Как найти неизвестное число через х

Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.

Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.

Нахождение неизвестного слагаемого

Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9. Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9, значит, можно записать уравнение 4+x=9. Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x? Для этого надо использовать правило:

Определение 1

Для нахождения неизвестного слагаемого надо вычесть известное из суммы.

В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a+b=c, то c−a=b и c−b=a, и наоборот, из выражений c−a=b и c−b=a можно вывести, что a+b=c.

Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.

Пример 1

Возьмем то уравнение, что у нас получилось выше: 4+x=9. Согласно правилу, нам нужно вычесть из известной суммы, равной 9, известное слагаемое, равное 4. Вычтем одно натуральное число из другого: 9-4=5. Мы получили нужное нам слагаемое, равное 5.

Обычно решения подобных уравнений записывают следующим образом:

  1. Первым пишется исходное уравнение.
  2. Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
  3. После этого пишем уравнение, которое получилось после всех действий с числами.

Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:

4+x=9,x=9−4,x=5.

Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4+x=9 и получим: 4+5=9. Равенство 9=9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.

Нахождение неизвестного вычитаемого или уменьшаемого

Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.

Определение 2

Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.

Пример 2

Например, у нас есть уравнение x-6=10. Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6, получим 16. То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:

x−6=10,x=10+6,x=16.

Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16-6=10. Равенство 16-16 будет верным, значит, мы все подсчитали правильно.

Переходим к следующему правилу.

Определение 3

Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.

Пример 3

Воспользуемся правилом для решения уравнения 10-x=8. Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10-8=2. Значит, искомое вычитаемое равно двум. Вот вся запись решения:

10-x=8,x=10-8,x=2.

Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10-2=8 и убедимся, что найденное нами значение будет правильным.

Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.

Нахождение неизвестного множителя

Посмотрим на два уравнения: x·2=20 и 3·x=12. В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.

Определение 4

Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.

Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a·b=c при a и b, не равных 0, c: a=b, c: b=c и наоборот.

Пример 4

Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2. Проводим деление натуральных чисел и получаем 10. Запишем последовательность равенств:

x·2=20x=20:2x=10.

Подставляем десятку в исходное равенство и получаем, что 2·10=20. Значение неизвестного множителя было выполнено правильно.

Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x·0=11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0, а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.

Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0. Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Определение 5

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Пример 5

Решим с его помощью уравнение x:3=5. Перемножаем между собой известное частное и известный делитель и получаем 15, которое и будет нужным нам делимым.

Вот краткая запись всего решения:

x:3=5,x=3·5,x=15.

Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5. Верное числовое равенство – свидетельство правильного решения.

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Определение 6

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Пример 6

Возьмем простой пример – уравнение 21:x=3. Для его решения разделим известное делимое 21 на частное 3 и получим 7. Это и будет искомый делитель. Теперь оформляем решение правильно:

21:x=3,x=21:3,x=7.

Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21:7=3, так что корень уравнения был вычислен верно.

Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0. Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0:x=0, то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0, с делимым, отличным от 0, решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5:x=0, которое не имеет ни одного корня.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

Пример 7

У нас есть уравнение вида 3·x+1=7. Вычисляем неизвестное слагаемое 3·x, отняв от 7 единицу. Получим в итоге 3·x=7−1, потом 3·x=6. Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.

Вот краткая запись решения еще одного уравнения (2·x−7):3−5=2:

(2·x−7):3−5=2,(2·x−7):3=2+5,(2·x−7):3=7,2·x−7=7·3,2·x−7=21,2·x=21+7,2·x=28,x=28:2,x=14.

Решение простых уравнений  — одна из базовых тем для усвоения, при этом они являются достаточно мощным инструментом для решения большинства задач. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Уравнение — это равенство, содержащее в себе переменную. Значение данной переменной требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Переменную, входящую в уравнение, еще называют неизвестным.

Примеры:

  • выражение 3+2=5 является равенством, так как при вычислении получаем 5=5
  • выражение 3+х=5 является уравнением, так как содержит переменную х, значение которой можно найти.

Решить уравнение — значит найти такое значение х, чтобы равенство было верным.
То есть, в уравнении 3+х=5 значение будет равно 2 (х=2), чтобы получилось верное равенство.
При этом говорят, что 2 — это корень уравнения или решение уравнения 3+х=5.

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Компоненты

Компонентами называются числа и переменные, которые входят в равенство:

  • компоненты сложения — слагаемые и сумма;
  • компоненты вычитания — уменьшаемоевычитаемое и разность;
  • компоненты умножения — множители и произведение;
  • компоненты деления — делимое, делитель и частное.

Правила нахождения неизвестных

Чтобы выразить переменную через другие числа, нужно переменную оставить (или перенести) в левой части выражения, а все числа перенести в правую часть.

Решение простых уравнений подразумевает применение следующих правил:

  1. чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  2. чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  3. чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
  4. чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  5. чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  6. чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Примеры:

  1. 3+х=5.
    Нужно задать вопрос: что сделать с числами 5 и 3, чтобы получить переменную х.
    Чтобы найти слагаемое, нужно из суммы вычесть известное слагаемое: х=5-3.
  2. х-3=7
    Нужно задать вопрос: что сделать с числами 3 и 7, чтобы получить переменную х.
    Чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое: х=7+3.
  3. 8-х=6
    Нужно задать вопрос: что сделать с числами 8 и 6, чтобы получить переменную х.
    Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность: х=8-6.
  4. 3×а=6 (а-переменная)
    Нужно задать вопрос: что сделать с числами 3 и 6, чтобы получить переменную а.
    Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель
  5. а:4=3(а-переменная)
    Нужно задать вопрос: что сделать с числами 4 и 3, чтобы получить переменную а.
    Чтобы найти неизвестное делимое, нужно частное умножить на делитель: а=3*4
  6. 12:а=3(а-переменная)
    Нужно задать вопрос: что сделать с числами 12 и 3, чтобы получить переменную а.
    Чтобы найти неизвестный делитель, нужно делимое разделить на частное: а=12:3.

Если неизвестное имеет коэффициент

Решение простых уравнений сводится к тому, что неизвестное нужно выразить через другие числа. Но чаще всего задаются уравнения, в которых неизвестное имеет коэффициент, например: 2х, 5х и т.д. В таких случаях неизвестное нельзя выразить сразу, поскольку оно содержит коэффициент. Поэтому нужно привести это уравнение к виду, в котором переменная будет выражена.

Рассмотрим пример: 2х+4=8.
В данном примере: 2x — первое слагаемое, 4 — второе слагаемое, 8 — сумма.

  • Принимает слагаемое 2х за неизвестное слагаемое. Применяем правило нахождения неизвестного слагаемого: вычитаем из суммы известное слагаемое. Получаем: 2х=8-4 или 2*х=4.
  • Мы получили новое уравнение . Теперь мы имеем дело с умножением. Применяем правило нахождения неизвестного множителя: произведение делим на известный множитель. Получаем: х=4:2; х=2
  • Вычислим правую часть, получим значение переменной х.
  • Проверяем: 2*2+4=8. Равенство верное.

Если уравнение имеет неизвестные с разными коэффициентами

Рассмотрим пример: a+2a+3a=30.
Cразу выразить неизвестное нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить. Для этого нужно сложить все неизвестные величины с коэффициентами: 1а+2а+3а=6а (а — это переменная с коэффициентом 1. который не пишется).
Получаем уравнение вида: 6*а=30. Его можно решить как простое уравнение. Получаем корень: а=5.

Равносильные уравнения

Уравнения называют равносильными, если их корни совпадают.

Из предыдущего примера: уравнение a+2a+3a=30 и уравнение 6а=30 являются равносильными.
Проверим это. Подставим корень сначала в уравнение a+2a+3a=30, а затем в уравнение 6а=30, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства.

Для удобства решения можно любое уравнение преобразовать в равносильное. Для этого можно применить законы математики и свойства уравнений.

Свойства уравнений

  • Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
  • Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Пример. Решить уравнение 5х-10=20.
Вычтем из обеих частей уравнения число 10, получим: 5х=20-10 или 5х=10.
В результате получилось равносильное уравнение , корень которого равен 2.

Пример. Решить уравнение 4(х+3)=20.
Раскроем скобки: 4х+12=20.
Вычтем из обеих частей уравнения число 12, получим: 4х=20-12 или 4х=8.
В результате получилось равносильное уравнение , корень которого равен 2.

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные числа.

Пример. Решить уравнение (1/4)х+5=6,5

  • При решении уравнений, содержащих дробные выражения, сначала  принято упростить это уравнение.
  • Для упрощения обе части уравнения можно умножить на 4: 4*(1/4)х+4*5=4*6,5 или х+20=26.
  • В результате останется простейшее уравнение. Получаем, что корень равен 6.
  • Вернемся к исходному уравнению  и подставим вместо найденное значение. Получается верное числовое равенство. Значит уравнение решено правильно.

Пример. Решить уравнение 8х+16=56

  • Для упрощения обе части уравнения можно разделить на 8: 8х:8+16:8=56:8 или х+2=7.
  • В результате останется простейшее уравнение. Получаем, что корень равен 5.
  • Вернемся к исходному уравнению  и подставим вместо найденное значение. Получается верное числовое равенство. Значит уравнение решено правильно.

Если обе части уравнения умножить на минус единицу (поменять знаки), то получится уравнение равносильное данному.

Это правило следует из того, что если обе части уравнения умножить или разделить на одно и тоже число, не равное нулю, то получится равносильное уравнение. Иногда это нужно для того, чтобы получить равносильное уравнение, которое проще решать.

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

При этом минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать.

Пример. Решить уравнение: 2х-5х+10=4.

  • Приведем подобные слагаемые:  -3х+10=4
  • Перенесем второе слагаемое в правую часть: -3х=-6
  • Для удобства умножим обе части на (-1). получим: 3х=6.
  • Корень: х=2.

Уравнение имеет несколько корней

Уравнение может иметь несколько корней.

Рассмотрим уравнение: x(x + 9) = 0.
Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из множителей равен нулю.
То есть в уравнении x(x + 9) = 0 равенство будет выполняться, если x будет равен нулю или (x + 9) будет равно нулю. Таким образом, уравнение имеет два корня: 0 и −9.

Уравнение имеет бесконечно много корней

Уравнение может иметь бесконечно много корней, когда при подстановке подставив в такое уравнение любого числа, мы получим верное равенство.

Например: рассмотрим простое уравнение 6*(х+2)=6х+12. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 6х+12= 6х+12. Это равенство будет выполняться при любом х.

Уравнение не имеет корней

Бывает и так, что уравнение совсем не имеет  корней.

Например: уравнение х+2=х.
Данное уравнение не имеет корней, так как при любом значении х, левая часть уравнения всегда будет больше правой на 2.

Таким образом, мы рассмотрели в статье решение разных видов простых уравнений. Решение более сложных уравнений без знания данного материала практически невозможно.

Далее вы можете переходить к решению квадратных уравнений и решению систем линейных уравнений. 

Для решения уравнений вам также могут понадобится темы: раскрытие скобок и порядок действий в примерах.

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5.

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x, значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

осоу рис 1

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.


Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

8 + 2

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

8 + 2 = 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

2 = 10 − 8

Мы выразили число 2 из равенства 8 + 2 = 10. Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8. Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

или

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

8 + 2 = 10

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

8 = 10 − 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

8 + 2 = 10

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

10 = 8 + 2


Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

8 = 6 + 2

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

8 − 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

2 = 8 − 6


Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

три равно шесть вторых

Вернем получившееся равенство три равно шесть вторых в первоначальное состояние:

3 × 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

2 равно шесть третьих


Пример 4. Рассмотрим равенство пятнадцать пятых равно три

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

15 = 3 × 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

пятнадцать пятых равно три

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

пять равно пятнадцать третьих


Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

рисунок 8 плюс 2 равно 10

Чтобы выразить число 2, мы поступили следующим образом:

2 = 10 − 8

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

8 + x = 10

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + = 10, а переменная x берет на себя роль так называемого неизвестного слагаемого

рисунок неизвестное слагаемое

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + = 10. Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10. Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

2 = 10 − 8

А сейчас, чтобы найти неизвестное слагаемое x, мы должны из суммы 10 вычесть известное слагаемое 8:

x = 10 − 8

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

x = 2

Мы решили уравнение. Значение переменной x равно 2. Для проверки значение переменной x отправляют в исходное уравнение 8 + = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

рисунок уравнение 8 плюс икс равно десять подставление значения

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

x + 2 = 10

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x, нужно из суммы 10 вычесть известное слагаемое 2

x = 10 − 2

x = 8

рисунок уравнение икс плюс 2 равно 10


Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

рисунок уменьшаемое вычитаемое и разность

Чтобы выразить число 8, мы поступили следующим образом:

8 = 6 + 2

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

x − 2 = 6

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

неизвестное уменьшаемое вычитаемое и разность

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6. Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x, мы должны к разности 6 прибавить вычитаемое 2

x = 6 + 2

Если вычислить правую часть, то можно узнать чему равна переменная x

x = 8


Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

8 − x = 6

В этом случае переменная x берет на себя роль неизвестного вычитаемого

рисунок уменьшаемое неизвестное вычитаемое и разность

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

x = 8 − 6

Вычисляем правую часть и находим значение x

x = 2


Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

рисунок множимое множитель произведение

Чтобы выразить число 3 мы поступили следующим образом:

три равно шесть вторых

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

x × 2 = 6

В этом случае переменная x берет на себя роль неизвестного множимого.

рисунок неивестеное множимое множитель и произведение

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6. Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x, нужно произведение 6 разделить на множитель 2.

