Как найти неизвестное число онлайн

Обычные уравнения по-шагам

Примеры

  • Линейные уравнения
  • -5*(3*x - 2)/7 + 4 = 7*x - 4 /9*(x - 3)
  • 36/(x + 2) = 20/(x - 2)
  • (x - 14)/(x - 15) = 14/13
  • x^2 - x + 9 = (x + 2)^2
  • Квадратные уравнения
  • x^2 - x + 5/3 = 0
  • 10/(x - 4) + 4/(x - 10) = 2
  • Тригонометрические уравнения
  • sin(2*x/5 + pi/3) = -1/2
  • cos(x) - sin(x) = 1
  • уравнения с модулем
  • |x + 1| + |x^2 - 7| = 20
  • Логарифмические уравнения
  • log(x^2 - 5) - log(x) = 7
  • Показательные уравнения
  • 7^(2*x + 1) + 4*7^(x - 1) = 347
  • Уравнения с корнями
  • sqrt(x - 1) = x
  • (x - 1)^(1/3) = 4*x
  • Кубические и высших степеней уравнения
  • x^3 + 5*x^2 = x - 1
  • x^4 - x^3 + 5*x^2 = 0
  • уравнения с численным решением
  • (x - 1)^(1/3) = x^2/tan(x)
  • x - 1 = sin(x)
  • Выразить x через y в уравнении
  • x-3y=7
  • 2x+y=5
  • Решить уравнение с параметром
  • (a^2-1)*x^2 = (8 + 9*a)*x + 1
  • Решить уравнение с модулем
  • |x + 1| + |x – 5| = 20
  • Решить квадратное уравнение
  • x^2 + 7*x + 12 = 0
  • Решить уравнение с дробью
  • sqrt((1 - x) / (1 + x)) = 5

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности

Онлайн калькулятор подходит для решения любых систем уравнений, если Вы не нашли подходящего калькулятора в разделе решения уравнений, то попробуйте воспользоваться данным калькулятором для решения большинства известных уравнений.

Синтаксис
основных функций:

xa: x^a
|x|: abs(x)
√x: Sqrt[x]
n√x: x^(1/n)
ax: a^x
logax: Log[a, x]
ln x: Log[x]
cos x: cos[x] или Cos[x]

sin x: sin[x] или Sin[x]
tg: tan[x] или Tan[x]
ctg: cot[x] или Cot[x]
sec x: sec[x] или Sec[x]
cosec x: csc[x] или Csc[x]
arccos x: ArcCos[x]
arcsin x: ArcSin[x]
arctg x: ArcTan[x]
arcctg x: ArcCot[x]
arcsec x: ArcSec[x]

arccosec x: ArcCsc[x]
ch x: cosh[x] или Cosh[x]
sh x: sinh[x] или Sinh[x]
th x: tanh[x] или Tanh[x]
cth x: coth[x] или Coth[x]
sech x: sech[x] или Sech[x]
cosech x: csch[x] или Csch[е]
areach x: ArcCosh[x]
areash x: ArcSinh[x]
areath x: ArcTanh[x]

areacth x: ArcCoth[x]
areasech x: ArcSech[x]
areacosech x: ArcCsch[x]
конъюнкция “И” ∧: &&
дизъюнкция “ИЛИ” ∨: ||
отрицание “НЕ” ¬: !
импликация =>
число π pi : Pi
число e: E
бесконечность ∞: Infinity, inf или oo

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Смотрите также


Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение.
Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное
решение с пояснениями
, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Вы можете посмотреть теорию о показательной функции и
общие методы решения показательных уравнений.

Примеры подробного решения >>

Введите показательное уравнение

Наши игры, головоломки, эмуляторы:

Немного теории.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m – любые действительные числа. Тогда
1) an am = an+m

2) ( frac{a^n}{a^m} = a^{n-m} )

3) (an)m = anm

4) (ab)n = an bn

5) ( left( frac{a}{b} right)^n = frac{a^n}{b^n} )

6) an > 0

7) an > 1, если a > 1, n > 0

8) an < am, если a > 1, n < m

9) an > am, если 0< a < 1, n < m

В практике часто используются функции вида y = ax, где a – заданное положительное число, x – переменная.
Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является
показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0, ( a neq 1)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0, ( a neq 1), не имеет корней,
если ( b leqslant 0), и имеет корень при любом b > 0.

3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и
убывающей, если 0 < a < 1.
Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = ax при a > 0 и при 0 < a < 1.

Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и
расположен выше оси Oх.
Если х < 0 и |х| увеличивается, то график быстро приближается к оси Oх (но не пересекает её).
Таким образом, ось Ох является горизонтальной асимптотой графика функции у = ax при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = ax при 0 < a < 1 также проходит через точку (0; 1) и расположен выше оси Ох.
Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является
горизонтальной асимптотой графика.
Если х < 0 и |х| увеличивается, то график быстро поднимается вверх.


Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени.
Решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0, ( a neq 1),
х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны
тогда и только тогда, когда равны их показатели.

Решить уравнение 23x • 3x = 576
Так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде
8x • 3x = 242, или в виде 24x = 242, откуда х = 2.
Ответ х = 2

Решить уравнение 3х + 1 – 2 • 3x – 2 = 25
Вынося в левой части за скобки общий множитель 3х – 2, получаем 3х – 2(33 – 2) = 25,
3х – 2 • 25 = 25,
откуда 3х – 2 = 1, x – 2 = 0, x = 2

Ответ х = 2

Решить уравнение 3х = 7х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac{3^x}{7^x} = 1 ), откуда ( left( frac{3}{7} right) ^x = 1 ), х = 0

Ответ х = 0

Решить уравнение 9х – 4 • 3х – 45 = 0
Заменой 3х = t данное уравнение сводится к квадратному уравнению t2 – 4t – 45 = 0. Решая это уравнение,
находим его корни: t1 = 9, t2 = -5, откуда 3х = 9, 3х = -5.
Уравнение 3х = 9 имеет корень х = 2, а уравнение 3х = -5 не имеет корней, так как показательная функция не
может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2х + 1 + 2 • 5x – 2 = 5х + 2х – 2
Запишем уравнение в виде
3 • 2х + 1 – 2x – 2 = 5х – 2 • 5х – 2, откуда
2х – 2 (3 • 23 – 1) = 5х – 2( 5 2 – 2 )
2х – 2 • 23 = 5х – 2• 23
( left( frac{2}{5} right) ^{x-2} = 1 )
x – 2 = 0
Ответ х = 2

Решить уравнение 3|х – 1| = 3|х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х – 1)2 = (х + 3)2, откуда
х2 – 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

Добавить комментарий