различные электрические характеристики. Для сравнения электрических характеристик смотрят сигналы в различных точках схемы, работу прибора в различных условиях , в зависимости от характера проявления неисправности. Достаточно эффективно измерять электрическое сопротивления между различными точка (метод периферийного сканирования).
7.Моделирование.
Суть метода: Моделируется поведение исправного и неисправного устройства и на основе моделирования выдвигается гипотеза о возможной неисправности, и затем гипотеза проверяется измерениями. Метод применяется в комплексе с другими методами для повышения их эффективности.
Возможности метода:
- Оперативное и адекватное выдвижение гипотезы о расположении неисправности;
- Предварительная проверка гипотезы о расположении неисправности.
Достоинства метода:
- Возможность работать с исчезающими неисправностями,
- Адекватность оценки.
Недостатки метода:
- необходима высокая квалификация исполнителя,
- необходима комбинация с другими методами
Применение метода: При устранении периодически проявляющейся неисправности необходимо применять моделирование для выяснения – мог ли заменяемый элемент провоцировать данную неисправность. Для моделирования необходимо представлять принципы работы оборудования и порой знать даже тонкости работы.
8.Разбиение на функциональные блоки.
Суть метода: Для предварительной локализации неисправности весьма эффективно разбить устройство на функциональные блоки. Надо учитывать, что зачастую конструкторское разбиение на блоки не является эффективным с точки зрения диагностики, так как один конструктивный блок может содержать несколько функциональных блоков или один функциональный блок может быть конструктивно выполнен в виде нескольких модулей. С другой стороны, конструктивный блок гораздо проще заменить, что позволяет определить, в каком конструктивном блоке находится неисправность.
Возможности метода:
- Позволяет оптимизировать применение других методов;
- Позволяет быстро определить область расположения неисправности;
- Позволяет работать со сложными неисправностями
Достоинства метода:
- Ускоряет процесс поиска неисправности;
Недостатки метода:
- Необходимо глубокое знание схемотехники изделия;
- Необходимо время для тщательного анализа прибора
Применение метода: Возможны два варианта :
- Если изделие состоит из блоков(модулей, плат) и возможна их быстрая замена, то, по очереди меняя блоки, находят тот, при замене которого неисправность пропадает;
- В другом варианте – анализируя документацию, составляют функциональную схему прибора, на основе функциональной схемы моделируют (как правило, мысленно ) работу изделия и выдвигают гипотезу о расположении неисправности.
9. Временная модификация схемы.
Суть метода: Для исключения взаимного влияния и для устранения неоднозначности в измерениях иногда приходится изменять схему изделия: обрывать связи, подключать дополнительные связи, выпаивать или впаивать элементы.
Возможности метода:
- Локализация неисправности в цепях с ОС;
- Точная локализация неисправности;
- Исключение взаимного влияния элементов и цепей.
Достоинства метода:
- Позволяет уточнить расположение неисправности.
Недостатки метода:
- Необходимость модифицировать систему
- Необходимость знания тонкостей работы устройства
Применение метода: Частичное отключение цепей применяется в следующих случаях:
- когда цепи оказывают взаимное влияние и неясно, какая из них является причиной неисправности;
- когда неисправный блок может вывести из строя другие блоки;
- когда есть предположение, что не правильная/неисправная цепь блокирует работу системы.
Следует с особой осторожностью отключать цепи защиты и цепи отрицательной обратной связи, т.к. их отключение может привести к значительному повреждению изделия. Отключение цепей обратной связи может приводить к полному нарушению режима работы каскадов и в результате не дать желаемого результата. Размыкание цепе ПОС в генераторах естественно приводит к срыву генерации, но может позволить снять характеристики каскадов.
10. Включение функционального блока вне системы, в условиях, моделирующих систему.
Суть метода: По сути метод является комбинацией методов : Разбиение на функциональные блоки и Снятие внешних рабочих характеристик. При обнаружении неисправностей «подозреваемый» блок проверяется вне системы, что позволяет либо сузить круг поиска , если блок исправен, либо локализовать неисправность в пределах блока, если блок неисправен.
Возможности метода:
- проверка гипотезы о работоспособности той или иной части системы
Достоинства метода:
- возможность испытания и ремонта функционального блока без наличия системы.
Недостатки метода:
- необходимость собирать схему проверки.
Применение метода: При применении данного метода необходимо следить за корректностью создаваемых условий и применяемых тестов. Блоки могут быть плохо согласованный между собой на стадии разработки.