икс равно шесть вторых

Вычисление правой части позволяет нам найти значение переменной x

x = 3

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x.

рисунок множимое неизвестный множитель и произведение

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

x равно шесть третьих

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6. Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства x равно шесть третьих позволяет узнать чему равно x

x = 2

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

x ravno 18 na 9

Отсюда x ravno 2.

Решим уравнение × 3 = 27. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

x ravno 27 na 3

Отсюда x ravno 9.


Вернемся к четвертому примеру из предыдущей темы, где в равенстве пятнадцать пятых равно три требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

рисунок делимое делитель частное

Чтобы выразить число 15 мы поступили следующим образом:

15 = 3 × 5

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве пятнадцать пятых равно три вместо числа 15 располагается переменная x

икс третьих равно 3

В этом случае переменная x берет на себя роль неизвестного делимого.

рисунок неизвестное делитель частное

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства пятнадцать пятых равно три. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x, нужно частное 3 умножить на делитель 5

x = 3 × 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 15


Теперь представим, что в равенстве пятнадцать пятых равно три вместо числа 5 располагается переменная x.

пятнадцать на x равно три

В этом случае переменная x берет на себя роль неизвестного делителя.

рисунок делимое неизвестный делитель частное

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства пятнадцать пятых равно три. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x, нужно делимое 15 разделить на частное 3

икс равно пятнадцать третьих

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 5

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

компоненты сложения рисунок 1


Компонентами вычитания являются уменьшаемое, вычитаемое и разность

компоненты вычитания рисунок 1


Компонентами умножения являются множимое, множитель и произведение

компоненты произведения рисунок 1


Компонентами деления являются делимое, делитель и частное

компоненты деления рисунок 1

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

x = 60 − 45

Вычислим правую часть, получим значение x равное 15

x = 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение 2x plus 4 ravno 8

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

2x + 4 = 8 решить уравнение

При этом слагаемое 2x содержит переменную x. После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

2x + 4 = 8 решить уравнение рисунок 2

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

2x plus 4 ravno 8 step 2

Вычислим правую часть получившегося уравнения:

2x plus 4 ravno 8 step 3

Мы получили новое уравнение 2x plus 4 ravno 8 step 3. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, — множитель, 4 — произведение

2 множимое x множитель 8 произведение рисунок 1

При этом переменная x является не просто множителем, а неизвестным множителем

2 множимое x неизвестный множитель 8 произведение рисунок 1

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

x равно четыре вторых

Вычислим правую часть, получим значение переменной x

2x plus 4 ravno 8 step 4

Для проверки найденный корень отправим в исходное уравнение 2x plus 4 ravno 8 и подставим вместо x

уравнение 2x + 4 = 4 проверка

Получили верное числовое равенство. Значит уравнение решено правильно.


Пример 3. Решить уравнение 3+ 9+ 16= 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

3x 9x 16x ravno 56 step 2

Имеем дело с компонентами умножения. 28 — множимое, — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

x равно 56 к 28

Отсюда x равен 2

2x plus 4 ravno 8 step 4


Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56, мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56. Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3+ 9+ 16= 56 мы нашли корень равный 2. Подставим этот корень сначала в уравнение 3+ 9+ 16= 56, а затем в уравнение 28= 56, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

3x 9x 16x ravno 56 check 1

Согласно порядку действий, в первую очередь выполняется умножение:

3x 9x 16x ravno 56 check 2

Подставим корень 2 во второе уравнение 28= 56

28x ravno 56 check 1

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3+ 9+ 16= 56 и 28= 56 действительно являются равносильными.

Для решения уравнения 3+ 9+ 16= 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28= 56, которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.


Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

и аналогично:

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение 5x plus 10 ravno 20

Вычтем из обеих частей уравнения число 10

5x plus 10 ravno 20 step 1

Приведем подобные слагаемые в обеих частях:

5x plus 10 ravno 20 step 2

Получили уравнение 5= 10. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 10 разделить на известный сомножитель 5.

x ravno 10 na 5

Отсюда x ravno 2.

Вернемся к исходному уравнению 5x plus 10 ravno 20 и подставим вместо x найденное значение 2

5x plus 10 ravno 20 step 5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 5x plus 10 ravno 20 мы вычли из обеих частей уравнения число 10. В результате получили равносильное уравнение 5x ravno 10.png. Корень этого уравнения, как и уравнения 5x plus 10 ravno 20 так же равен 2

5x ravno 10 step 2


Пример 2. Решить уравнение 4(+ 3) = 16

Раскроем скобки в левой части равенства:

4x plus 12 ravno 16

Вычтем из обеих частей уравнения число 12

4x plus 12 ravno 16 step 3

Приведем подобные слагаемые в обеих частях уравнения:

4x plus 12 ravno 16 step 4В левой части останется 4x, а в правой части число 4

4x ravno 4

Получили уравнение 4= 4. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 4 разделить на известный сомножитель 4

x ravno 4 na 4

Отсюда x ravno 1

Вернемся к исходному уравнению 4(+ 3) = 16 и подставим вместо x найденное значение 1

4naxplus3 ravno 16 решение

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(+ 3) = 16 мы вычли из обеих частей уравнения число 12. В результате получили равносильное уравнение 4= 4. Корень этого уравнения, как и уравнения 4(+ 3) = 16 так же равен 1

4x ravno 4 проверка


Пример 3. Решить уравнение 2x minus 8 ravno 1 step 1

Раскроем скобки в левой части равенства:

2x minus 8 ravno 1 step 2

Прибавим к обеим частям уравнения число 8

2x minus 8 ravno 1 step 3

Приведем подобные слагаемые в обеих частях уравнения:

2x minus 8 ravno 1 step 4

В левой части останется 2x, а в правой части число 9

2x minus 8 ravno 1 step 5

В получившемся уравнении 2= 9 выразим неизвестное слагаемое x

x ravno 9 na 2

Отсюда 2x na 2 ravno 9 na 2 step 2

Вернемся к исходному уравнению 2x minus 8 ravno 1 step 1 и подставим вместо x найденное значение 4,5

2x minus 8 ravno 1 check 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 2x minus 8 ravno 1 step 1 мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение 2x minus 8 ravno 1 step 5. Корень этого уравнения, как и уравнения 2x minus 8 ravno 1 step 1 так же равен 4,5

2x ravno 9 check 1


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

12 plus 3x ravno 9x

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

12 plus 3x ravno 9x step 2

Получается верное равенство. Значит число 2 действительно является корнем уравнения 12 plus 3x ravno 9x.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

equation 12+3x=9x перенос 3x вправо

Получилось уравнение 12 = 9x − 3x. Приведем подобные слагаемые в правой части данного уравнения:

12 ravno plus minus 3 na x

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

equation 12+3x=9x шаг 2

Отсюда = 2. Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

12 plus 3x ravno 9 step 1

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3= 9x и 3x − 9= −12. В этот раз в уравнении 12 + 3= 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

equation 12+3x=9x шаг 3


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение x+8 на 8 равно 12 на 8 решить уравнение

При решении уравнений, содержащих дробные выражения, сначала  принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

x+8 на 8 равно 12 на 8 решить уравнение шаг 1

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

x+8 на 8 равно 12 на 8 решить уравнение шаг 2

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

x+8 на 8 равно 12 на 8 решить уравнение шаг 3

В результате останется простейшее уравнение

x plus 8 ravno 12

Ну и нетрудно догадаться, что корень этого уравнения равен 4

x plus 8 ravno 12 решение

Вернемся к исходному уравнению x+8 на 8 равно 12 на 8 решить уравнение  и подставим вместо x найденное значение 4

x+8 на 8 равно 12 на 8 решить уравнение шаг 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение x plus 8 ravno 12. Корень этого уравнения, как и уравнения x+8 на 8 равно 12 на 8 решить уравнение равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение x+8 на 8 равно 12 на 8 решить уравнение, мы умножили обе части на множитель 8 и получили следующую запись:

x+8 на 8 равно 12 на 8 решить уравнение шаг 1

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения x+8 на 8 равно 12 на 8 решить уравнение на множитель 8 желательно переписать следующим образом:

8 umn x plus 8 na 8 ravno 8 umn 12 na 8 решение 2


Пример 2. Решить уравнение x+25 na 15 ravno x+5 na 5 equation

Умнóжим обе части уравнения на 15

x+25 na 15 ravno x+5 na 5 equation step 2

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

x+25 na 15 ravno x+5 na 5 equation step 3

Перепишем то, что у нас осталось:

x+25 na 15 ravno x+5 na 5 equation step 4

Раскроем скобки в правой части уравнения:

x+25 na 15 ravno x+5 na 5 equation step 5

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

x+25 na 15 ravno x+5 na 5 equation step 7

Приведем подобные слагаемые в обеих частях, получим

x+25 na 15 ravno x+5 na 5 equation step 8

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

x+25 na 15 ravno x+5 na 5 equation step 9

Отсюда x ravno 5

Вернемся к исходному уравнению x+25 na 15 ravno x+5 na 5 equation  и подставим вместо найденное значение 5

x+25 na 15 ravno x+5 na 5 equation step 10

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15. Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x. Корень этого уравнения, как и уравнения x+25 na 15 ravno x+5 na 5 equation равен 5. Значит эти уравнения равносильны.


Пример 3. Решить уравнение  2 na 3x ravno 6

Умнóжим обе части уравнения на 3

3 umn 2 na 3x ravno 3 na 6

В левой части можно сократить две тройки, а правая часть будет равна 18

3 umn 2 na 3x ravno 3 na 6 step 2

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

3 umn 2 na 3x ravno 3 na 6 step 3

Отсюда x ravno 9

Вернемся к исходному уравнению  2 na 3x ravno 6  и подставим вместо найденное значение 9

2 na 3 umn 9 ravno 6 check

Получается верное числовое равенство. Значит уравнение решено правильно.


Пример 4. Решить уравнение x plus 11 minus x na 3 ravno 20 minus na 2 step 1

Умнóжим обе части уравнения на 6

x plus 11 minus x na 3 ravno 20 minus na 2 step 2

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

x plus 11 minus x na 3 ravno 20 minus na 2 step 3

Сократим в обеих частях уравнениях то, что можно сократить:

x plus 11 minus x na 3 ravno 20 minus na 2 step 4

Перепишем то, что у нас осталось:

x plus 11 minus x na 3 ravno 20 minus na 2 step 5

Раскроем скобки в обеих частях уравнения:

x plus 11 minus x na 3 ravno 20 minus na 2 step 6

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x, сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

x plus 11 minus x na 3 ravno 20 minus na 2 step 7

Приведем подобные слагаемые в обеих частях:

x plus 11 minus x na 3 ravno 20 minus na 2 step 8

Теперь найдем значение переменной x. Для этого разделим произведение 28 на известный сомножитель 7

x ravno 28 na 7

Отсюда = 4.

Вернемся к исходному уравнению x plus 11 minus x na 3 ravno 20 minus na 2 step 1 и подставим вместо x найденное значение 4

x plus 11 minus x na 3 ravno 20 minus na 2 step 10

Получилось верное числовое равенство. Значит уравнение решено правильно.


Пример 5. Решить уравнение 3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3

Раскроем скобки в обеих частях уравнения там, где это можно:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 2

Умнóжим обе части уравнения на 15

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 3

Раскроем скобки в обеих частях уравнения:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 4

Сократим в обеих частях уравнения, то что можно сократить:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 5

Перепишем то, что у нас осталось:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 6

Раскроем скобки там, где это можно:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 7

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 8

Приведем подобные слагаемые в обеих частях уравнения:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 9

Найдём значение x

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 10

В получившемся ответе можно выделить целую часть:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 11

Вернемся к исходному уравнению и подставим вместо x найденное значение 7 целых 1 на 13

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 1

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A, а правую часть равенства в переменную B

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 2

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 3

Значение переменной А равно 6 plus 82 na 195. Теперь найдем значение переменной B. То есть значение правой части нашего равенства. Если и оно равно 6 plus 82 na 195, то уравнение будет решено верно

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 4

Видим, что значение переменной B, как и значение переменной A равно 6 plus 82 na 195. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30+ 14+ 14 = 70− 40+ 42. Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

30x plus 14x plus 14 ravno 70x minus 40x plus 42 решение 1

Подставим найденное значение 2 вместо x в исходное уравнение:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 проверка 1

Теперь попробуем разделить все слагаемые уравнения 30+ 14+ 14 = 70− 40+ 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2

Выполним сокращение в каждом слагаемом:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 2

Перепишем то, что у нас осталось:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 3

Решим это уравнение, пользуясь известными тождественными преобразованиями:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 4

Получили корень 2. Значит уравнения 15+ 7+ 7 = 35x − 20+ 21 и 30+ 14+ 14 = 70− 40+ 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7= 14, нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 5

Этим методом мы тоже будем пользоваться часто.


Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1.

