Как найти неизвестное делимое с остатком

Главная цель урока: познакомить с правилом
нахождения неизвестного делителя при делении с
остатком.

Образовательные цели:


  • повторить способы записи частного;
  • повторить названия компонентов действия
    деления;
  • повторить правило нахождения неизвестного
    делителя при делении нацело;
  • составить формулу нахождения неизвестного
    делителя при делении с остатком;
  • формировать умение сравнивать, выделять
    главное;
  • учить устанавливать причинно-следственные
    связи, обобщать, делать выводы;
  • закреплять вычислительные навыки;
  • закреплять решение текстовых задач на деление с
    остатком;
  • формировать умение целенаправленно работать в
    парах.

Воспитательные цели:


  • воспитывать умение слушать одноклассников,
    высказывать свою точку зрения и обосновывать её;
  • воспитывать интерес к математике.

Развивающие цели:


  • развивать рефлексию.

Оздоровительные цели:


  • профилактика утомления, нарушения осанки.

Оборудование:


  • карточки с числами;
  • схематическое изображение темы урока;
  • формула нахождения неизвестного делителя при
    делении с остатком;
  • распечатки для самостоятельной работы;
  • карточки с условными знаками для проведения
    рефлексии;
  • индивидуальные текстовые карточки для
    проведения рефлексии.

Ход урока

1. Организационный момент.

Эмоциональный настрой на урок

– Сегодня у нас много гостей на уроке.
Повернитесь, поздоровайтесь и улыбнитесь им. Вот
видите, и они вам улыбнулись. В классе стало уютно
от ваших улыбок.

2. Чистописание.

На доске написана цифра 9.

– Сегодня на уроке мы с вами будем повторять
написание цифры 9.

– Напишите три цифры.

– Оцените свою работу. Если вы считаете, что все
три цифры написали каллиграфически верно,
поставьте на полях тетради знак плюс, если нет –
знак минус.

3. Актуализация знаний.

“Разминка для головы и рук”

– Что движется быстрее скорости света?

– Мне интересно будет сегодня на уроке
наблюдать, как движутся ваши мысли. Не прячьте их.

18 : 9 2 27 : 9 3

– Что записано на доске?

– Прочитайте выражения разными способами.

– Найдите закономерность записи чисел и
выражений.

– Какое деление выполнили?

– Продолжите закономерность до конца строчки.

– Что общего во всех выражениях?

– Как найти неизвестный делитель?

– Найдите компоненты действия деления.

– Какой компонент неизвестен в первом примере?

На доске представлена таблица. У каждого
учащегося на парте карточка с числом, которое
является значением одного из выражений. Всем
учащимся необходимо выполнить устные вычисления
и прикрепить свою карточку в нужное место
таблицы. Примеры решаются по порядку, карточки
прикрепляются по мере решения примеров.

Разминка закончилась.

4. Сообщение темы и задач урока.

– Теперь нам надо узнать тему нашего урока.

На доске открывается схематическое
изображение темы урока.

– Какое деление сегодня мы будем выполнять на
уроке?

– Какие компоненты при делении с остатком умеем
находить?

– Какой компонент будем сегодня учиться
находить?

– Задача нашего урока составить формулу
нахождения неизвестного делителя при делении с
остатком.

5. Этап “открытия” нового знания.

На доске открывается запись.

– Подумайте, как мы будем находить неизвестный
делитель?

– Можем ли мы использовать формулу нам уже
известную?

– Почему?

– Давайте уберём остаток. Как это сделать?

86 – 5 = 81

– Теперь можем воспользоваться уже известной
нам формулой?

– Воспользуйтесь.

81 : 9 = 9

– Проверьте себя.

9 · 9 + 5 = 86

– Можем ли мы теперь ответить на главный вопрос
урока?

– Как найти неизвестный делитель при делении с
остатком?

На доске открывается формула нахождения
неизвестного делителя при делении с остатком.

в = (а – ч ) : с

– Откройте учебники на стр. 61, найдите №122.

– Используя данную формулу, вставьте числа в
“окошки”.

– Считайте устно и комментируйте свой ответ.

6. Физкультурная минутка.

1) И.п.- сидя за партой, руки за голову. 1-2-руки
вверх, потянуться; 3-4-И.п.

2) И.п.- сидя за партой, ноги на ширину плеч, руки
на пояс. 1-2- наклон вправо; 3-4 – И.п. То же влево.