11.Предварительная проверка функциональных блоков.
Суть метода: Функциональный блок предварительно проверяется вне системы, на специально изготовленном стенде (рабочем месте). При ремонте данный метод имеет смысл,если для блока требуется не слишком много входных сигналов или, иначе говоря, не слишком трудно имитировать систему. Например, этот метод имеет смысл применять при ремонте блоков питания. Возможности метода:
- Проверка гипотезы о работоспособности блока;
- Предупреждение возможных неисправностей при сборке больших систем.
Достоинства метода:
- Возможность проверки основных характеристик блока без мешающих воздействий;
- Возможность предварительной проверки блоков.
Недостатки метода:
- Необходимость собирать схему проверки
Применение метода: Очень широко применяется для профилактики неисправностей системы в условиях производства новых изделий.
12. Метод замены.
Суть метода: Подозреваемый блок/компонент заменяется на заведомо исправный, и проверяется функционирование системы. По результатам проверки судят о правильности гипотезы в отношении неисправности.
Возможности метода:
- Проверка гипотезы о исправности или не исправности блока или элемента.
Достоинства метода:
- Оперативность.
Недостатки метода:
- Необходимость наличия блока для замены.
Применение метода: Возможны несколько случаев: когда поведение системы не изменилось, это означает, что гипотеза неверна; когда все неисправности в системе устранены, значит. неисправность действительно локализована в замененном блоке; когда исчезла часть дефектов, это может означать, что устранена только вторичная неисправность и исправный блок вновь сгорит под воздействием первичного дефекта системы. В этом случае, возможно, лучшим решением будет вновь поставить замененный блок (если это возможно и целесообразно) и продолжить поиск неисправностей с тем. чтобы устранить именно первопричину. Например, неисправность блока питания может привести к неудовлетворительной работе нескольких блоков, один из которых выйдет из строя в результате перенапряжения.
13. Проверка режима работы элемента.
Суть метода: Сравнивают значения токов и напряжений в схеме с предположительно правильными. Их можно найти в документации, рассчитать при моделировании, измерить при исследовании исправного блока. На основании этого делают заключение о исправности элемента.
Возможности метода:
- Локализация неисправности с точностью до элемента.
Достоинства метода:
- Точность
Недостатки метода:
- Медленность
- Требуется высокая квалификация исполнителя;
Применение метода:
- Проверяют правильность логических уровней цифровых схем (соответствие стандартам, а также сравнивают с обычными, типичными уровнями);
- проверяют падения напряжений на диодах, резисторах (сравнивают с расчетным или со значениями в исправном блоке);
- Измеряют напряжения и токи в контрольных точках.
14. Провоцирующие воздействие.
Суть метода: Повышение или понижение температуры, влажности, механическое воздействие . Использование подобных воздействий очень эффективно для обнаружения пропадающих неисправностей.
Возможности метода:
- Обнаружение пропадающих неисправностей.
Достоинства метода:
- Соломинка для утопающего . 🙂
- В некоторых случаях достаточно воздействовать руками или отверткой.
Недостатки метода:
- Зачастую необходимо специальное оборудование.
Применение метода: Как правило, следует начать с постукивания по элементам. Попробовать прикоснуться к элементам и жгутам. Нагреть плату под лампой. В более сложных случаях применяют специальные методы охлаждения или климатические камеры.
15. Проверка температуры элемента.
Суть метода проста, любым измерительным прибором (или пальцем) нужно оценить температуру элемента, или сделать вывод о температуре элемента по косвенным признакам (цвета побежалости, запах горелого и пр.). На основании этих данных делают вывод о возможной неисправности элемента.
Применение метода: В общем, все просто и понятно, сложность возникает при оценке высоковольтных цепей. И не всегда бывает понятно, находится ли элемент в штатном режиме или перегревается. В этом случае нужно сравнить с исправным изделием.
16. Выполнение тестовых программ.
Суть метода: На работающей системе выполняется тестовая программа, которая взаимодействует с различными компонентами системы и предоставляет информацию о их отклике, либо система под управлением тестовой программы управляет периферийными устройствами, и оператор наблюдает отклик периферийных устройств, либо тестовая программа позволяет наблюдать отклик периферийных устройств на тестовое воздействие (нажатие клавиши, реакция датчика температуры на изменение температуры и пр.).
Достоинства метода: К достоинствам метода следует отнести очень быструю оценку по критерию работает – не работает.
