Как найти неизвестное делимое примеры

Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.

Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.

Нахождение неизвестного слагаемого

Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9. Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9, значит, можно записать уравнение 4+x=9. Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x? Для этого надо использовать правило:

Определение 1

Для нахождения неизвестного слагаемого надо вычесть известное из суммы.

В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a+b=c, то c−a=b и c−b=a, и наоборот, из выражений c−a=b и c−b=a можно вывести, что a+b=c.

Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.

Пример 1

Возьмем то уравнение, что у нас получилось выше: 4+x=9. Согласно правилу, нам нужно вычесть из известной суммы, равной 9, известное слагаемое, равное 4. Вычтем одно натуральное число из другого: 9-4=5. Мы получили нужное нам слагаемое, равное 5.

Обычно решения подобных уравнений записывают следующим образом:

  1. Первым пишется исходное уравнение.
  2. Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
  3. После этого пишем уравнение, которое получилось после всех действий с числами.

Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:

4+x=9,x=9−4,x=5.

Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4+x=9 и получим: 4+5=9. Равенство 9=9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.

Нахождение неизвестного вычитаемого или уменьшаемого

Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.

Определение 2

Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.

Пример 2

Например, у нас есть уравнение x-6=10. Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6, получим 16. То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:

x−6=10,x=10+6,x=16.

Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16-6=10. Равенство 16-16 будет верным, значит, мы все подсчитали правильно.

Переходим к следующему правилу.

Определение 3

Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.

Пример 3

Воспользуемся правилом для решения уравнения 10-x=8. Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10-8=2. Значит, искомое вычитаемое равно двум. Вот вся запись решения:

10-x=8,x=10-8,x=2.

Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10-2=8 и убедимся, что найденное нами значение будет правильным.

Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.

Нахождение неизвестного множителя

Посмотрим на два уравнения: x·2=20 и 3·x=12. В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.

Определение 4

Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.

Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a·b=c при a и b, не равных 0, c: a=b, c: b=c и наоборот.

Пример 4

Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2. Проводим деление натуральных чисел и получаем 10. Запишем последовательность равенств:

x·2=20x=20:2x=10.

Подставляем десятку в исходное равенство и получаем, что 2·10=20. Значение неизвестного множителя было выполнено правильно.

Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x·0=11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0, а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.

Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0. Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Определение 5

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Пример 5

Решим с его помощью уравнение x:3=5. Перемножаем между собой известное частное и известный делитель и получаем 15, которое и будет нужным нам делимым.

Вот краткая запись всего решения:

x:3=5,x=3·5,x=15.

Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5. Верное числовое равенство – свидетельство правильного решения.

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Определение 6

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Пример 6

Возьмем простой пример – уравнение 21:x=3. Для его решения разделим известное делимое 21 на частное 3 и получим 7. Это и будет искомый делитель. Теперь оформляем решение правильно:

21:x=3,x=21:3,x=7.

Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21:7=3, так что корень уравнения был вычислен верно.

Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0. Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0:x=0, то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0, с делимым, отличным от 0, решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5:x=0, которое не имеет ни одного корня.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

Пример 7

У нас есть уравнение вида 3·x+1=7. Вычисляем неизвестное слагаемое 3·x, отняв от 7 единицу. Получим в итоге 3·x=7−1, потом 3·x=6. Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.

Вот краткая запись решения еще одного уравнения (2·x−7):3−5=2:

(2·x−7):3−5=2,(2·x−7):3=2+5,(2·x−7):3=7,2·x−7=7·3,2·x−7=21,2·x=21+7,2·x=28,x=28:2,x=14.

При делении, как и при другом математическом действии, каждое число имеет своё название.

Число, которое делят, называется делимое.
 

Число, на которое делят, называется делителем.
 

Результат деления называется частное.

Безымянный.png

Если необходимо найти неизвестное делимое, то умножим частное на делитель или делитель умножим на частное.

x:5=2

,  Пусть (x) — это неизвестное делимое.

Это уравнение. Его нужно решить.

Если равенство содержит неизвестное число, и это число надо найти, то такое равенство называется уравнением.

x:5=2,x=5⋅2,x=10.

Проверим. На место (x) запишем число, которому равен (x). Выполним действия.

Получили одинаковый ответ в левой и правой части равенства.

10:5=2,2=2.