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение minus x minus 5 ravno minus 10. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

minus x minus 5 ranmo minus 10 step 1

Приведем подобные слагаемые:

minus x minus 5 ranmo minus 10 step 2

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения minus x ravno minus 5. Это есть произведение минус единицы и переменной x

minus x ravno minus 1 na x

То есть минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент принято не записывать. Это означает, что уравнение minus x ravno minus 5 на самом деле выглядит следующим образом:

minus na x ravnio minus 5

Имеем дело с компонентами умножения. Чтобы найти х, нужно произведение −5 разделить на известный сомножитель −1.

x ravno minus 5 na minus 1

или разделить обе части уравнения на −1, что еще проще

minus 1 na x na minus 1 ravno minus 5 na minus 1

Итак, корень уравнения minus x minus 5 ravno minus 10 равен 5. Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

-x-5-ranmo-minus-10-step-3

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения minus x minus 5 ravno minus 10 на минус единицу:

minus x minus 5 ravno minus 10 umnojenit na minus 1

После раскрытия скобок в левой части образуется выражение x plus 5, а правая часть будет равна 10

x plus 5 ravno 10

Корень этого уравнения, как и уравнения minus x minus 5 ravno minus 10 равен 5

x plus 5 ravno 10 check

Значит уравнения minus x minus 5 ravno minus 10 и x plus 5 ravno 10 130px равносильны.


Пример 2. Решить уравнение minus 19 ravno minus 4 minus 3 y

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение minus 19 ravno minus 4 minus 3 y. Для этого умнóжим обе части данного уравнения на −1.

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения  minus 19 ravno minus 4 minus 3 y на −1 можно записать подробно следующим образом:

minus 19 ravno minus 4 minus 3 y step 1

либо можно просто поменять знаки всех компонентов:

19 ravno 4 plus 3y

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения minus 19 ravno minus 4 minus 3 y на −1, мы получили уравнение 19 ravno 4 plus 3y. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

19 ravno 4 plus 3y решение уравнения

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.


Пример 3. Решить уравнение minus 2x minus 3 ravno minus 3 x plus 1

Умнóжим обе части уравнения на −1. Тогда все компоненты поменяют свои знаки на противоположные:

minus 2x minus 3 ravno minus 3 x plus 1 step 1

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

minus 2x minus 3 ravno minus 3 x plus 1 step 2

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: minus 2x minus 3 ravno minus 3 x plus 1 step 3


Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение 2x plus 3 ravno 80 minus 4x minus x. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

2x plus 3 ravno 80 minus 4x minus x step 2

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

2x plus 3 ravno 80 minus 4x minus x step 3

Приведем подобные слагаемые в левой части:

2x plus 3 ravno 80 minus 4x minus x step 4

Прибавим к обеим частям 77, и разделим обе части на 7

9x minus 77 plus 77 ravno 0 plus 77 step 5


Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении 2x ravno 10 мы произведение 10 делили на известный сомножитель 2

x ravno 10 na 2 ravno 5

Но если в уравнении 2x ravno 10 обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет  равна 5

x ravno 10 na 2 ravno 5 alter method

Уравнения вида 2x plus 4 ravno 8 мы решали выражая неизвестное слагаемое:

2x plus 4 ravno 8 step 2

2x plus 4 ravno 8 step 3

2x plus 4 ravno 8 step 4

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении 2x plus 4 ravno 8 слагаемое 4 можно перенести в правую часть, изменив знак:

2x plus 4 ravno 8 step 2

2x plus 4 ravno 8 step 3

Далее разделить обе части на 2

2x na 2 ravno 4 na 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда x ravno 2.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

2x plus 4 ravno 8 method 3

В случае с уравнениями вида 2x ravno 10 удобнее делить произведение на известный сомножитель. Сравним оба решения:

x ravno 10 na 2 ravno 5 alter оба решения

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.


Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9.

chech equation x na x plus 9

В уравнении x(x + 9) = 0 нужно было найти такое значение при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9), которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

x = 0 или x + 9 = 0

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0. Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение + 9 = 0. Несложно догадаться, что корень этого уравнения равен −9. Проверка показывает, что корень верный:

−9 + 9 = 0


Пример 2. Решить уравнение x minus 1 na x minus 2 ravno 0

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2). А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2)).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

1 na 2 minus 1 na 2 ravno 0 step 2

Подставляем по-очереди найденные значения в исходное уравнение x minus 1 na x minus 2 ravno 0 и убеждаемся, что при этих значениях левая часть равняется нулю:

1 na 2 minus 1 na 2 ravno 0 step 3


Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение 6x minus 2 na x minus 7 ravno 14

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14. Это равенство будет получаться при любом x

6x minus 2 na x minus 7 ravno 14 решение


Пример 2. Решить уравнение 2 na 5x plus 6 ravno 10x plus 12

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x


Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение x plus 2 ravno x не имеет корней, поскольку при любом значении x, левая часть уравнения не будет равна правой части. Например, пусть 2x plus 4 ravno 8 step 4. Тогда уравнение примет следующий вид

2 plus 2 ravno 2 step 1

Пусть x ravno minus 4


Пример 2. Решить уравнение 2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0

Раскроем скобки в левой части равенства:

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 2

Приведем подобные слагаемые:

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 3

Видим, что левая часть не равна правой части. И так будет при любом значении y. Например, пусть y = 3.

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 4


Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

формула нахождения скорости

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения формула нахождения скорости определить расстояние, нужно выразить переменную s.

Умнóжим обе части уравнения формула нахождения скорости на t

выразить s из v ravno s na t step 1

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

выразить s из v ravno s na t step 2

В получившемся уравнении левую и правую часть поменяем местами:

выразить s из v ravno s na t step 3

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения формула нахождения скорости определить время. Для этого нужно выразить переменную t.

Умнóжим обе части уравнения на t

выразить t из v ravno s na t step 1

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

выразить t из v ravno s na t step 2

В получившемся уравнении v × t = s обе части разделим на v

выразить t из v ravno s na t step 3

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

выразить t из v ravno s na t step 4

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

v = 50 км/ч

А расстояние равно 100 км

s = 100 км

Тогда буквенное уравнение формула нахождения скорости примет следующий вид

50 равно 100 разделить на t

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t. Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

t равно 100 на 50

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

50 на t равно 100 на t на t

Затем разделить обе части на 50

50 на t на 50 равно 100 на 50


Пример 2. Дано буквенное уравнение a plus bx ravno c. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

a plus bx ravno c step 2

Разделим обе части уравнения на b

a plus bx ravno c step 3

Теперь, если нам попадется уравнение вида a + bx = c, то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10. Оно похоже на буквенное уравнение a + bx = c.  Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

2x plus 4x ravno 10 два решения

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0), поскольку деление на ноль на допускается.


Пример 3. Дано буквенное уравнение a x minus c ravno b x plus d. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

a x minus c ravno b x plus d step 1

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x, сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

a x minus c ravno b x plus d step 2

В левой части вынесем за скобки множитель x

a x minus c ravno b x plus d step 3

Разделим обе части на выражение a − b

a x minus c ravno b x plus d step 4

В левой части числитель и знаменатель можно сократить на a − b. Так окончательно выразится переменная x

a x minus c ravno b x plus d step 5

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d), то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(+ 4). Оно похоже на уравнение a(x − c) = b(x + d). Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(+ 4) значения параметров a, b, c, d. Это позволит нам не ошибиться при подстановке:

abcd значения параметров

4 na x minus 3 ravno 2 na x plus 4 два решения

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0). Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d). В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

2 na x minus 3 ravno 2 na x plus 4 корней нет


Пример 4. Дано буквенное уравнение x na a minus x ravno b. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

x na a minus x ravno b step 2

Умнóжим обе части на a

x na a minus x ravno b step 3

В левой части x вынесем за скобки

x na a minus x ravno b step 4

Разделим обе части на выражение (1 − a)

x na a minus x ravno b step 5


Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2(x + 3) = 16. Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2+ 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2= 16 − 6. Вычислим правую часть, получим 2= 10. Чтобы найти x, разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2(x + 3) = 16 является линейным. Оно свелось к уравнению 2= 10для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2= 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x. Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0, то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax b примет вид 0= 0. При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0, то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0= 5. Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0, и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

x ravno b na a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3, и b равно какому-нибудь числу, скажем числу 6, то уравнение x ravno b na a str примет вид x ravno 6 na 3.
Отсюда x ravno 2.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0. Это то же самое уравнение, что и ax = b, но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7− 77 = 0. Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Задания для самостоятельного решения

Задание 1. Используя метод переноса слагаемого, решите следующее уравнение:

Задание 2. Используя метод прибавления (или вычитания) числа к обеим частям, решите следующее уравнение:

Задание 3. Решите уравнение:

Задание 4. Решите уравнение:

Задание 5. Решите уравнение:

Задание 6. Решите уравнение:

Задание 7. Решите уравнение:

Задание 8. Решите уравнение:

Задание 9. Решите уравнение:

Задание 10. Решите уравнение:

Задание 11. Решите уравнение:

Задание 12. Решите уравнение:

Задание 13. Решите уравнение:

Задание 14. Решите уравнение:

Задание 15. Решите уравнение:

Задание 16. Решите уравнение:

Задание 17. Решите уравнение:

Задание 18. Решите уравнение:

Задание 19. Решите уравнение:

Задание 20. Решите уравнение:

Задание 21. Решите уравнение:

Задание 22. Решите уравнение:

Задание 23. Решите уравнение:

Задание 24. Решите уравнение:

Задание 25. Решите уравнение:

Задание 26. Решите уравнение:

Задание 27. Решите уравнение:

Задание 28. Решите уравнение:

Задание 29. Решите уравнение:

Задание 30. Решите уравнение:

Задание 31. Решите уравнение:

Задание 32. В следующем буквенном уравнении выразите переменную x:

Задание 33. В следующем буквенном уравнении выразите переменную x:

Задание 34. В следующем буквенном уравнении выразите переменную x:

Задание 35. В следующем буквенном уравнении выразите переменную x:

Задание 36. В следующем буквенном уравнении выразите переменную y:

Задание 37. В следующем буквенном уравнении выразите переменную z:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Содержание:

Линейное уравнение с одной переменной

Уравнение – одно из важнейших понятий не только математики, но и многих прикладных наук. Это наиболее удобная математическая модель, наилучшее средство для решения сложнейших задач. Образно говоря, уравнение — это ключ, которым можно отворять тысячи дверей в неизвестное. Основные темы главы:

  • общие сведения об уравнениях;
  • равносильные уравнения;
  • линейные уравнения;
  • решение задач с помощью уравнений.

Общие сведения об уравнении

Алгебра в течение многих столетий развивалась как наука об уравнениях.

Уравнение — это равенство, содержащее не-известные числа, обозначенные буквами.

Неизвестные числа в уравнении называют переменными. Переменные чаще всего обозначают буквами х, у, z (икс, игрек, зет), хотя их можно обозначить и другими буквами.

Примеры уравнений: Линейное уравнение с одной переменной с примерами решения

Например:

Линейное уравнение с одной переменной с примерами решения

Рассмотрим уравнение Линейное уравнение с одной переменной с примерами решения. Если в нём вместо переменной х написать число 5, то будем иметь правильное числовое равенство Линейное уравнение с одной переменной с примерами решения. Говорят, что «число 5 удовлетворяет данное уравнение».

Число, удовлетворяющее уравнение, называется его корнем.

Уравнение Линейное уравнение с одной переменной с примерами решения имеет только один корень: Линейное уравнение с одной переменной с примерами решения

Уравнение Линейное уравнение с одной переменной с примерами решения имеет три корня: Линейное уравнение с одной переменной с примерами решения

Уравнение Линейное уравнение с одной переменной с примерами решения не имеет ни одного корня, так как при каждом значении переменной х число х + 7 на 7 больше, чем х.

Уравнение Линейное уравнение с одной переменной с примерами решения имеет бесконечное множество корней.

Решить уравнение — это означает, что надо найти все его корни или показать, что их не существует.

Простейшие уравнения можно решать, пользуясь известными зависимостями между слагаемыми и суммой, между множителями и произведением и т. п.

Пример:

Решите уравнение Линейное уравнение с одной переменной с примерами решения

Решение:

В данном случае неизвестно вычитаемое. Чтобы найти его, следует от уменьшаемого отнять разность: Линейное уравнение с одной переменной с примерами решения

Здесь неизвестный множитель х. Чтобы найти его, надо произведение разделить на известный множитель:

Линейное уравнение с одной переменной с примерами решения

Ответ. х = 4.

Уравнение — это своеобразный кроссворд. Только в клеточки кроссворда вписывают буквы, чтобы получить нужные слова, а в уравнение вместо переменных подставляют числа, чтобы получались правильные равенства.

Например, уравнение Линейное уравнение с одной переменной с примерами решения можно записать в форме числового кроссворда:

Линейное уравнение с одной переменной с примерами решения

Какое число надо поставить в квадратики, чтобы получилось верное равенство?

Уравнения бывают разных видов, в частности — содержащие неизвестную переменную в квадрате, в кубе, под знаком модуля и т. п. Решим, например, уравнения:

Линейное уравнение с одной переменной с примерами решения

1) Ответим на вопрос: какое число надо возвести в квадрат, чтобы получить 9? Это числа 3 и -3. Это и есть корни данного уравнения.

2) Разделим обе части уравнения Линейное уравнение с одной переменной с примерами решения Какое число, возведённое в куб, равно 8? Таковым является число 2. Значит, решение данного уравнения х = 2.

3) Если модуль числа x – 2, то это число равно 5 или -5. Имеем: x – 2 = 5, отсюда х = 7, или x – 2 = -5, отсюда х = -3. Значит, уравнение Линейное уравнение с одной переменной с примерами решения имеет два корня: x = 7 и x = -3.

Пример:

Решите уравнение Линейное уравнение с одной переменной с примерами решения

Решение:

Линейное уравнение с одной переменной с примерами решенияЛинейное уравнение с одной переменной с примерами решения

Пример:

Я задумал число. Если его умножить на 3, от результата отнять 4, то получим 5. Какое число я задумал?