Недостатки метода: Метод имеет существенные недостатки, т.к. для исполнения тестовой программы ядро системы должно находиться в исправном состоянии, неправильный отклик не позволяет точно локализовать неисправность ( может быть неисправна как периферия, так и ядро системы, так и тест-программа).
Применение метода: Метод применим только для заключительного тестирования и устранения очень мелких недоработок.
17. Пошаговое исполнение команд.
Суть метода: Применяя специальное оборудование, микропроцессорную систему переводят в режим потактного (пошагового) исполнения инструкций (машинных кодов). При каждом шаге проверяют состояние шин (данных, адресов, управления и пр. ) и, сравнивая с моделью или с исправной системой, делают выводы о работе узлов устройства. Этот метод можно классифицировать как одну из разновидностей «метода исполнения тестовых программ», но применение метода возможно на почти неработоспособной системе.
Достоинства метода:
- Возможна отладка почти неработающей системы;
- Низкая стоимость необходимого оборудования.
Недостатки метода:
- Очень большая трудоемкость.
- Высокая квалификация исполнителя.
Применение метода: Метод очень эффективен для отладки микропроцессорных систем на стадии разработки.
18. Тестовые сигнатуры.
Суть метода: При помощи специального оборудования определяют состояние шин микропроцессорного устройства в штатном режиме работы на каждом шаге программы (или тестовой программы). Можно сказать, что это вариант пошагового выполнения программ, только более быстрый (за счет применения специального оборудования).
Достоинства метода:
- Возможна отладка почти неработающей системы
Недостатки метода:
- Большая трудоемкость.
- Высокая квалификация исполнителя.
Применение метода: Метод очень эффективен для отладки микропроцессорных систем на стадии разработки.
19.«Выход на вход».
Суть метода: Если изделие/система имеет выход (множество выходов) и имеет вход (множество входов) и вход/выход могут работать в дуплексном режиме, то возможна проверка системы,в которой сигнал с выхода через внешние связи подается на вход. Анализируется наличие/отсутствие сигнала, его качество и по результатам дается оценка о работоспособности соответствующих цепей.
Достоинства метода:
- Очень высокая скорость оценки работоспособности
- Минимум дополнительного оборудования
- Недостатки метода:
- Ограниченность применения
Применение метода:
- Применяется для заключительной проверки систем управления. Может, где-то еще.
20.Типовые неисправности.
Суть метода: На основании прошлого опыта ремонта конкретного изделия составляется список проявления неисправности и соответствующего неисправного элемента. Метод основан на том, что в массовых изделиях имеются слабые места, недоработки , которые, как правило, и приводят к выходу изделий из строя. Так же к этому методу стоит отнести и предположение о выходе того или иного элемента из строя на основании показателей надежности .
Достоинства метода:
- Высокая скорость
- Не слишком высокая квалификация исполнителя
Недостатки метода:
- Не применим при отсутствии статистики неисправностей;
- Требует подтверждения гипотезы другими методами.
Применение метода: Большинство специалистов держат статистику и симптомы неисправностей в голове. Я встречал попытки систематизированного изложения в «Сервис мануалах» (в документации по ремонту) фирмы Нокиа.
21. Анализ влияния неисправности.
Суть метода: На основании имеющейся информации о проявлении неисправности и предпосылки о том, что все проявления вызваны одной неисправностью, проводят анализ устройства. В этом анализе строят «дерево» взаимных влияний блоков (элементов) и находят блок (элемент), неисправность которого могла вызвать все (большинство) проявления. Если решения нет, собирают дополнительную информацию.
Достоинство и недостатки: По мере сбора и получения информации ее необходимо постоянно анализировать с точки зрения этого метода. Метод необходим как воздух. Без него – никуда.
Применение метода: Например, простейший случай – устройство совсем не включается. Нет нагрева, посторонних звуков, нет запаха горелого. При выдвижении гипотезы необходимо предполагать минимальную причину и минимальный вред – это сгоревший предохранитель. Проверяем предохранитель. В случае исправности предохранителя продолжаем собирать информацию. Ключевой принцип — это предположение о минимальности причины.
22. Периферийное сканирование.
Суть метода: Измеряют сопротивление между контрольными точками. От прозвонки отличается тем, что нас интересует значение сопротивления, а не только наличие или отсутствие связи. Термин «Контрольная точка» применен в широком смысли. Контрольные точки может выбирать сам исполнитель.
Достоинства метода:
- Возможность автоматизированного контроля по критерию «годен – не годен»
- Возможность внутрисхемной проверки элементов
- Недостатки метода:
- Необходим образец или база данных о сопротивлениях в исправном блоке
- Теоретическое предположение о правильном значении сопротивления высказать трудно, особенно если схема сложная и развлетвленная.