Мы нашли неизвестное делимое — (10), которое является решением уравнения.

Как найти неизвестное делимое? Поможет правило:

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

А что делать, если правило вдруг забылось? 

В этом случае нужно придумать несложный пример на деление, с его помощью понять, что делать для нахождения делимого, и применить этот вывод, чтобы найти неизвестное делимое в своем уравнении.

Например: 10:5=2. Здесь делимое — 10. Чтобы найти 10, надо 2 умножить на 5. Точно так же поступаем при решении своего примера.

Теперь посмотрим, как найти делимое, на конкретных примерах.

1)

  x :  12 = 60
 дл  дт   ч

Чтобы найти неизвестное делимое, нужно частное умножить на делитель:

x=6012

x=720

Ответ: 720.

2)

  k :   7 =  11
 дл  дт   ч

Для нахождения делимого частное умножаем на делитель:

k=117

k=77

Ответ: 77.

Более сложные примеры, где помимо деления есть и другие действия, мы рассмотрим позже.

Множитель,
множитель, произведение. Делимое, делитель, частное.

Привет,
ребята!

Сегодня
у нас непростой урок, ведь нам предстоит разобраться, как находить неизвестные: множитель, делимое или делитель.
А для чего это надо уметь? Догадались? Ну конечно для того, чтобы уверенно решать
уравнения
! И мы, конечно же, решим несколько уравнений. Но прежде надо
кое-что вспомнить.

Я предлагаю вам посмотреть на буквенную запись
действия умножения.

А и Б в этой записи являются множителями,
Ц – произведением. Понятно, что произведение мы получаем
действием умножения. Это – целое, то есть наибольшее число. А вот множители
являются частями. Значит, их мы находим обратным действием, делением.

То есть, если нужно найти неизвестный
множитель
, мы произведение делим на известный множитель.

А теперь посмотрим на буквенную запись деления:

Обычно, целое можно разделить на части. Поэтому
К, делимое, является целым, а М и Н – это части. И, естественно, что целое мы находим
умножением. Поэтому, если надо найти неизвестное делимое, мы
перемножаем делитель с частным.

А вот делитель является частью. И, если надо найти
неизвестный делитель
, то его мы найдём, разделив делимое на частное.

Ну а теперь пришло время решать уравнения.
Давайте разберём вот это уравнение:

х · 9 = 126 : 2

Посмотрите, это у нас осложнённое уравнение.
Поэтому, прежде всего, надо его упростить, то есть, выполнить действие в правой
части уравнения. Сто двадцать шесть разделить на два равно шестьдесят три. Переписываем
уравнение, заменив действие деления на его результат. Здесь надо найти
неизвестный множитель. Чтобы найти неизвестный множитель, мы
произведение делим на известный множитель.

Шестьдесят
три делим на девять, получается семь.

х
· 9 = 63

х
= 63 : 9

х
= 7

7
· 9 = 126 : 2

63
= 63

Не
забываем выполнить проверку уравнения. Сначала переписываем его, заменив икс на
его значение, которое мы получили – семь. Семью девять – шестьдесят три. Сто
двадцать шесть разделить на два – шестьдесят три. Левая и правая части
уравнения равны, значит, уравнение решено верно. Решаем следующее уравнение:  

х
: 7 = 15 · 4

Упрощаем:

х
: 7 = 60

х
= 60 · 7   

х
= 420

Неизвестное
делимое находим умножением
.

Проверяем.

420
: 7 = 15 · 4

60
= 60

Ну, а следующее уравнение я предлагаю вам решить
самостоятельно.

360 : х = 96 + 24

Какой компонент здесь надо найти? Неизвестный
делитель
. А его мы находим

делением.

Проверьте,
ребята, так ли решено у вас уравнение?

360
: х = 90

х
= 360 : 90

х
= 4

360
: 4 = 66 + 24

90
= 90

Видите,
как помогает при решении уравнений знание
правил.

Чтобы найти неизвестный множитель, надо произведение разделить на известный
множитель.

Чтобы
найти неизвестное делимое
, надо делитель
умножить на частное.

Чтобы
найти неизвестный делитель
, надо делимое
разделить на частное.

Выучите
их, ребята, и не забывайте пользоваться при решении уравнений. Пока! До новых
встреч!

Добавить комментарий