Решение:

Обозначим искомое число буквой х. Если умножить его на 3, то получим Зх. Отняв от результата 4, получим Зх – 4. Имеем уравнение: Линейное уравнение с одной переменной с примерами решения

Решим это уравнение: Линейное уравнение с одной переменной с примерами решенияОтвет. 3.

Пример:

При каком значении а уравнение Линейное уравнение с одной переменной с примерами решения будет иметь корень х = 3?

Решение:

Первый способ. Найдём неизвестный множитель х как частное от деления произведения 12 и известного множителя а + 5:

Линейное уравнение с одной переменной с примерами решения

По условию x + 3, поэтому Линейное уравнение с одной переменной с примерами решения отсюда Линейное уравнение с одной переменной с примерами решения а = -1.

Второй способ. Подставим в уравнение Линейное уравнение с одной переменной с примерами решения вместо переменной х число 3:

Линейное уравнение с одной переменной с примерами решения

Решим полученное уравнение относительно переменной а. Имеем:

Линейное уравнение с одной переменной с примерами решения Ответ. Если а = -1, то уравнение Линейное уравнение с одной переменной с примерами решения имеет корень х = 3.

Равносильные уравнения

Рассмотрим два уравнения: Линейное уравнение с одной переменной с примерами решения. Каждое из них имеет один и тот же корень: х = 5.

Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Равносильными считают и такие уравнения, которые не имеют корней.

Например:

Линейное уравнение с одной переменной с примерами решения

Чтобы решать более сложные уравнения, нужно уметь заменять их более простыми и равносильными данным. Покажем, как это делается.

Из распределительного закона умножения следует, что при любом значении х числа 2x + 5x = 7x. Поэтому равносильными будут такие, например, уравнения: Линейное уравнение с одной переменной с примерами решения

Из распределительного закона следует, что при каждом значении х числа Линейное уравнение с одной переменной с примерами решения. Поэтому равносильны и уравнения:

Линейное уравнение с одной переменной с примерами решения

Вообще, если в любой части уравнения свести подобные слагаемые или раскрыть скобки, то получим уравнение, равносильное данному.

Прибавив к обеим частям верного числового равенства одно и то же число, получим также верное равенство. Подобно этому тела с равными массами, положенные на чаши уравновешенных весов, не нарушают равновесия (рис. 4).

Отсюда следует, что когда, например, к обеим частям уравнения Линейное уравнение с одной переменной с примерами решения (1) прибавить по -10y, то получим уравнение Линейное уравнение с одной переменной с примерами решения, равносильное данному. А прибавить к левой и правой частям уравнения (1) по -10y — это то же самое, что перенести 10y из правой части уравнения в левую с противоположным знаком. Вообще, если из одной части уравнения в другую перенести любой его член с противоположным знаком, то получим уравнение, равносильное данному.

Вспомним также, что обе части числового равенства можно умножить или разделить на одно и то же число, отличное от нуля. Поэтому если обе части уравнения умножить иди разделить на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному. Например, умножив обе части уравнения Линейное уравнение с одной переменной с примерами решения получим уравнение Линейное уравнение с одной переменной с примерами решения имеющее такой же корень, как и данное. А если обе части уравнения Линейное уравнение с одной переменной с примерами решения разделим на 20, то будем иметь более простое уравнение Линейное уравнение с одной переменной с примерами решения, равносильное данному.

Всегда справедливы такие основные свойства уравнений.

  1. В любой части уравнения можно свести подобные слагаемые или раскрыть скобки, если они есть.
  2. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
  3. Обе части уравнения можно умножить или разделить на одно и то число, отличное от нуля.

В результате таких преобразований всегда получаем уравнение, равносильное данному.

Сформулированные свойства часто используют для решения уравнений. Для примера решим уравнение:Линейное уравнение с одной переменной с примерами решения

Решение:

Умножим обе части уравнения на 6:

Линейное уравнение с одной переменной с примерами решения Перенесём 4х в правую часть, а -1 — в левую с противоположными знаками:

Линейное уравнение с одной переменной с примерами решения Сведём подобные члены:

Линейное уравнение с одной переменной с примерами решения

Разделим обе части уравнения на 2:

Линейное уравнение с одной переменной с примерами решения

Ответ. Линейное уравнение с одной переменной с примерами решения

Откуда произошло название науки — алгебра? От названия книги об уравнениях узбекского математика IX в. Мухаммеда аль-Хо-резми (Мухаммеда из Хорезма). В те далёкие времена отрицательные числа не считались настоящими. Поэтому когда в результате перенесения отрицательного члена уравнения из одной его части в другую этот член становился положительным, считалось, что Qh восстанавливался, переходил из ненастоящего в настоящий. Такое преобразование уравнений Мухаммед аль-Хорезми назвал восстановлением (аль-джебр). Свойство об уничтожении одинаковых членов уравнения в обеих частях он назвал противопоставлением (аль-мукабала). Книга об этих преобразованиях называлась «Китаб мухтасар аль-джебр ва-л-мукабала» («Книга о восстановлении и противопоставлении»). Со временем её перевели на латинский Язык, взяв для названия только одно слово, которое стали писать Algebr. Отсюда и пошло название науки — алгебра. Преобразование «аль,-джебр» стало важным шагом в развитии алгебры, так как упростило решение уравнений.

Алгебра, арифметика, геометрия, математический анализ — основные составляющие математики (рис. 5). Арифметику — науку о числах и вычислениях — вы уже изучали на уроках математики. В 7-9 классах будете изучать алгебру и геометрию, с математическим анализом ознакомитесь в старших классах.

Линейное уравнение с одной переменной с примерами решения

Пример:

Равносильны ли уравнения:

а)Линейное уравнение с одной переменной с примерами решения

б)Линейное уравнение с одной переменной с примерами решения

Решение:

а) Если раскрыть скобки в первом уравнении, то получим второе. Значит, уравнения равносильны.

б) Решим первое уравнение:

Линейное уравнение с одной переменной с примерами решения отсюда х = 1. Итак, данные уравнения не равносильны.

Ответ. а) Равносильны; б) не равносильны.

Пример:

Решите уравнение:

Линейное уравнение с одной переменной с примерами решения

Решение:

Раскроем скобки и приведём подобные слагаемые: Линейное уравнение с одной переменной с примерами решения Перенесём слагаемое 3 в правую часть, а Зх — в левую, изменив их знаки на противоположные:

Линейное уравнение с одной переменной с примерами решения

Разделим обе части уравнения на 2. Получим: х = 6. Ответ. х = 6.

Пример:

Найдите корни уравнения: Линейное уравнение с одной переменной с примерами решения

Решение:

Умножим обе части уравнения на 3. Получим: Линейное уравнение с одной переменной с примерами решения

Линейные уравнения

Уравнение вида ax = b, где a и b — данные числа, называется линейным уравнением с переменной х.

Числа a и b — коэффициенты уравнения ax = b , a— коэффициент при переменной х,b — свободный член уравнения.

Если Линейное уравнение с одной переменной с примерами решения то уравнение ах = b называют уравнением первой степени с одной переменной. Его корень Линейное уравнение с одной переменной с примерами решения

Каждое уравнение первой степени с одной переменной имеет один корень. Линейное уравнение может не иметь корней, иметь один или бесконечное множество корней.

Линейное уравнение ах = b:

Линейное уравнение с одной переменной с примерами решения

Например, уравнение 0x = 5 не имеет ни одного корня, так как не существует числа, которое при умножении на 0 в произведении давало бы 5.

Уравнение 0x = 0 имеет бесконечное множество корней, так как его удовлетворяет любое значение переменной х.

Решая уравнение, его сначала стараются упростить, свести к линейному. Делают это преимущественно в такой последовательности.

  1. Избавляются от знаменателей (если они есть).
  2. Раскрывают скобки (если они есть).
  3. Переносят члены, содержащие переменные, в левую часть уравнения, а не содержащие — в правую.
  4. Приводят подобные слагаемые.

В результате такого преобразования получают уравнение, равносильное данному; его корни являются также корнями данного уравнения.

Пример 1. Решите уравнение:

Линейное уравнение с одной переменной с примерами решения

Решение. Умножим обе части уравнения на 12 — наименьшее общее кратное знаменателей 2, 3, 4 и 12:

Линейное уравнение с одной переменной с примерами решения

Ответ. -11.

Если коэффициенты уравнения многозначные, его удобно решать, пользуясь калькулятором. Пример 2. Решите уравнение

Линейное уравнение с одной переменной с примерами решения

Ответ. Линейное уравнение с одной переменной с примерами решения

Линейное уравнение с одной переменной с примерами решения

Линейное уравнение с одной переменной с примерами решения

Найденное значение корня — приближённое. Точное значение пришлось бы записать в виде смешанной дроби, а именно Линейное уравнение с одной переменной с примерами решения Решая прикладные задачи, ответ обычно округляют и записывают, например, так: Линейное уравнение с одной переменной с примерами решения

Уравнение первой степени — это отдельный вид линейных уравнений. Соотношение между этими двумя видами уравнений наглядно проиллюстрировано на рисунке 7.

Ниже приведём примеры линейных уравнений, которые не являются уравнениями первой степени.

Уравнения первой степени

Линейное уравнение с одной переменной с примерами решения

Линейное уравнение с одной переменной с примерами решения

Уравнения Линейное уравнение с одной переменной с примерами решения не линейные,но сводящиеся к линейным.

Почему уравнение вида ах = b называют линейными, станет понятно, когда вы ознакомитесь с линейными функциями.

Пример:

Решите уравнения:

а) Линейное уравнение с одной переменной с примерами решенияб) Линейное уравнение с одной переменной с примерами решения

Решение:

а) Линейное уравнение с одной переменной с примерами решенияЛинейное уравнение с одной переменной с примерами решения

Линейное уравнение с одной переменной с примерами решения— уравнение корней не имеет.

б) Линейное уравнение с одной переменной с примерами решенияЛинейное уравнение с одной переменной с примерами решения

Линейное уравнение с одной переменной с примерами решения— любое число удовлетворяет уравнение.

Ответ. а) Уравнение корней не имеет;

б) уравнение имеет бесконечное множество корней.

Пример:

Найдите два числа, полусумма которых вдвое больше их полуразности, которая равна 35.

Решение:

Если полуразность чисел равна 35, то разность будет вдвое больше, а именно — 70. Обозначим меньшее число буквой х, тогда большее будет равно

70 + х. По условию задачи Линейное уравнение с одной переменной с примерами решения или Линейное уравнение с одной переменной с примерами решения, отсюда х = 35 — меньшее число, 70 + 35 = 105 — большее число. Ответ. 35 и 105.

Решение задач с помощью уравнений

Чтобы решить задачу с помощью уравнения, сначала надо составить соответствующее этой задаче уравнение. Образно говоря, надо перевести задачу с обычного языка на язык алгебры, то есть составить математическую модель данной задачи. Как это можно сделать, покажем на нескольких примерах.

Пример:

На двух токах 1000т зерна. Сколько зерна на каждом току, если на первом его на 200т меньше, чем на втором?

Решение:

Пусть на первом току Линейное уравнение с одной переменной с примерами решения зерна. Тогда на втором —Линейное уравнение с одной переменной с примерами решения а на обоих — Линейное уравнение с одной переменной с примерами решения Имеем уравнение:

Линейное уравнение с одной переменной с примерами решения

отсюда Линейное уравнение с одной переменной с примерами решения

Ответ. Линейное уравнение с одной переменной с примерами решения

Уравнение Линейное уравнение с одной переменной с примерами решения составленное по условию задачи, — это математическая модель данной задачи.

Составить уравнения часто помогает рисунок или схема (рис. 10)

Линейное уравнение с одной переменной с примерами решения

Данную задачу можно решить и другими способами.

Если на втором току есть у т зерна, то на первом Линейное уравнение с одной переменной с примерами решения. Так как на втором току зерна на 200 т больше, то Линейное уравнение с одной переменной с примерами решения отсюда Линейное уравнение с одной переменной с примерами решения

Ответ тот же.

Рисунок 10, рисунок 11., уравнение Линейное уравнение с одной переменной с примерами решения — это три разные математические модели прикладной задачи 1. В математике прикладными называют задачи, условия которых содержат не математические понятия.

Модель всегда подобна оригиналу. В ней отображаются те или иные важные свойства исследуемого объекта. Такими являются уменьшенные модели автомобиля, самолёта, строения. Глобус — модель Земли, кукла — модель человека. Если модель создана на основе уравнений, формул или других математических понятий, её называют математической моделью.

Для решения задач на движение также используют разные модели. Надо помнить, что при равномерном движении пройденное телом расстояние равно произведению скорости на время Линейное уравнение с одной переменной с примерами решенияПри этом все значения величин следует выражать в соответствующих единицах измерения. Например, если время дано в часах, а расстояние — в километрах, то скорость надо выражать в километрах в час. Если тело движется при наличии течения, то его скорость движения по течению (против течения) равна сумме (разности) его собственной скорости и скорости течения. С помощью схем многие задачи на движение можно решить устно (№ 124). Для решения некоторых сложных задач требуется построение нескольких моделей.

Рассмотрим задачу, составить уравнение к которой помогает таблица — ещё один вид математических моделей.

Пример:

Катер должен был пройти расстояние между городами со скоростью 15 км/ч, а на самом деле шёл со скоростью 12 км/ч и потому опоздал на 3 ч. Найдите расстояние между городами.

Ответ. Построим таблицу и заполним её в соответствии с условием задачи.