Применение метода: Для измерения сопротивления необходимо применять оборудование, исключающее выход из строя устройства, в результате измерений. Можно применять как тестер в условиях ремонта, так и автоматы в составе большой производственной линии.
Чаще всего люди интересуются электроникой чтобы уметь починить какой-либо прибор. Самостоятельной разработкой занимается лишь малая часть любителей. Теоретические знания хоть и дают общее понимания принципа работы компонентов, но для ремонта гораздо важнее знать методы их проверки. Мы расскажем, как найти неисправность в электронной схеме своими руками, глазами и простым инструментом.
Основные способы поиска неполадки
Прежде чем провести ремонт важно определить в чем проблема – этот процесс называется диагностикой. Итак, можно выделить два этапа проверки электронных приборов:
1. Проверка работоспособности прибора. Не всегда случается так что устройство совсем «мёртвое», нужно проверить не включается прибор совсем, или включается и сразу выключается, или же не работают какие-то конкретные кнопки или функции.
Например, при ремонте LCD-мониторов встречается такая проблема как выход из строя подсветки. При этом монитор может либо не включатся совсем тогда его индикатор моргает, либо же индикатор указывает на включенное состояние, но изображения нет. В таком случае если посветить фонарём в экран можно увидеть, что изображение все-таки есть и монитор как бы работает, но он тёмный – и это только один из примеров, когда предварительная проверка упрощает диагностику.
2. Визуальный осмотр. Внешне можно определить большинство проблем с электрическим прибором. Это могут быть как просто сгоревшие компоненты – диоды, резисторы, транзисторы и конденсаторы, так и дефекты пайки или механические повреждение элементов и самой печатной платы.
3. Измерения. Если плата и детали выглядят нормально, то следует переходить к измерениям. Их проводят в основном с помощью мультиметра и осциллографа. В отдельных случаях используют специализированные приборы, типа частотомеров, логических анализаторов и прочего.
Итак, обобщенным алгоритмом поиска неисправности является:
- Осмотр платы;
- Определение чрезмерного нагрева электронных компонентов платы;
- Измерения и прозвонка мультиметром;
- Использование осциллографа и других приборов;
- Замена вышедшей из строя детали или блока.
Визуальный осмотр
Визуальный осмотр следует проводить от общего к частному. Или простыми словами – осмотреть общий вид электронного устройства, сразу проверяем целостность кабелей и проводов питания. Их покров должен быть ровным и целым, без изломов и резких перегибов, шишек и других неравномерностей на оболочке быть не должно.
После того как вы убедились в целостности устройства, нужно его разобрать и добраться к печатной плате. Осмотр внутренностей следует начинать с проверки целостности шлейфов, проводов других межблочных соединений. Важно не порвать их еще при разборке, так как часто шлейфы идут от плат к блокам клавиш и дисплеям, закрепленным на корпусе.
Далее проверяют целостность предохранителя в цепи питания, часто если он перегорел можно определить невооруженным взглядом. Он стоит около того места где подключается к плате шнур питания.
После этого осматривают наличие следов нагрева или сажи на плате и поврежденные компоненты. Рассмотрим, как выглядят неисправные электронные компоненты. Например, корпуса неисправных транзисторов и сгоревших диодов разрывает или они трескаются.
На интегральных микросхемах появляется трещина или мелкая точка. В некоторых случаях и те, и другие сгорают, оставляя в результате следы гари на плате. Обращайте внимание нет ли характерного запаха горелой изоляции. Так можно локализировать от какого элемента или участка платы исходит этот запах. Как определить сгоревшие транзисторы и микросхемы вы видите ниже.
Резисторы обычно сгорают или темнеют, реже происходит обрыв резистивного слоя и деталь выглядит исправной.
Как определить сгоревшие конденсаторы? Они в основном пробивают «накоротко» между обкладками и, если стоят в силовой цепи – тогда повреждаются дорожки платы или корпус конденсатора. Если цепь была слаботочной – пробитый конденсатор просто закоротит её без видимых следов протекания больших токов. Реже трескаются корпуса конденсаторов.
В то время как электролитические конденсаторы можно вычислить по деформированной крышке корпуса или следам протекшего вниз электролита. На крышке конденсатора есть две диагональных борозды, она нужна чтобы корпус не разорвало в аварийной ситуации. Крышка в таком случае вздувается либо трескается. Реже выдавливает дно.