3) И.п. – сидя за партой. 1-2- встать, выпрямиться;
3-4 – И.п.

7. Закрепление пройденного материала.

– Что мы будем делать дальше на уроке, ведь на
главный вопрос урока мы дали ответ?

– Зачем нам тренироваться в решении примеров на
нахождение неизвестного делителя?

Учащиеся получают карточки для
самостоятельной работы.

– Найдите неизвестный делитель. Закройте
окошки.

– Выполненную работу передайте члену своей
пары. Оцените работы.

– При выполнениеиработы без ошибок, передайте
члену пары карточку со знаком плюс. При ошибках в
вычислениях передайте карточку со знаком минус.

– Покажите карточки.

На доске открываются значения выражений,
представленные на карточках.

6   7   8   15   19   14

– А теперь сравните свои результаты с
результатами на доске.

– Если результаты совпали, оставьте карточку со
знаком плюс, если нет, верните ее обратно члену
пары, который проверял вашу работу.

– Покажите карточки.

8. Повторение.

– Откройте учебник на стр.64.

– Прочитайте задачу № 28.

– Как вы думаете, почему именно данная задача
включена в урок?

– Что в задаче известно?

– Что значит “по 6 банок тушёнки”?

– Что надо узнать?

– Можем сразу ответить на вопрос задачи?

– Почему?

– Как узнать?

– Теперь можем ответить на поставленный вопрос?

– Что для этого нужно сделать?

– А как письменно оформить нашу мысль?

– Что мы записали?

– Прочитайте, как рассуждали при решении данной
задачи Миша и Маша.

– С чьим рассуждением совпадает наше?

– Кто прав: Маша и мы или Миша?

9. Подведение итогов урока. Домашнее задание.
Инструктаж его выполнения.

– Оцените себя и покажите, кто может
самостоятельно в домашнем задании найти
делитель при делении с остатком?

Учащиеся показывают карточки с условными
знаками: +,-, ?.

– Кому необходимо пользоваться формулой при
решении примеров на нахождение неизвестного
делителя при делении с остатком?

Учащиеся показывают карточки с условными
знаками: +,-, ?.

– В домашнем задании я предлагаю вам составить
примеры на деление с остатком с неизвестным
делителем. Напечатайте примеры, используя
компьютер. У вас получатся карточки для
самостоятельной работы. Мы будем использовать их
на следующих уроках.

-Урок окончен. Ваши мысли двигались
действительно быстрее скорости света. Мне было
интересно и комфортно на уроке.

– А как вы ощущали себя на уроке?

Каждый учащийся работает с индивидуальными
текстовыми карточками

– Выберите утверждение. Отметьте галочкой.

Ощущал себя на уроке:

  • хорошо;
  • уверенно;
  • смело;
  • гордо;
  • комфортно;
  • глупо;
  • неуверенно;
  • испуганно;
  • сердито;
  • грустно.

Спасибо.

Статья разбирает понятие деления целых чисел с остатком. Докажем теорему о делимости целых чисел с остатком и просмотрим связи между делимыми и делителями, неполными частными и остатками. Рассмотрим правила, когда производится деление целых чисел с остатками, рассмотрев подробно на примерах. В конце решения выполним проверку.

Общее представление о делении целых чисел с остатками

Деление целых чисел с остатком  рассматривается как обобщенное деление с остатком натуральных чисел. Это выполняется потому, что натуральные числа – это составная часть целых.

Деление с остатком произвольного числа говорит о том, что целое число a делится на число b, отличное от нуля. Если b=0, тогда не производят деление с остатком.

Также как и деление натуральных чисел с остатком, производится деление целых чисел a и b, при b отличном от нуля, на c и d. В этом случае a и b называют делимым и делителем, а d – остатком деления, с – целое число или неполное частное.

Если считать, что остаток – это целое неотрицательное число, тогда его величина не больше модуля числа b. Запишем таким образом: 0≤d≤b. Данная цепочка неравенств используется при сравнении 3 и более количества чисел.

Если с – неполное частное, тогда d – остаток от деления целого числа a на b, кратко можно зафиксировать: a:b=c (ост. d).

Остаток при делении чисел a на b возможен нулевой, тогда говорят, что a делится на b нацело, то есть без остатка. Деление без остатка считается частным случаем деления.

Если делим ноль на некоторое число, получаем в результате ноль. Остаток деления также будет равен нулю. Это можно проследить из теории о делении нуля на целое число.