Линейное уравнение с одной переменной с примерами решения

Катер шёл на 3 ч дольше, чем должен был идти. Этому условию соответствует уравнение:

Линейное уравнение с одной переменной с примерами решения Решим уравнение:

Линейное уравнение с одной переменной с примерами решения Ответ. 180 км.

Решив задачу с помощью уравнения, нужно всегда анализировать полученное значение неизвестного. Может получиться, что найденный корень уравнения не соответствует условию задачи.

Пример:

Периметр треугольника равен 17 см. Найдите его стороны, если одна из них короче другой на 2 см, а третьей — на б см.

Решение:

Пусть длина самой короткой стороны треугольника равна х см. Тогда длины других сторон соответственно будут равны Линейное уравнение с одной переменной с примерами решения.Получим уравнение: Линейное уравнение с одной переменной с примерами решения

Решим его: Линейное уравнение с одной переменной с примерами решения

Если длина первой стороны 3 см, то вторая и третья соответственно будут равны 5 и 9 см.

Существует ли треугольник с такими сторонами? Нет, так как каждая сторона треугольника короче суммы двух других, аЛинейное уравнение с одной переменной с примерами решения

Ответ. Задача не имеет решения.

Решение прикладных задач методом математического моделирования состоит из трёх этапов:

  1. создание математической модели данной задачи;
  2. решение соответствующей математической задачи;
  3. анализ ответа.

Иногда с помощью уравнения решают не всю задачу, а только её часть.

Покажем, например, как можно заполнять пустые клеточки магического квадрата — таблицы чисел с одинаковым количеством строк столбцов, с одинаковой суммой чисел во всех строках, столбцах и по диагоналям.

Пример:

Перерисуйте в тетрадь рисунок 12 и в его пустые клеточки впишите такие числа, чтобы получился магический квадрат.

Решение:

Обозначим буквой х число в правой верхней клеточке Тогда сумма всех чисел первой строки будет равна 5+6+x, или 11 + x Такими же должны быть суммы и в каждой диагонали, и в среднем столбце поэтому в нижней строке следует написать 4, x – 2 , x – 1 (рис. 13). Та как сумма чисел должна быть равна 11 + х, то составим уравнение:

Линейное уравнение с одной переменной с примерами решения

Подставим вместо х его значение 10, после чего пустые клеточки рисунка 14 заполнить нетрудно. Линейное уравнение с одной переменной с примерами решения В данном случае уравнение Линейное уравнение с одной переменной с примерами решения — модель части сформулированной задачи, дающая возможность вычислит только значение х.

Пример:

Катер прошёл расстояние между пристанями по течению реки за 2 ч, а обратно — за 2,5 ч. Найдите собственную скорость катера, если скорость течения равна 2 км/ч.

Решение:

Пусть собственная скорость катера равна x км/ч. Тогда:

Линейное уравнение с одной переменной с примерами решения — его скорость по течению;

Линейное уравнение с одной переменной с примерами решения — скорость катера против течения;

Линейное уравнение с одной переменной с примерами решения— такое расстояние катер прошёл по течению;

Линейное уравнение с одной переменной с примерами решения — такое расстояние катер прошёл против течения.

Расстояния Линейное уравнение с одной переменной с примерами решения равны. Итак, получим уравнение

Линейное уравнение с одной переменной с примерами решения

Ответ. 18 км/ч.

Пример:

Решите математический кроссворд (рис. 15).

Решение:

В кружки следует вписать два числа так, чтобы их сумма была равна 200, а разность — 10. Если второе число обозначим буквой х, то первое будет равно 200 – х. Их разность равна 10, следовательно, Линейное уравнение с одной переменной с примерами решения, отсюда 2Линейное уравнение с одной переменной с примерами решения Ответ на рисунке 16.

Линейное уравнение с одной переменной с примерами решения

Исторические сведения:

Уравнения первой степени с одной переменной люди научились решать очень давно. Египетские учёные почти четыре тысячи лет тому назад искомое неизвестное число называли «аха» (в переводе — «куча») и обозначали специальным знаком. В папирусе, дошедшем до нас, есть такая задача: «Куча и её седьмая часть составляют 19. Найдите кучу». Теперь бы мы сформулировали её так: «Сумма неизвестного числа и его седьмой части равна 19. Найдите неизвестное число».

Задача сводится к уравнению Линейное уравнение с одной переменной с примерами решения

Подобные задачи умели решать учёные Древней Греции, древних Индии, Китая. Древнегреческий математик Диофант (III в.) решал и более сложные уравнения, в частности такие, которые в современных символах имеют вид Линейное уравнение с одной переменной с примерами решения У Диофанта уравнение Линейное уравнение с одной переменной с примерами решения записывалось таким способом:

Аль-Хорезми и многие его преемники все уравнения записывали словами, не используя математических знаков.

От фамилии аль-Хорезми происходит ещё один важный для современной науки термин — алгоритм. Так называют совокупность правил, пользуясь которыми можно решить любую задачу из определённого класса задач. Например, известный вам способ умножения чисел «столбиком», способ определения наибольшего общего делителя двух или нескольких чисел — это алгоритмы. В современной науке понятие «алгоритм» играет огромную роль, существует даже специальная область математики — теория алгоритмов. Подробнее с алгоритмами вы ознакомитесь в старших классах.

Сначала алгеброй называли науку, изучающую различные способы решения уравнений. Со временем она значительно расширилась, обогатилась новыми идеями. Теперь уравнение — только одна из составляющих алгебры.

Напомню:

Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами.

Числа, удовлетворяющие уравнение, — его корни. Решить уравнение — это значит найти все его корни или показать, что их не существует.

Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Уравнения, которые не имеют корней, также считают равносильными друг другу.

Основные свойства уравнений.

  1. В любой части уравнения можно привести подобные слагаемые или раскрыть скобки, если они есть.
  2. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
  3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.

Уравнение вида ах = b, где а и b — произвольные числа, называют линейным уравнением с переменной х. Если Линейное уравнение с одной переменной с примерами решения, то уравнение ах = b называют уравнением первой степени с одной переменной.

Каждое уравнение первой степени ах = b имеет один корень Линейное уравнение с одной переменной с примерами решения . Линейное уравнение может иметь один корень, бесконечно много корней или не иметь ни одного корня.

Решение прикладных задач методом математического I моделирования состоит из трёх этапов:

  1. создание математической модели данной задачи;
  2. решение соответствующей математической задачи;
  3. анализ ответа.

Линейное уравнение с одной переменной

Рассмотрим три уравнения:

Линейное уравнение с одной переменной с примерами решения

Очевидно, что число -1,5 является единственным корнем первого уравнения.

Поскольку произведение любого числа на нуль равно нулю, то корнем второго уравнения является любое число.

Понятно, что третье уравнение корней не имеет.

Несмотря на существенное различие полученных ответов, приведенные уравнения внешне похожи: все они имеют вид Линейное уравнение с одной переменной с примерами решения где Линейное уравнение с одной переменной с примерами решения — переменная, Линейное уравнение с одной переменной с примерами решения— некоторые числа.

Уравнение вида Линейное уравнение с одной переменной с примерами решения где Линейное уравнение с одной переменной с примерами решения — переменная, Линейное уравнение с одной переменной с примерами решения — некоторые числа, называют линейным уравнением с одной переменной.

Вот еще примеры линейных уравнений: Линейное уравнение с одной переменной с примерами решенияЛинейное уравнение с одной переменной с примерами решения

Текст, выделенный жирным шрифтом, разъясняет смысл термина «линейное уравнение». В математике предложение, раскрывающее суть нового термина (слова, понятия, объекта), называют определением.

Итак, мы сформулировали (или говорят: «дали») определение линейного уравнения.

Заметим, что, например, уравнения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения линейными не являются.

Если Линейное уравнение с одной переменной с примерами решения то, разделив обе части уравнения Линейное уравнение с одной переменной с примерами решения на Линейное уравнение с одной переменной с примерами решения получим Линейное уравнение с одной переменной с примерами решения. Отсюда следует: если Линейное уравнение с одной переменной с примерами решения то уравнение Линейное уравнение с одной переменной с примерами решения имеет единственный корень, равный Линейное уравнение с одной переменной с примерами решения

Если же Линейное уравнение с одной переменной с примерами решения то линейное уравнение приобретает такой вид: Линейное уравнение с одной переменной с примерами решения Здесь возможны два случая: Линейное уравнение с одной переменной с примерами решения

В первом случае получаем уравнение Линейное уравнение с одной переменной с примерами решения Тогда, если Линейное уравнение с одной переменной с примерами решения то уравнение Линейное уравнение с одной переменной с примерами решения имеет бесконечно много корней: любое число является его корнем.

Во втором случае, когда Линейное уравнение с одной переменной с примерами решения при любом значении Линейное уравнение с одной переменной с примерами решения получим неверное равенство Линейное уравнение с одной переменной с примерами решения Отсюда, если Линейное уравнение с одной переменной с примерами решения и Линейное уравнение с одной переменной с примерами решения то уравнение Линейное уравнение с одной переменной с примерами решения корней не имеет.

Следующая таблица подытоживает приведенные рассуждения.Линейное уравнение с одной переменной с примерами решения

Пример:

Решите уравнение:

1) Линейное уравнение с одной переменной с примерами решения

Решение:

1) Так как произведение нескольких множителей равно нулю, когда хотя бы один из множителей равен нулю, получаем:Линейное уравнение с одной переменной с примерами решения

Ответ: -0,7; 4.

2) Учитывая, что модуль только чисел 4 и -4 равен числу 4, имеем: Линейное уравнение с одной переменной с примерами решения

Ответ: 2; 0,4.

Обратим ваше внимание на то, что рассмотренные уравнения не являются линейными, однако решение каждого из них сводится к решению линейных уравнений.

Пример:

Решите уравнение:

Линейное уравнение с одной переменной с примерами решения

Решение:

1) При Линейное уравнение с одной переменной с примерами решения уравнение принимает вид Линейное уравнение с одной переменной с примерами решения В этом случае корней нет. При Линейное уравнение с одной переменной с примерами решения имеем Линейное уравнение с одной переменной с примерами решения

Ответ: если Линейное уравнение с одной переменной с примерами решения, то уравнение не имеет корней; если Линейное уравнение с одной переменной с примерами решения, то Линейное уравнение с одной переменной с примерами решения

2) При Линейное уравнение с одной переменной с примерами решения уравнение принимает вид Линейное уравнение с одной переменной с примерами решения В этом случае корнем уравнения является любое число. При Линейное уравнение с одной переменной с примерами решения имеем Линейное уравнение с одной переменной с примерами решения

Ответ: если Линейное уравнение с одной переменной с примерами решения, то Линейное уравнение с одной переменной с примерами решения — любое число; если Линейное уравнение с одной переменной с примерами решения, то Линейное уравнение с одной переменной с примерами решения

Решение задач с помощью уравнений

Вам много раз приходилось решать задачи с помощью составления уравнений (текстовые задачи). И разнообразие решенных задач является лучшим подтверждением эффективности и универсальности этого метода. В чем же заключается секрет его силы?

Дело в том, что условия непохожих друг на друга задач удается записать математическим языком. Полученное уравнение — это результат перевода условия задачи с русского языка на математический.

Часто условие задачи представляет собой описание какой-то реальной ситуации. Составленное по этому условию уравнение называют математической моделью этой ситуации.

Конечно, чтобы получить ответ, уравнение надо еще решить. Для этого в алгебре разработаны различные методы и приемы. С некоторыми из них вы уже знакомы, многие другие вам еще предстоит изучить.

Найденный корень — это еще не ответ задачи. Следует выяснить, не противоречит ли полученный результат реальной ситуации, описанной в условии.

Рассмотрим, например, такие задачи:

  1. За 4 ч собрали 6 кг ягод. Сколько ягод собирали за каждый час?
  2. Несколько мальчиков собрали 6 кг ягод. Каждый из них собрал по 4 кг. Сколько мальчиков собирали ягоды?

Обе задачи приводят к одному и тому же уравнению Линейное уравнение с одной переменной с примерами решения, корнем которого является число 1,5. Но в первой задаче решение «полтора килограмма ягод за час» является приемлемым, а во второй — «ягоды собирали полтора мальчика» — нет.

При решении задач на составление уравнений удобно пользоваться следующей схемой:

  1. по условию задачи составить уравнение (сконструировать математическую модель задачи);
  2. решить уравнение, полученное на первом шаге;
  3. выяснить, соответствует ли найденный корень смыслу задачи, и дать ответ.

Эту последовательность действий, состоящую из трех шагов, можно назвать алгоритмом решения текстовых задач.

Пример:

Рабочий должен был выполнить заказ за 8 дней. Однако, изготавливая ежедневно 12 деталей сверх нормы, он уже за 6 дней работы не только выполнил заказ, но и изготовил дополнительно 22 детали. Сколько деталей ежедневно изготавливал рабочий?

Решение:

Пусть рабочий изготавливал ежедневно Линейное уравнение с одной переменной с примерами решения деталей. Тогда по плану он должен был изготавливать ежедневно Линейное уравнение с одной переменной с примерами решения деталей, а всего их должно было быть изготовлено Линейное уравнение с одной переменной с примерами решения На самом деле он изготовил Линейное уравнение с одной переменной с примерами решения деталей. Так как по условию задачи значение выражения Линейное уравнение с одной переменной с примерами решения на 22 больше значения выражения Линейное уравнение с одной переменной с примерами решения то

Линейное уравнение с одной переменной с примерами решения

Тогда

Линейное уравнение с одной переменной с примерами решения

Ответ: 37 деталей.