С SMD-компонентами дело обстоит несколько сложнее. Часто их крайне сложно рассмотреть на предмет целостности. Есть один метод поиска короткого замыкания в плате с SMD – это термобумага, такая бумага используется в кассовой аппарате, поэтому можно использовать любой чек. Печать на ней происходит за счет нагрева. Значит, когда вы подадите питание на плату пробитая накоротко деталь, перегреется и отпечатается на бумаге. Методику поиска неисправности с помощью термобумагивы видите на видео:
Но нужно помнить об электробезопасности и не прибегать к такому способу диагностики, если вы не уверены есть ли там опасное напряжение. Безопасно и точно это можно сделать с помощью тепловизора.
Для определения короткого замыкания по нагреву в большинстве случаев вам понадобится лабораторный блок питания или другой источник питания с ограничением тока. Если вы проводите диагностику цепей 220В – можете воспользоваться контрольной лампой, если есть КЗ, то лампа загорится в полный накал. Фактически она выступит в роли токоограничивающего резистора.
При визуальном осмотре важно определить состояние контактов всех разъёмных соединений. Они должны быть чистыми, без окислов с характерным медным или серебряным блеском. Если контакты не слишком сильно окислены – их можно почистить канцелярским ластиком или деревянной стороной спички.
В более запущенных случаях их нужно залудить, таким образом оловом вы восстановите контактную поверхность. Самый худший вариант, когда ни чистить, ни лудить нечего, тогда нужно либо менять плату целиком, либо припаивать к дорожкам платы проводники и соединять через них.
Также внимательно осматриваете дорожки печатной платы, они могут перегорать, трескаться при изгибе платы, отслаиваться и окисливаться. Их восстанавливают либо каплей олова, либо кусочком провода, когда дорожки расположены слишком плотно – их замещают куском провода – подойдет тонкий обмоточный провод либо жила витой пары, припаивая их к началу и концу печатной дорожки.
Подведем итоги, узнайте 5 советов по внешней диагностике электроники:
1. Большинство неисправностей можно найти при внешнем осмотре;
2. Внимательно проверяйте качество пайки и наличие микротрещин;
3. Уделяйте особое внимание силовым цепям;
4. Вздутые электролитические конденсаторы в большинстве случаев являются как причиной полной неработоспособности, так и неработоспособности каких-то отдельных функций;
5. Не всегда внешне исправная деталь является таковой.
Измерения и прорзвонка цепей
Если внешний осмотр не принес результатов, то следует проводить ряд измерений. Если устройство не подаёт признаков жизни и:
- У него сгорел предохранитель – то с помощью мультиметра прозваниваем цепь и находим на каком участке у нас короткое замыкание. Режим прозвони в большинстве мультиметров совмещен с режимом проверки диодов (на рисунке ниже);
- Если предохранитель исправен – проверяем вольтметром приходит ли питающее напряжение на плату.
Если напряжение не приходит, то проблема скорее всего в кабеле, определить это можно прозвонив кабель от вилки до места подключения к печатной плате.
Важно:
Не включайте блок питания напрямую в сеть, если вы не уверены, что устранили все неполадки. Подключите последовательно лампочку накаливания, о которой мы упоминали в середине статьи.
Следующий шаг – проверка цепи питания, для этого включаем устройство и проверяем наличие выходных напряжений блока питания. Учтите, что бывают случаи, когда без нагрузки блок питания не включается. Тогда проверяем исправность блока питания, её начинают с проверки диодного моста.
После того как вы убедились в исправности диодного моста следует проверить приходит ли напряжение на ШИМ контроллер. Если нет, то искать, обрыв на плате, если приходит, то методика его проверки изображена на видео ниже:
Дальнейшая диагностика платы электронного устройства заключается в пошаговом измерении параметров каждого из компонентов и сравнение их с номинальными величинами. Задаче сильно упрощается если у вас есть схема ремонтируемого устройства.
Если у вас есть осциллограф диагностика сильно упростится, так как проверка сигналов ШИМ, на выходе контроллера и на базах или затворах транзисторов нормально возможна лишь таким образом. Как пользоваться осциллографом описано в статье
Заключение
Ремонт электроники – это не только знания принципа работы элементов, но и интуиция, опыт и удача. Главное помнить при ремонте о технике безопасности – не следует трогать плату источников питания, если на неё подано напряжение. Разряжайте фильтрующие конденсаторы блоков питания, поскольку на их выводах может быть напряжение до 300 вольт. А также при диагностике цепей с интегральными микросхемами – лучше сразу ищите техническую документацию к ним, её можно найти по запросу «datasheet название микросхемы».