Теперь рассмотрим смысл деления целых чисел с остатком.

Известно, что целые положительные числа – натуральные, тогда при делении с остатком получится такой же смысл, как и при  делении натуральных чисел с остатком.

При делении целого отрицательного числа а на целое положительное b имеется смысл. Рассмотрим на примере. Представив ситуацию, когда имеем долг предметов в количестве a, которое необходимо погасить b человек. Для этого необходимо каждому внести одинаковый вклад. Чтобы определить величину долга для каждого, необходимо обратить внимание на величину  частного с.  Остаток d говорит о том, что известно количество предметов после расплаты с долгами.

Рассмотрим на примере с яблоками. Если 2 человека должны 7 яблок. В случае, если посчитать, что каждый должен вернуть по 4 яблока, после полного расчета  у них останется 1 яблоко. Запишем в виде равенства это: (−7):2=−4 (ост. 1).

Деление любого числа а на целое не имеет смысла, но возможно как вариант.

Теорема о делимости целых чисел с остатком

Мы выявили, что а – это делимое, тогда b – это делитель, с – неполное частное, а d – остаток. Они между собой связаны. Эту связь покажем при помощи равенства a=b·c+d. Связь между ними характеризуется теоремой делимости с остатком.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом: a=b·q+r, где q и r – это некоторые целые числа. Тут имеем 0≤r≤b.

Докажем возможность существования a=b·q+r.

Доказательство

Если существуют два числа a и b, причем a делится на b  без остатка, тогда  из определения следует, что имеется число q, что будет верно равенство a=b·q. Тогда равенство можно считать верным: a=b·q+r при r=0.

Если посчитать, что b – целое положительное число, тогда, следует выбрать целое q так, чтобы произведение b·q не было больше значения числа а, а произведение b·(q+1) было больше, чем a. 

Тогда необходимо взять q такое, чтобы данное неравенством b·q<a<b·(q+1) было верным. Необходимо вычесть b·q из всех частей выражения. Тогда придем к неравенству такого вида: 0<a−b·q<b.

Имеем, что значение выражения a−b·q больше нуля и не больше значения числа b, отсюда следует, что  r=a−b·q. Получим, что число а можем представить в виде a=b·q+r.

Теперь необходимо рассмотреть возможность представления a=b·q+r для отрицательных значений b.

Модуль числа получается положительным, тогда получим a=b·q1+r, где значение q1 – некоторое целое число, r – целое число, которое подходит условию 0≤r<b.  Принимаем q=−q1, получим, что a=b·q+r для отрицательных b.

Доказательство единственности

Допустим, что a=b·q+r, q и r являются целыми числами с верным условием 0≤r<b, имеется еще одна форма записи в виде a=b·q1+r1, где q1 и r1 являются некоторыми числами, где q1≠q , 0≤r1<b.

Когда из левой и правых частей вычитается неравенство, тогда получаем 0=b·(q−q1)+r−r1, которое равносильно r-r1=b·q1-q. Так как используется модуль, получим равенство r-r1=b·q1-q.

Заданное условие говорит о том, что 0≤r<b и 0≤r1<b запишется в виде r-r1<b. Имеем, что  и q1 – целые, причем  q≠q1, тогда q1-q≥1. Отсюда имеем, что b·q1-q≥b. Полученные неравенства r-r1<b и b·q1-q≥b указывают на то, что такое равенство  в виде r-r1=b·q1-q невозможно в данном случае.

Отсюда следует, что по-другому число a быть представлено не может, кроме как такой записью a=b·q+r.

Связь между делимым, делителем, неполным частным и остатком

При помощи равенства a=b·c+d можно находить неизвестное делимое a, когда известен делитель b  с неполным частным c и остатком d.

Пример 1

Определить делимое, если при деление получим -21, неполное частное 5 и остаток 12.

Решение

Необходимо вычислить делимое a при известном делителе b=−21, неполным частным с=5 и остатком d=12. Нужно обратиться к равенству a=b·c+d, отсюда получим a=(−21)·5+12. При соблюдении порядка выполнения действий умножим -21 на 5, после этого получаем (−21)·5+12=−105+12=−93.

Ответ: -93.

Связь между делителем и неполным частным и остатком можно выразить при помощи равенств: b=(a−d):c, c=(a−d):b и  d=a−b·c. С их помощью мы можем вычислить делитель, неполное частное и остаток. Это сводится к постоянному нахождению остатка от деления целого целых чисел a на b с известным делимым, делителем и неполным частным. Применяется формула d=a−b·c. Рассмотрим решение подробно.