Пример:

Велосипедист проехал 65 км за 5 ч. Часть пути он проехал со скоростью 10 км/ч, а оставшийся путь — со скоростью 15 км/ч. Сколько времени он ехал со скоростью 10 км/ч и сколько — со скоростью 15 км/ч?

Решение:

Пусть велосипедист ехал Линейное уравнение с одной переменной с примерами решения ч со скоростью 10 км/ч. Тогда со скоростью 15 км/ч он ехал Линейное уравнение с одной переменной с примерами решения ч. Первая часть пути составляет Линейное уравнение с одной переменной с примерами решения км, а вторая — Линейное уравнение с одной переменной с примерами решения км. Имеем:

Линейное уравнение с одной переменной с примерами решения

Следовательно, со скоростью 10 км/ч велосипедист ехал 2 ч, а со скоростью 15 км/ч — 3 ч.

Ответ: 2 ч, 3 ч.

——

Что такое уравнение, линейное уравнение, что значит решить уравнение

Алгебра длительное время была частью арифметики — одной из древнейших математических дисциплин. Слово «арифметика» в переводе с греческого означает «искусство чисел». Алгебру же после выделения ее в отдельную науку рассматривали как искусство решать уравнения.

В данном разделе мы выясним, что такое уравнение, линейное уравнение, что значит решить уравнение, как решать задачи с помощью уравнений.

Что такое уравнение

Рассмотрим задачу:

Масса 4 больших и 15 малых деталей равна 270 г. Масса большой детали в три раза больше массы малой. Какова масса малой детали?

Линейное уравнение с одной переменной с примерами решения

Пусть масса малой детали равна Линейное уравнение с одной переменной с примерами решения г, тогда масса большой — Линейное уравнение с одной переменной с примерами решения г. Масса 15 малых деталей равна Линейное уравнение с одной переменной с примерами решения г, а 4 больших —Линейное уравнение с одной переменной с примерами решения (г). По условию задачи сумма этих масс равна 270 г:

Линейное уравнение с одной переменной с примерами решения.

Мы пришли к равенству, которое содержит неизвестное число, обозначенное буквой Линейное уравнение с одной переменной с примерами решения (еще говорят: равенство содержит переменную Линейное уравнение с одной переменной с примерами решения). Чтобы решить задачу, нужно найти значение Линейное уравнение с одной переменной с примерами решения, при котором равенство Линейное уравнение с одной переменной с примерами решения является верным числовым равенством.

Равенство с неизвестным значением переменной называют уравнением с одной переменной (или уравнением с одним неизвестным).

Корень уравнения

Рассмотрим уравнение Линейное уравнение с одной переменной с примерами решения. Подставляя вместо переменной Линейное уравнение с одной переменной с примерами решения некоторые числа, будем получать числовые равенства, которые могут быть верными или неверными. Например:

Значение переменной, при котором уравнение превращается в верное числовое равенство, называют корнем, или решением уравнения.

Итак, число 3 является корнем уравнения Линейное уравнение с одной переменной с примерами решения, а число 4 — нет.

Количество корней уравнения

Уравнения могут иметь разное количество корней. Например:

  • уравнение Линейное уравнение с одной переменной с примерами решения имеет только один корень — число 3;
  • уравнение Линейное уравнение с одной переменной с примерами решения имеет два корня — числа 2 и 6;

уравнению Линейное уравнение с одной переменной с примерами решения удовлетворяет любое число Линейное уравнение с одной переменной с примерами решения; говорят, что это уравнение имеет бесконечно много корней.

Уравнение может и не иметь корней. Рассмотрим, например, уравнение Линейное уравнение с одной переменной с примерами решения. Для любого числа Линейное уравнение с одной переменной с примерами решения значение левой части уравнения на 1 больше значения правой части. Следовательно, какое бы число Линейное уравнение с одной переменной с примерами решения мы не взяли, равенство Линейное уравнение с одной переменной с примерами решения будет неверным. Поэтому это уравнение не имеет корней.

Решить уравнение — значит найти все его корни или доказать, что корней нет.

Решим уравнение, составленное выше по условию задачи о больших и малых деталях:

Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения

Таким образом, масса малой детали равна 10 г.

Примеры решения уравнений:

Пример №86

Является ли число 2,5 корнем уравнения Линейное уравнение с одной переменной с примерами решения?

Решение:

Если Линейное уравнение с одной переменной с примерами решения, то:

значение левой части уравнения равно: Линейное уравнение с одной переменной с примерами решения; значение правой части равно: Линейное уравнение с одной переменной с примерами решения. Значения обеих частей уравнения равны, поэтому Линейное уравнение с одной переменной с примерами решения — корень данного уравнения.

  • Заказать решение задач по высшей математике

Пример №87

Решить уравнение:

а) Линейное уравнение с одной переменной с примерами решения; б) Линейное уравнение с одной переменной с примерами решения; в) Линейное уравнение с одной переменной с примерами решения.

а) Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения. Ответ. 11.

б) Произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю. Следовательно, Линейное уравнение с одной переменной с примерами решения или Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения или Линейное уравнение с одной переменной с примерами решения. Ответ.-0,5; 2.

в) Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения. Квадрат числа не может быть равен отрицательному числу. Поэтому данное уравнение корней не имеет. Ответ. Уравнение корней не имеет.

Решение уравнений. Свойства уравнений

Решение любого уравнения сводится к выполнению определенных преобразований, в результате которых данное уравнение заменяют более простым.

Решим, например, уравнение:

Линейное уравнение с одной переменной с примерами решения. (1)

1. Раскроем скобки:

Линейное уравнение с одной переменной с примерами решения. (2)

2. Приведем подобные слагаемые в левой части уравнения:

Линейное уравнение с одной переменной с примерами решения. (3)

3. Перенесем слагаемые с переменной Линейное уравнение с одной переменной с примерами решения в левую часть уравнения, а без переменной — в правую, изменив их знаки на противоположные:

Линейное уравнение с одной переменной с примерами решения. (4)

4. Приведем подобные слагаемые в каждой части уравнения:

Линейное уравнение с одной переменной с примерами решения. (5)

5. Разделим обе части уравнения на 2:

Линейное уравнение с одной переменной с примерами решения.

Таким образом, уравнение (1) имеет единственный корень — число 4.

При решении уравнения (1) мы выполняли некоторые преобразования: раскрывали скобки, приводили подобные слагаемые, переносили слагаемые из одной части уравнения в другую, делили обе части уравнения на число. С этими преобразованиями связаны следующие основные свойства уравнений:

Свойство 1. В любой части уравнения можно раскрыть скобки или привести подобные слагаемые.

Свойство 2. Любое слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак на противоположный.

Свойство 3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.

Если в некотором уравнении выполнить одно из преобразований, указанных в свойствах 1, 2 или 3, то получим уравнение, имеющее те же корни, что и начальное уравнение.

Решая уравнение (1), мы последовательно получали уравнения (2), (3), (4), (5). Все они вместе с уравнением (1) имеют один и тот же корень — число 4.

Для тех, кто хочет знать больше

Свойства уравнений можно обосновать, используя следующие свойства числовых равенств:

Если а – b — верное числовое равенство и с — некоторое число, то:

Линейное уравнение с одной переменной с примерами решения

Если к обеим частям верного числового равенства прибавить одно и то же число, то получим верное числовое равенство.

Линейное уравнение с одной переменной с примерами решения

Если обе части верного числового равенства умножить на одно и то же число, то получим верное числовое равенство.

Линейное уравнение с одной переменной с примерами решения

Если обе части верного числового равенства разделить на одно и то же число. отличное от нуля то получим верное числовое равенство.

Из первого свойства числовых равенств можно получить такое следствие: если из одной части верного числового равенства перенести в другую часть слагаемое, изменив его знак на противоположный, то получим верное числовое равенство.

Используя свойства числовых равенств, докажем, например, что уравнение

Линейное уравнение с одной переменной с примерами решения (6)

имеет тс же корни, что и уравнение

Линейное уравнение с одной переменной с примерами решения. (7)

(Это свойство 2 для уравнения Линейное уравнение с одной переменной с примерами решения.)

• Пусть Линейное уравнение с одной переменной с примерами решения — произвольный корень уравнения (6). Тогда Линейное уравнение с одной переменной с примерами решения — верное числовое равенство. Перенесем слагаемое Линейное уравнение с одной переменной с примерами решения в левую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство Линейное уравнение с одной переменной с примерами решения, из которого следует, что Линейное уравнение с одной переменной с примерами решения является корнем уравнения (7). Мы доказали, что произвольный корень уравнения (6) является корнем уравнения (7).

Наоборот, пусть Линейное уравнение с одной переменной с примерами решения — произвольный корень уравнения (7). Тогда числовое равенство Линейное уравнение с одной переменной с примерами решения является верным. Перенесем слагаемое Линейное уравнение с одной переменной с примерами решения в правую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство Линейное уравнение с одной переменной с примерами решения, из которого следует, что Линейное уравнение с одной переменной с примерами решения является корнем уравнения (6). Мы доказали, что произвольный корень уравнения (7) является корнем уравнения (6). Таким образом, уравнения (6) и (7) имеют одни и тс же корни. • Уравнения, имеющие одни и те же корни, называют равносильными. Следовательно, уравнения (6) и (7) являются равносильными.

Примеры решения уравнений:

Пример №88

Решить уравнение Линейное уравнение с одной переменной с примерами решения.

Решение:

Умножив обе части уравнения на 14, получим:

Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения; Линейное уравнение с одной переменной с примерами решения;

Линейное уравнение с одной переменной с примерами решения

Ответ. 15.

Пример №89

Решить уравнение Линейное уравнение с одной переменной с примерами решения.

Решение:

Разделив обе части уравнения на 25, получим:

Линейное уравнение с одной переменной с примерами решения

Ответ. 1,6.

Линейные уравнения с одной переменной

Линейные уравнения с одной переменной

Рассмотрим уравнения:

Линейное уравнение с одной переменной с примерами решения

Левая часть каждого из этих уравнений является произведением некоторого числа и переменной, а права часть — некоторым числом. Такие уравнения называют линейными уравнениями с одной переменной.

Определение:

Уравнение вида Линейное уравнение с одной переменной с примерами решения, где Линейное уравнение с одной переменной с примерами решения — некоторые известные числа, а Линейное уравнение с одной переменной с примерами решения— переменная, называют линейным уравнением с одной переменной.

Числа а и b называют коэффициентами линейного уравнения.

Когда при решении уравнения выполняют некоторые преобразования, приводя данное уравнение к более простому, то во многих случаях этим «простым» уравнением является именно линейное уравнение.

Выясним, сколько корней может иметь линейное уравнение. Для этого рассмотрим сначала три следующих уравнения:

1) Линейное уравнение с одной переменной с примерами решения; 2) Линейное уравнение с одной переменной с примерами решения; 3) Линейное уравнение с одной переменной с примерами решения.

  1. Чтобы решить уравнение Линейное уравнение с одной переменной с примерами решения, достаточно обе его части разделить на 3. Получим один корень: Линейное уравнение с одной переменной с примерами решения
  2. В уравнении Линейное уравнение с одной переменной с примерами решения значение левой части равно 0 для любого числа Линейное уравнение с одной переменной с примерами решения. Правая же часть уравнения не равна нулю. Следовательно, данное уравнение корней не имеет.
  3. Равенство Линейное уравнение с одной переменной с примерами решения является верным для любого числа Линейное уравнение с одной переменной с примерами решения. Поэтому корнем уравнения Линейное уравнение с одной переменной с примерами решения является любое число (уравнение имеет бесконечно много корней).

В общем случае для линейного уравнения Линейное уравнение с одной переменной с примерами решения получим:

Итог: количество корней линейного уравнения

Линейное уравнение с одной переменной с примерами решения – линейное

уравнение

Коэффициенты Корни
Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения – единственный корень
Линейное уравнение с одной переменной с примерами решения и Линейное уравнение с одной переменной с примерами решения корней нет
Линейное уравнение с одной переменной с примерами решения и Линейное уравнение с одной переменной с примерами решения корнем является любое число (уравнение имеет бесконечно много корней)

Уравнения с модулями

Напомним, что модулем положительного числа и числа 0 является это же число, модулем отрицательного числа является противоположное ему число:

Линейное уравнение с одной переменной с примерами решения

Так, Линейное уравнение с одной переменной с примерами решения. Модуль любого числа Линейное уравнение с одной переменной с примерами решения является неотрицательным числом, то есть Линейное уравнение с одной переменной с примерами решения.

Уравнения Линейное уравнение с одной переменной с примерами решения содержат переменную под знаком модуля. Такие уравнения называют уравнениями с модулем.

Уравнение вида Линейное уравнение с одной переменной с примерами решения. Решая уравнение вида Линейное уравнение с одной переменной с примерами решения, где а — некоторое известное число, можно использовать геометрический смысл модуля числа: модуль числа Линейное уравнение с одной переменной с примерами решения — это расстояние от начала отсчета до точки, изображающей число Линейное уравнение с одной переменной с примерами решения на координатной прямой.

Рассмотрим уравнение Линейное уравнение с одной переменной с примерами решения. На координатной прямой существуют две точки, расположенные на расстоянии 2 единицы от начала отсчета. Это точки, соответствующие числам 2 и -2 (рис. I). Поэтому уравнение Линейное уравнение с одной переменной с примерами решения имеет два корня: 2 и -2.