В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.
Ремонт ЖК ТВ
Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.
Включаем в сеть прибор
Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.
Коды ошибок ТВ по миганию LED
После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.
Сервис мануал
Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?
Блок схема ЖК ТВ
В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.
Тестер в режиме звуковой прозвонки
Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.
Разъем питания платы управления ТВ
Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме – это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.
Таблица ESR конденсаторов
В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.
Мой прибор ESR метр
Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.
Фото – вздувшийся конденсатор
То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.
Мультиметр в режиме Омметра
Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.
Цветовая маркировка резисторов
Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.
Транзисторы разные на фото
Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.
Проверка транзистора мультиметром
Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.
Мосфет в SMD и обычном корпусе
При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.
Мосфеты на материнской плате ПК
Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.
Диодные сборки на схеме
Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует – им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.
Параллельное и последовательное соединение резисторов
Здесь лучше всего один раз запомнить, правило подобных соединений:
- При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
- А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.
Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы – AKV.
Форум по ремонту
В данной статье решено было разобрать алгоритмы, методики, приемы и фишки, которыми мы пользуемся при поиске неисправностей в процессе выполнении ремонтов электроники.
Итак, у вас есть на ремонт абсолютно любое электронное устройство и вы не имеете схемы или сервис мануала на него, из приборов есть только один мультиметр. Как показывает практика, умея неплохо обращаться с этим прибором уже можно выполнять большое количество ремонтов разнообразной электронной техники, образно говоря от планшета – до мультиварки.
Начнём с измерений
Как известно, у мультиметра (даже дешевого) есть несколько режимов работы. Это и звуковая прозвонка, и омметр, и вольтметр, как на постоянном, так и на переменном токе, и амперметр. Есть также, думаю практически никогда не используемая большинством ремонтников, функция проверки биполярных транзисторов.
Мультиметр – режимы
Таким образом используя прозвонку, омметр и вольтметр, мы можем проверить на соответствие режимам работы наше устройство. Звуковую прозвонку используем в случае если рассчитываем, что сопротивление на участке цепи, в котором проводятся измерение, у нас будет менее 30 – 40 Ом. В таком случае услышим звуковой сигнал и увидим на экране падение напряжения, в милливольтах.
Прозвонка диода
Этого момента нужно коснуться подробнее: при проверке диодов или прозвонке p-n переходов транзисторов, мы как раз и видим в случае если наш транзистор или диод исправен то самое падение напряжения 500-700 миллиВольт.
Исключение составляют диоды Шоттки, там падение напряжения составляет всего порядка 150-250 миллиВольт. Данное значение при измерениях мы видим проводя измерения, разумеется, только в прямом включении диода или p-n перехода транзистора, при обратном включении в случае исправной детали на экране мультиметра должна быть единица. Если при измерении звучит звуковой сигнал (не важно при прямом или обратном включении) это означает что p-n переход в полупроводниковых приборах пробит, у нас короткое замыкание в цепи и устройство не будет функционировать должным образом.
Измерение на звуковой прозвонке
Исключение составляет вышедший из строя полупроводниковый прибор имеющий большее сопротивление между своими выводами, обычно составляющее, условно говоря, порядка 80-300 Ом. В таком случае наша деталь просто выполняет функции низкоомного резистора. Если вы абсолютно уверены что на данном участке цепи нет высокого напряжения, например в устройстве питающемся от внешнего адаптера питания, можно прикоснуться рукой к корпусу детали (стараясь при этом не касаться ее выводов) и попытаться на ощупь определить греется ли аномально наша деталь.
Южный мост может греться
Температуру свыше 70-80 градусов вы обязательно на ощупь отличите от температуры детали работающей в нормальном режиме. В данном случае палец вряд ли вытерпит более 3-х секунд. Кстати, таким образом можно легко диагностировать микросхемы, например южный мост на материнской плате, особенно когда он не имеет радиатора, на нагрев свыше нормы. Аналогично мы можем потрогав пальцем, к примеру, тот же южный мост, с целью ощутить умеренный нагрев который является нормальным явлением при работе любого полупроводникового устройства.
И если микросхема спустя 5 минут работы осталась абсолютно холодной, возможно там обрыв по цепям питания либо другая поломка, вероятнее всего связанная с обрывом нашей цепи.
Сгоревшие стабилизаторы
Разберем другой пример.
В современной цифровой электронике с небольшим токопотреблением, очень часто питание бывает организовано с помощью линейных стабилизаторов либо понижающих DC-DC преобразователей. Итак, допустим мы видим стандартный линейный стабилизатор в корпусе SOT-89, как известно он имеет 3 ножки, 3 вывода: вход – выход – земля. Как максимально быстро проверить работает ли он, даже не прозванивая его на замыкание, в режиме звуковой прозвонки или омметра?
Дело в том, что очень часто преобразователи и стабилизаторы ставят по цепочке, получая например из 5 вольт на выходе 3.3 вольта, иногда допустим если это у нас цифровая DVB-T2 приставка, из 3.3 вольта, 1.8 вольт или 1.2 вольта. Каким образом даже не зная распиновки стабилизатора или преобразователя, не обращаясь к даташиту (например при отсутствии интернета) мы можем проверить все ли нормально по питанию?
Условная распиновка стабилизатора
Для этого нужно будет перевести мультиметр в режим вольтметра, постоянный ток, для цифровой электроники обычно бывает достаточно выбрать предел 20 Вольт, если же есть сомнения не будет ли превышен предел измерения – можете выбрать предел 200 вольт и если потребуется более точно узнать присутствующее напряжение на выводе детали, позднее уменьшить предел измерения, с целью повышения точности показаний.
Итак, все измерения напряжения при ремонте электронных устройств обычно проводятся относительно минуса питания, название “земля”, которым часто пользуются ремонтники для упрощения понимания. Где мы можем взять минус питания, например, если у нас нет возможности при измерениях перевернуть плату устройства печатными проводниками с обратной стороны платы к себе?
Плата со стороны печати
Земля, вернемся к этому определению, после уточнения, что на самом деле мы имеем в виду, контакт под названием GND – Ground, минус питания, имеется на всех металлических корпусах разъемов, например на материнских платах, цифровых приставках и т. д. Не пытайтесь брать “землю” с радиаторов полупроводниковых элементов – это может печально кончиться, например при ремонте импульсных блоков питания, в лучшем случае для устройства, в худшем для вас.
Транзисторы на радиаторе
Итак, землю мы нашли, касаемся щупами мультиметра в режиме вольтметр постоянный ток (DCV) одновременно земли и каждого из контактов стабилизатора. При исправном стабилизаторе мы увидим напряжение питания на входе большее, например 5 Вольт, с одним из контактов стабилизатора, при измерениях с другим прибор покажет 0 вольт – и это правильно, так как разность потенциалов между землей и землей будет равна нулю.
Схема включения стабилизатора
И наконец, проверяем напряжение на оставшемся контакте – третьем, на выходе. Стабилизаторы выпускаются обычно в двух вариантах: на фиксированное напряжение на выходе (например 5, 3.3, 1.8, 1.2 вольта) так и регулируемые, путем изменения номиналов “обвязки” микросхемы стабилизатора, деталей необходимых для работы нашей микросхемы. На таких микросхемах помимо ее модели часто встречается обозначение типа ADJ, сокращение, от английского слова adjust (регулировать).
Различие в схемах включения стабилизаторов
В случае с питанием организованным с помощью DC-DC преобразователей все еще проще. Если с данного стабилизатора не планируется снимать большие токи, очень часто они идут в корпусе SOT-23-5, это почти тот же корпус знакомый всем SOT-23 в котором выпускаются маломощные SMD транзисторы или микросхемы, и имеющий три ножки, две с одной стороны и одну с другой.
Преобразователь же в корпусе SOT-23-5 имеет 5 ножек, 3 с одной стороны и 2 с другой. Шаг между этими ножками очень маленький, деталь сама по себе очень мелкая и проводить измерения на “горячую”, без снятия питания, было бы проблематично, но те кто знакомы с типовыми схемами данных преобразователей, кстати, как и обычных плат китайских DC-DC “понижаек” например на 2 ампера знают, что они имеют в своем составе дроссель, проще говоря катушку намотанную на сердечник, установленную на выходе преобразователя.
Понижающий DC-DC преобразователь
Очень часто на выходе, еще бывает установлен фильтр в виде электролитического конденсатора и при необходимости померять питание на выходе микросхемы можно было-бы и на нем. Но данный способ измерения питания даже не переворачивая плату, прямо на контактах дросселя установленного на выходе относительно земли, позволяет проверить за одну минуту сняв крышку наличие всех напряжений и отсечь вариант проблем по питанию, как один из возможных.