Линейное уравнение с одной переменной с примерами решения

Рис. 1

Уравнение Линейное уравнение с одной переменной с примерами решения имеет один корень — число 0, а уравнение Линейное уравнение с одной переменной с примерами решения не имеет корней (модуль любого числа Линейное уравнение с одной переменной с примерами решения является неотрицательным числом и не может быть равен -2).

В общем случае уравнение Линейное уравнение с одной переменной с примерами решения:

Решение уравнений с модулями, исходя из определения модуля числа

Решим уравнение

Линейное уравнение с одной переменной с примерами решения (1)

Это уравнение нельзя привести к виду Линейное уравнение с одной переменной с примерами решения, где а — некоторое число. Для его решения рассмотрим два случая.

1. Если Линейное уравнение с одной переменной с примерами решения — неотрицательное число (Линейное уравнение с одной переменной с примерами решения), то Линейное уравнение с одной переменной с примерами решения и уравнение (1) принимает вид Линейное уравнение с одной переменной с примерами решения, откуда Линейное уравнение с одной переменной с примерами решения. Число 1 — неотрицательное (удовлетворяет неравенству Линейное уравнение с одной переменной с примерами решения), поэтому оно является корнем уравнения (1).

2. Если Линейное уравнение с одной переменной с примерами решения — отрицательное число (Линейное уравнение с одной переменной с примерами решения), то Линейное уравнение с одной переменной с примерами решения и уравнение (1) принимает вид Линейное уравнение с одной переменной с примерами решения, откуда Линейное уравнение с одной переменной с примерами решения. Число 2 не является отрицательным (не удовлетворяет неравенству Линейное уравнение с одной переменной с примерами решения), поэтому оно не является корнем уравнения (1).

Таким образом, уравнение Линейное уравнение с одной переменной с примерами решения имеет один корень Линейное уравнение с одной переменной с примерами решения.

Примеры выполнения заданий:

Пример №90

Решить уравнение Линейное уравнение с одной переменной с примерами решения.

Решение:

Линейное уравнение с одной переменной с примерами решения

Ответ. -3.

Пример №91

Решить уравнение Линейное уравнение с одной переменной с примерами решения.

Решение:

Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения

Ответ. Уравнение корней не имеет.

Пример №92

Решить уравнение Линейное уравнение с одной переменной с примерами решения

Решение:

Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения

Ответ. Корнем уравнения является любое число.

Пример №93

Решить уравнение Линейное уравнение с одной переменной с примерами решения.

Решение:

Умножив обе части уравнения на 36 (36 — наименьшее общее кратное знаменателей дробей), получим:

Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения Линейное уравнение с одной переменной с примерами решения

Ответ. 6.

Итог. При решении уравнения нужно придерживаться следующей схемы:

  1. Если в уравнении есть выражения с дробными коэффициентами, то умножить обе его части на наименьший общий знаменатель дробей.
  2. Раскрыть скобки.
  3. Перенести все слагаемые, содержащие переменную, в одну часть уравнения (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (в правую).
  4. Привести подобные слагаемые.
  5. Разделить обе части уравнения на коэффициент при переменной, если он не равен нулю. Если же он равен 0, то уравнение или не имеет корней, или его корнем является любое число.
Пример №94

Решить уравнение Линейное уравнение с одной переменной с примерами решения.

Решение:

Линейное уравнение с одной переменной с примерами решения

Если модуль числа равен 3, то этим числом является 3 или -3. Поэтому возможны два случая:

1) Линейное уравнение с одной переменной с примерами решения 2) Линейное уравнение с одной переменной с примерами решения

Ответ. 3; 0.

Пример №95

Решить уравнение Линейное уравнение с одной переменной с примерами решения.

Решение:

Линейное уравнение с одной переменной с примерами решения

Ответ. -4; 4.

Решение задач с помощью уравнений

При решении задач с помощью уравнений в большинстве случаев придерживаются следующей схемы:

  1. выбирают неизвестное и обозначают его буквой Линейное уравнение с одной переменной с примерами решения (или какой-нибудь другой буквой);
  2. используя условие задачи, составляют уравнение;
  3. решают уравнение и отвечают на вопросы, поставленные в задаче.

Рассмотрим примеры.

Пример №96

В двух цистернах находится 66 т бензина, причем в первой бензина в 1,2 раза больше, чем во второй. Сколько бензина в каждой цистерне?

Линейное уравнение с одной переменной с примерами решения

Решение:

Пусть во второй цистерне Линейное уравнение с одной переменной с примерами решеният бензина, тогда в первой — Линейное уравнение с одной переменной с примерами решеният. В двух цистернах вместе находится Линейное уравнение с одной переменной с примерами решения т бензина, что по условию равно 66 т. Получаем уравнение:

Линейное уравнение с одной переменной с примерами решения

Решим это уравнение: Линейное уравнение с одной переменной с примерами решения.

Таким образом, во второй цистерне 30 т бензина, а в первой — 1,2 • 30 = 36 (т).

Ответ. 36 т, 30 т.

Примечание. Чтобы решить задачу 1, можно рассуждать и так. Пусть во второй цистерне Линейное уравнение с одной переменной с примерами решеният бензина, тогда в первой — Линейное уравнение с одной переменной с примерами решения т. В первой цистерне бензина в 1,2 раза больше, чем во второй, поэтому Линейное уравнение с одной переменной с примерами решения. Остается решить это уравнение и записать ответ задачи.

Пример №97

Из. города А в город В выехал грузовой автомобиль. Через 30 мин навстречу ему из города В выехал легковой автомобиль, скорость которого на 25 км/ч больше скорости грузового. Автомобили встретились через 1,3 ч после выезда грузового автомобиля из города А. Найти расстояние между городами, если за все время движения грузовой автомобиль проехал на 10 км больше, чем легковой.

Решение:

Пусть скорость грузового автомобиля Линейное уравнение с одной переменной с примерами решения км/ч, тогда скорость легкового — Линейное уравнение с одной переменной с примерами решения км/ч.

До момента встречи грузовой автомобиль был в пути 1,3 ч, а легковой на 30 мин = 0,5 ч меньше: 1,3 ч – 0,5 ч = 0,8 ч. За 1,3 ч грузо&ой автомобиль проехал 1,3Линейное уравнение с одной переменной с примерами решения км, а легковой за 0,8 ч — 0,8Линейное уравнение с одной переменной с примерами решения км. Поскольку грузовой автомобиль проехал на 10 км больше, чем легковой, то разность расстояний 1,3Линейное уравнение с одной переменной с примерами решения км и 0,8Линейное уравнение с одной переменной с примерами решения км равна 10 км.

Скорость, км/ч Время, ч Путь, км
Грузовой автомобиль Линейное уравнение с одной переменной с примерами решения 1,3 1,3Линейное уравнение с одной переменной с примерами решения
Легковой автомобиль Линейное уравнение с одной переменной с примерами решения 0,8 Линейное уравнение с одной переменной с примерами решения

Получили уравнение: Линейное уравнение с одной переменной с примерами решения

Решим это уравнение:

Линейное уравнение с одной переменной с примерами решения

Итак, скорость грузового автомобиля равна 60 км/ч.

Расстояние между городами равно сумме расстояний, которые проехали оба автомобиля, то есть Линейное уравнение с одной переменной с примерами решения км. Поскольку Линейное уравнение с одной переменной с примерами решения = 60, то получим:

Линейное уравнение с одной переменной с примерами решения

Ответ. 146 км. •

Примечание. Опираясь на решение задач 1 и 2, проанализируем первые два шага приведенной выше схемы решения задач с помощью уравнений.

1) Выбор неизвестного, которое мы обозначали буквой, в решениях этих задач был разным. В задаче 1 мы обозначили через Линейное уравнение с одной переменной с примерами решения т одну из искомых величин (массу бензина во второй цистерне). В задаче 2 искомой величиной является расстояние между городами. Если эту величину обозначить через Линейное уравнение с одной переменной с примерами решения км, то при составлении уравнения рассуждения будут довольно сложными. Мы же через Линейное уравнение с одной переменной с примерами решения км/ч обозначили неизвестную скорость грузового автомобиля, выразили через Линейное уравнение с одной переменной с примерами решения расстояния, пройденные автомобилями, и составили уравнение, зная, что разность расстояний равна 10 км.

Таким образом, обозначать через Линейное уравнение с одной переменной с примерами решения (или какую-нибудь другую букву) желательно ту неизвестную величину, через которую легче выражаются величины, значения которых можно приравнять.

2) Чтобы составить уравнение, сначала выражаем через Линейное уравнение с одной переменной с примерами решения те величины, значения которых будем приравнивать. После этого записываем уравнение.

Математическая модель:

Вам, наверное, уже приходилось видеть модели корабля, самолета, автомобиля, изготавливать модели куба, прямоугольного параллелепипеда. Каждая модель, в зависимости от ее предназначения, отображает некоторые свойства оригинала.

Математическая модель — это описание некоторого реального объекта или процесса на языке математики.

Опишем на языке математики задачу 2. Определяя скорость грузового автомобиля в этой задаче, мы обозначили ее через Линейное уравнение с одной переменной с примерами решения км/ч. Скорость легкового автомобиля на 25 км/ч больше, чем скорость грузового, что на языке математики записывают так: скорость легкового автомобиля равна Линейное уравнение с одной переменной с примерами решения км/ч.

На языке математики расстояние, пройденное грузовым автомобилем, записывают: 1,3Линейное уравнение с одной переменной с примерами решения км, а расстояние, пройденное легковым автомобилем, — Линейное уравнение с одной переменной с примерами решения км.

По условию задачи грузовой автомобиль проехал на 10 км больше, чем легковой, что на языке математики можно выразить так: разность расстояний, пройденных грузовым и легковым автомобилями, равна 10 км, и записать: Линейное уравнение с одной переменной с примерами решения.

Полученное уравнение и является математической моделью задачи на движение автомобилей. Построив математическую модель, мы свели задачу на движение к математической задаче — решить уравнение.

Кроме уравнений, есть и другие виды математических моделей, с которыми ми познакомимся в процессе изучения алгебры.

Интересно знать. История науки знает немало примеров, когда в рамках удачно построенной математической модели с помощью вычислений, как говорят, «на кончике пера», удавалось предвидеть существование новых физических объектов и явлений. Так, опираясь на математические модели, астрономы Дж. Адамс (Англия) в 1845 году и У. Леверье (Франция) в 1846 году независимо друг от друга пришли к выводу о существовании неизвестной тогда еще планеты и указали ее расположение на небе. По расчетам Леверье астроном Г. Галле (Германия) нашел эту планету. Ее назвали Нептуном.

Интересно знать

На протяжении многих столетий алгебра была наукой об уравнениях и способах их решения. Линейные уравнения умели решать еще древние египтяне и вавилоняне (1 тысячелетие до н. э.).

О состоянии математики в Древнем Египте свидетельствуют математические тексты, написанные на особой бумаге — папирусе, изготовленном из стеблей растения, которое имеет такое же название. Написание некоторых папирусов относят к XVIII в. до н. э., хотя описанные в них математические факты были известны древним египтянам задолго до их изложения.

Один из таких папирусов был найден в 1872 году в одной из египетских пирамид. Его приобрел английский коллекционер древностей Райнд, и сейчас >тот папирус — папирус Райнда — хранится в Лондоне.

В папирусе Райнда особое место занимают задачи на «аха» («хау»).

Это задачи, которые решаются с помощью линейных уравнений с одним нечестным. «Аха» («хау») означает «совокупность», «куча» (неизвестная величина). Пример такой задачи: «Куча. ЕеЛинейное уравнение с одной переменной с примерами решения, ее Линейное уравнение с одной переменной с примерами решения, ее Линейное уравнение с одной переменной с примерами решения и ее целое. Это 33». Если обозначить «кучу» — неизвестную величину — через Линейное уравнение с одной переменной с примерами решения, то получим уравнение: Линейное уравнение с одной переменной с примерами решения.

Более заметные успехи в создании начал алгебры были достигнуты в Древнем Вавилоне. До нашего времени сохранились вавилонские глиняные плитки с комбинациями клиновидных черточек — клинописью. Такие плитки имели в Вавилоне то же значение, что и папирусы в Египте. На плитках встречаются и и клинописные математические тексты, которые свидетельствуют, что уже более 4000 лет гому назад в Вавилоне могли решать уравнения, содержащие квадрат неизвестного.

Начиная с VII в. до н. э., древние греки после знакомства с достижениями египтян и вавилонян в сфере математики продолжили их науку. При этом достаточно мало греческих ученых при решении задач использовали уравнения. Одним из тех, кто использовал уравнения, был древнегреческий математик Диофант.

Линейное уравнение с одной переменной с примерами решения

О Диофанте известно мало, даже точно не установлены годы его жизни. Кое-что о жизни Диофанта и о том, сколько он прожил лет, можно узнать из надписи на его могильной плите.

Надпись на плите Языком алгебры
Путник! Здесь погребен Диофант. И числа поведать могут, о чудо, сколь долог был век его жизни. Линейное уравнение с одной переменной с примерами решения
Часть шестую его представляло прекрасное детство. Линейное уравнение с одной переменной с примерами решения
Двенадцатая часть протекла его жизни — покрылся пухом тогда подбородок. Линейное уравнение с одной переменной с примерами решения
Седьмую в бездетном браке провел Диофант. Линейное уравнение с одной переменной с примерами решения
Прошло пятилетие; он был осчастливлен рождением прекрасного первенца-сына, 5
коему рок дал половину лишь жизни прекрасной и светлой на земле по сравнению с отцом. Линейное уравнение с одной переменной с примерами решения
И в печали глубокой старец земного удела конец воспринял, переживши года четыре с тех пор, как сына лишился. 4
Скажи, сколько лет жизни достигнув, смерть воспринял Диофант? Линейное уравнение с одной переменной с примерами решения

Греческую науку в Средневековье заимствовали ученые Востока — индийцы и арабы. Именно на Востоке в IX в. алгебра становится самостоятельной математической наукой.