Дроссель преобразователя
Кстати, обесточив схему на этих же дросселях, но здесь уже бывает удобнее проверять перевернув плату на конденсаторах фильтра, отсутствие короткого замыкания в нагрузке, например процессоре роутера или цифровой приставки. Которое когда случается и неисправное устройство остается надолго подключенным к сети из-за аномального увеличения нагрузки по выходу и как отсюда следует токов потребления, сжигает наш преобразователь или стабилизатор.
Конденсаторы – материнская плата
Но здесь есть один нюанс: не торопитесь измерять мультиметром на звуковой прозвонке или в режиме Омметра сопротивление между выходом стабилизатора или преобразователя и землей. Дело в том, что установленный там заряженный электролитический конденсатор большой емкости, и тем более если их несколько включенных параллельно, при включении на такую относительно низкоомную нагрузку какой является при данном измерении наш мультиметр, способны сжечь в лучшем случае резисторы в цепях мультиметра, что неприятно, но все же легко решается, схемы есть в интернете, я сам пару раз так попадал при измерениях и просто менял SMD резистор номиналом около 2 Ком, а в худшем, если вам очень не повезет вы можете попалить АЦП – аналого-цифровой преобразователь прибора, ту самую всем знакомую каплю.
АЦП мультиметра
Ремонт будет уже хоть и возможен, но нецелесообразен по стоимости. Поэтому перед измерениями на конденсаторе в режиме Омметра или звуковой прозвонки, не поленитесь и замкните отверткой оба вывода конденсатора, разумеется в обесточенном устройстве. То что оно может быть пару минут как выключено и конденсаторы возможно успели сами разрядиться на нагрузку или цепи выхода микросхемы обратно, на это лучше никогда не надеяться.
Измерения мультиметром в разных режимах
Итак, мы разобрали на простом примере в каких случаях лучше использовать измерение в режиме вольтметра, а в каких омметра или звуковой прозвонки. Использование мультиметра в режиме амперметра или миллиамперметра требуется редко, только когда нам бывает нужно узнать ток потребления на участке цепи. Отчасти это связано с тем, что нам для этого требуется разорвать цепь для проведения измерений, ведь как мы помним амперметр у нас включается всегда последовательно с питанием при проведении измерений.
Перемычка на плате монитора
Тогда же когда это действительно необходимо, производитель может запаять на этапе производства проволочную перемычку, выпаяв которую и например впаяв 2 проволочки установленные вертикально, к которым мы подключаемся щупами мультиметра с крокодилами, мы можем провести измерения не имея необходимости рвать соединение перерезая дорожку резаком, например из ножовочного полотна, и последующего сращивания путем наложения шины на дорожку.
Выводы
Подведя итог могу сказать просто: ЛЮБАЯ активная нагрузка при измерении имеет свое сопротивление, которое будет тем больше, чем меньшие токи в ней протекают, на самом деле взаимосвязь обратная. И соответственно, когда мы измеряем сопротивление, мы косвенно уже можем представлять насколько большие токи текут на этом участке цепи. Таким образом, когда один из полупроводников уходит в короткое замыкание, например диод мостика или транзистор в горячей части импульсного блока питания, мы из-за аномально возросших токов и получаем сгоревший предохранитель.
Если же это были вторичные цепи, там чаще всего просто срабатывает защита блока питания и устройство просто не включается до тех пор, пока короткое замыкание, вызывающее очень большое потребление, не будет устранено. Так что когда электрики говорят, что практически любая поломка, за редким исключением когда параметры деталей уплывут, например у подсохших электролитических конденсаторов, и соответственно увеличившегося ESR ЭПС, у нас остаются всего 2 поломки:
- Есть контакт там где его не должно быть или иначе говоря то самое короткое замыкание, часто минуя нагрузку, потому что ток идет по пути наименьшего сопротивления или по нашему сгоревшему, к примеру p-n переходу транзистора.
- Либо нет контакта там где он должен быть, обрыв цепи, отгорание нагрузки или силового полупроводника уходящего в обрыв, а не в короткое замыкание, что кстати случается в намного меньшем проценте случаев при сгорании полупроводников.
В данной статье я попытался объяснить логику поиска неисправностей глазами ремонтника, так как ее видим мы, проводя диагностику, проанализировав схему и сверяясь с показаниями мультиметра и условно держа в голове значения сопротивления для каждой конкретной детали в исправном и неисправном состоянии. Много дополнительной информации ищите в разделе сайта “РЕМОНТ”. Всем удачных ремонтов! AKV.