Происхождение слова «алгебра» также связано с Востоком.

Город Багдад в VII-IX в. был столицей могущественного Арабского халифата. Багдадские халифы оказывали содействие развитию природоведения и математических наук. За годы правления халифа Гаруна аль-Рашида в Багдаде была оборудована большая библиотека, а халиф аль-Мамун организовал своеобразную академию — «Дом мудрости» и построил хорошо оборудованную обсерваторию.

При дворе аль-Мамуна жил и работал ученый Мухаммед бен Муса аль-Хорезми (около 780 — около 850). Он собрал и систематизировал способы решения уравнений и описал их в работе «Китаб аль-джебр аль-мукабала», что дословно означает «Книга о восстановлении и противопоставлении». В то время отрицательные числа считались «ненастоящими», и, когда в процессе решения уравнения в какой-то его части появлялось отрицательное число, его нужно было перенести в другую часть. Эту операцию называли восстановлением (аль-джебр), то есть переведением «ненастоящих» (отрицательных) чисел в «настоящие» (положительные). С помощью противопоставления (аль-мукабала) отбрасывали одинаковые слагаемые в обеих частях уравнения.

Линейное уравнение с одной переменной с примерами решения

В XII в. сочинение аль-Хорезми перевели на латинский язык, сохранив в его названии только слово «аль-джебр», которое вскоре стали произносить как алгебра.

Постепенно сформировалась современная алгебра, которая охватывает не только теорию решения уравнений, а и способы проведения операций (действий) с разнообразными объектами (в частности, с числами).

  • Целые выражения
  • Одночлены
  • Многочлены
  • Формулы сокращенного умножения
  • Отношения и пропорции
  • Рациональные числа и действия над ними
  • Делимость натуральных чисел
  • Выражения и уравнения 

Сегодня на уроке вспомним, что такое уравнение и что называют корнем уравнения. Рассмотрим один из видов уравнений: линейное уравнение с одним неизвестным, определим его общий вид и узнаем, как называются составные части такого равенства.

Разберем способы и приемы решения линейных уравнений с одним неизвестным.

Рассмотрим алгоритм и пример решения задач с помощью линейных уравнений.

Эта информация доступна зарегистрированным пользователям

В реальной жизни нам часто приходится решать множество различных примеров и задач.

Эта информация доступна зарегистрированным пользователям

Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.

Составив математическую модель жизненной задачи, мы можем превратить слова в формулы, неравенства, равенства, уравнения и т.п.

Математическая модель задачи в виде уравнения позволяет установить связи между всеми данными задачи, а также применить эту модель-уравнение для решения огромного множества подобного типа задач.

Вам уже хорошо известно, что уравнение – это математическое равенство, содержащее неизвестное число, которое необходимо определить.

Неизвестное число, входящее в уравнение, называют неизвестным членом данного уравнения.

Принято обозначать неизвестный член уравнения маленькими латинскими буквами.

Чаще всего в математике используют буквы x, y, z.

Найти неизвестное число, при котором из уравнения получается верное равенство, – это значит решить уравнение, т.е. найти корни уравнения или убедиться, что корней нет.

Эта информация доступна зарегистрированным пользователям

Корень уравнения – это значение неизвестного числа в уравнении, при котором уравнение обращается в верное равенство.

Уравнения могут иметь разное количество корней.

Существуют уравнения, имеющие один единственный корень, и уравнения, вообще не имеющие корней.

Встречаются уравнения, решением которых являются несколько значений (два, три и более), а в некоторых случаях уравнение может иметь бесконечное множество решений.

Уравнение, в котором находится одна неизвестная, называют уравнением с одной неизвестной.

Пример:

х + 3 = 6 (уравнение с одной неизвестной х)

3 ∙ у = 15 (уравнение с одной неизвестной y).

Существуют уравнения с большим количеством неизвестных: с двумя, тремя и т. д.

Рассмотрим, что представляют собой линейные уравнения с одной неизвестной.

Линейные уравнения с одной неизвестной называют уравнения вида a ∙ x = b, где a ≠ 0

Эта информация доступна зарегистрированным пользователям

х– неизвестное число

a и b– некоторые числа:

а– это коэффициент уравнения.

b– это свободный член уравнения.

Линейное уравнение с одной неизвестной может быть представлено в виде a ∙ x + b = 0, оно является равнозначным уравнению вида a ∙ x = ax = b.

Эта информация доступна зарегистрированным пользователям

Решить линейное уравнение с одним неизвестным вида a ∙ x = b – это значит найти все его корни или доказать, что корней нет.

Наличие и количество корней линейного уравнения зависит от значений коэффициента а и значения свободного члена уравнения b.

1. Линейное уравнение при a ≠ 0 и – любое число, будет иметь один единственный корень; это значит, что неизвестная имеет единственное верное решение, при котором уравнение обращается в верное равенство.

Известно, что деление – это обратное действие умножению (т.е. по известному множителю и произведению можно определить неизвестный множитель).

Следовательно, решение уравнения a ∙ x = b, где a ≠ 0 выглядит так:

x = b ÷ a

или (mathbf{x = frac{b}{a}}) (это корень линейного уравнения).

2. Линейное уравнение при a = 0 и b ≠ 0 не имеет корней.

Если коэффициент а равен нулю, линейное уравнение запишется, как

0 ∙ x = b

Свойство умножения числа на нуль дает право утверждать, что при любом значении неизвестной х уравнение обращается в неверное равенство 0 = b.

Равенство 0 = b при b ≠ 0 неверно, а это значит, что в таком случае решения уравнения нет, т.е. уравнение не имеет корней.

3. Линейное уравнение при а = 0 и b = 0 имеет бесконечное множество корней, т.е. при любом значении неизвестной х уравнение обращается в верное равенство.

0 ∙ x = 0

0 = 0 (верное равенство)

Чтобы решить линейное уравнение необходимо выполнить ряд математических преобразований.

Эта информация доступна зарегистрированным пользователям

Линейные уравнения обладают свойствами, которые позволяют совершать равносильные преобразования с различными уравнениями и сводить их к линейному уравнению с одной неизвестной стандартного вида, решать которое мы уже умеем.

Известно, что уравнение – это математическое равенство.

Если это равенство верно при определенных значениях неизвестной, то уравнение имеет верное решение.

Попробуем провести аналогию между уравновешенными весами и уравнением ax = b.

Как нам известно, уравновешенные весы нам показывают, что на каждой чаше весов находятся грузы равной массы.

Эта информация доступна зарегистрированным пользователям

Если весы были уравновешены, то добавив груз на одну чашу весов, необходимо добавить такой же по массе груз на вторую чашу, чтобы равновесие весов не было нарушено.

Аналогично, если убрать часть груза с одной чаши весов, то такую же часть груза нужно убрать со второй чаши, чтобы весы оставались уравновешенными.

А сейчас представим, что левая чаша весов – это левая часть линейного уравнения (ах), правая чаша весов – свободный член этого уравнения (b).

В таком случае получается, что если к левой и правой части уравнения прибавим (отнимем) одно и тоже число, то верное равенство не нарушится – получается уравнение равносильное исходному.

Добавлять к исходному можно любые числа, но необходимо выбирать то, которое упростит уравнение.

Рассмотрим пример:

Дано линейное уравнение + 12 = 37

Для того, чтобы привести данное уравнение к стандартному виду: ax = b, прибавим к левой и правой части равенства –12 (противоположное числу 12, которое находится в правой части равенства, чтобы избавится в правой части от свободного члена уравнения),

5х + 12 + (-12) = 37 + (-12)

5х + 12 – 12 = 37 – 12

5х = 37 – 12

Если посмотреть внимательно на решение, то можно заметить, что число +12 исчезло из левой части исходного уравнения и появилось в правой части полученного после преобразований, при этом сменило знак и стало равным –12.

5х = 25 получили уравнение вида ax = b, так как a ≠ 0 и b ≠ 0 уравнение имеет единственный корень, найдем его:

х = 25/5

х = 5

Ответ: х = 5

Первое свойство равносильного преобразования уравнения

Любое слагаемое можно перенести из одно части уравнения в другую, при этом сменив знак этого слагаемого на противоположный, в результате получится новое уравнение, равносильное исходному.

Обычно слагаемые с неизвестным переносят в левую часть уравнения, а все остальные слагаемые в правую часть.

Эта информация доступна зарегистрированным пользователям

Рассмотрим второе свойство равносильного преобразования уравнения.

Снова обратимся к аналогии с весами.

Для того, чтобы весы оставались в равновесии, увеличивая массу груза в 1,5 раза в одной из чаш, необходимо увеличить массу груза в 1,5 раза в другой чаше весов.

Увеличивая или уменьшая массу грузов на каждой чаше весов в одинаковое количество раз, равновесие весов будет сохраняться.

Эта информация доступна зарегистрированным пользователям

Так же происходит и с уравнением. Сформулируем второе свойство равносильного преобразования уравнения:

Разделив (или умножив) обе части на одно и тоже ненулевое число, равенство остается верным, получится уравнение равносильное исходному.

Рассмотрим пример

Дано уравнение 4 ∙ (2х – 1) = 16

Приведем данное уравнение к стандартному виду: ax =b

Раскрытие скобок только усложнит исходное уравнение.

Заметим, что левую и правую часть можем разделить на (это наименьшее общее кратное чисел 4 и 16).

4 ∙ (2х – 1) = 16          |÷4

(mathbf{frac{4 cdot (2x – 1)}{4} = 16 div 4})

2х – 1 = 4

Слагаемые с неизвестным оставляем в левой часть уравнения, а слагаемое -1 переносим в правую часть уравнения, сменив знак числа на противоположный, т.е. на «+».

2x = 4 + 1

2x = 5 получили уравнение вида ax = b

х = 5/2

x = 2,5

Ответ: х = 2,5

Решение линейных уравнений происходит с помощью нескольких преобразований, которые могут быть выполнены в любом порядке.

1. Освобождение от дробных членов уравнения (если такие есть) с помощью умножения левой и правой части уравнения на одно и тоже ненулевое число

2. Деление левой и правой части уравнения на одно и тоже ненулевое число

3. Раскрытие скобок (если они есть и это необходимо)

4. Перенос членов уравнения из одной части в другую со сменой их знаков на противоположные

5. Приведение подобных слагаемых

Завершая решение уравнения, стоит выполнить проверку, подставив в исходное уравнение найденное значение неизвестного. Если уравнение обратилось в верное равенство, значит, корень уравнения найден верно.

Итогом решения уравнения является ответ, в котором перечисляются все найденные корни уравнения.

Эта информация доступна зарегистрированным пользователям

Решение текстовых задач часто сводится к решению уравнений.

Уравнения позволяют записать информацию в таком виде, чтобы с ней можно было выполнить любые математические действия и преобразования, известные нам.

Решение задачи обычно сводится к тому, чтобы путем некоторых рассуждений и вычислений составить математическую модель задачи и найти значение неизвестной величины.

Эта информация доступна зарегистрированным пользователям

Этапы решения задач с помощью уравнения.

  1. Искомое значение обозначить через неизвестную (за неизвестную принимают наименьшее значение по условию задачи)
  2. Выразить через неизвестную другие величины
  3. Составить математическую модель задачи – уравнение
  4. С помощью равносильных преобразований решить уравнение
  5. Найти ответ на вопрос задачи
  6. Решив задачу, выполнить проверку найденных корней уравнения
  7. Записать ответ

Рассмотрим пример.

У Миши и Гриши было одинаковое количество денег.

Миша купил 4 одинаковые шоколадки, и у него осталось 30 рублей.

Гриша купил 2 такие же шоколадки, и у него осталось 120 рублей.

Сколько стоит шоколадка?

Решение:

Пусть х руб. стоит одна шоколадка.

руб. заплатил Миша за 4 шоколадки.

руб. заплатил Гриша за 2 шоколадки.

У Миши было денег (руб).: 4х + 30

У Гриши было денег (руб).: 2х + 120

Составим уравнение.

Так как денег у мальчиков было поровну, получим равенство:

4х + 30 = 2х + 120

Перенесем члены уравнения из одно части уравнения в другую, при этом сменив их знак на противоположный: члены уравнения, содержащие неизвестную, влево, известные члены вправо.

4х – 2х = 120 – 30

Приведем подобные:

2х = 90

Получили уравнение вида ax =b, решим его.

х = 90/2

х = 45 (руб.) стоит одна шоколадка.

Выполним проверку найденного корня уравнения, подставив в исходное уравнение полученное значение х:

4 ∙ 45 + 30 = 2 ∙ 45 + 120

180 + 30 = 90 + 120

210 = 210

Получили верное равенство, следовательно, корень уравнения был найден верно.

Ответ: х = 45 (руб.)

Эта информация доступна зарегистрированным пользователям

Американский математик в 1939, будучи аспирантом Калифорнийского университета, однажды опоздал на занятие и ошибочно подумал, что изображенное на доске уравнение – это домашнее задание.

Уравнение ему показалось трудно решаемым, но через несколько дней ему удалось его решить.

Позже выяснилось, что на доске было записано не задание на дом, а две «нерешаемые» проблемы в статистике, решение которых уже много лет пытались найти многие ученые того времени.

Читайте также

Добавить комментарий