Пример 2

Найти остаток от деления целого числа -19 на целое 3 при известном неполном частном равном -7.

Решение

Чтобы вычислить остаток от деления, применим формулу вида d=a−b·c. По условию имеются все данные a=−19, b=3, c=−7.  Отсюда получим d=a−b·c=−19−3·(−7)=−19−(−21)=−19+21=2 (разность −19−(−21). Данный пример вычислен по правилу вычитания целого отрицательного числа.

Ответ: 2.

Деление с остатком целых положительных чисел, примеры

Все целые положительные числа являются натуральными. Отсюда следует, что деление выполняется по всем правилам деления  с остатком натуральных чисел. Скорость выполнения деления с остатком натуральных чисел важна, так как на нем основано не только деление положительных, но и правила деления целых произвольных.

Самый удобный метод деления – это столбик, так как проще и быстрее получить неполное или просто частное с остатком. Рассмотрим решение более подробно.

Пример 3

Произвести деление 14671 на 54.

Решение

Данное деление необходимо выполнять столбиком:

Деление с остатком целых положительных чисел, примеры

То есть неполное частное получается равным 271, а остаток – 37.

Ответ: 14 671:54=271. (ост. 37)

Правило деления с остатком целого положительного числа на целое отрицательное, примеры

Чтобы выполнить деление с остатком  положительного числа на целое отрицательное, необходимо сформулировать правило.

Определение 1

Неполное частное от деления целого положительного a на целое отрицательное b получаем число, которое противоположно неполному частному  от деления модулей чисел a на b. Тогда остаток  равен остатку при делении a на b.

Отсюда имеем, что неполное частное от деления целого полодительного числа на целое отрицательное число  считают целым неположительным числом.

Получим алгоритм:

  • найти модули делимого и делителя;
  • делить модуль делимого на модуль делителя, тогда получим неполное частное  и
  • остаток;
  • запишем число противоположное полученному.

Рассмотрим на примере алгоритма деления целого положительного числа на целое отрицательное.

Пример 4

Выполнить деление с остатком 17 на  -5.

Решение

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное. Необходимо разделить 17 на -5 по модулю. Отсюда получим, что неполное частное равно 3, а остаток равен 2.

Получим, что искомое число от деления 17 на -5 =-3 с остатком равным 2.

Ответ: 17:(−5)=−3 (ост. 2).

Пример 5

Необходимо разделить 45 на -15.

Решение

Необходимо разделить числа по модулю. Число 45 делим на 15, получим частное 3 без остатка. Значит, число 45 делится на 15 без остатка. В ответе получаем -3, так как деление производилось по модулю.

45:(-15)=45:-15=-45:15=-3

Ответ: 45:(−15)=−3.

Деление с остатком целого отрицательного числа на целое положительное, примеры

Формулировка правила деления с остатком выглядит следующим образом.

Определение 2

Для того, чтобы получить неполное частное с при делении целого отрицательного  a на положительное b, нужно применить противоположное данному числу и вычесть из него 1, тогда остаток d будет вычисляться по формуле: d=a−b·c.

Исходя из правила можно сделать вывод, что при делении получим целое неотрицательное число. Для точности решения применяют алгоритм деления а на b с остатком:

  • найти модули делимого и делителя;
  • делить по модулю;
  • записать противоположное данному число и вычесть 1;
  • использовать формулу для остатка d=a−b·c.

Рассмотрим на примере решения, где применяется данный алгоритм.

Пример 6

Найти неполное частное и остаток от деления -17 на 5.

Решение

Делим заданные числа по модулю. Получаем, что при делении частное равно 3, а остаток 2. Так как получили 3, противоположное -3. Необходимо отнять 1.

−3−1=−4.

Искомое значение полчаем равное -4.

Чтобы вычислить остаток, необходимо a=−17, b=5, c=−4, тогда d=a−b·c=−17−5·(−4)=−17−(−20)=−17+20=3.

Значит, неполным частным от деления является число -4 с остатком равным 3.

Ответ: (−17):5=−4 (ост. 3).

Пример 7

Разделить целое отрицательное число -1404 на положительное 26.

Решение

Необходимо произвести деление столбиком и по мудулю.

Деление с остатком целого отрицательного числа на целое положительное, примеры

Мы получили деление модулей чисел без остатка. Это значит, что деление выполняется без остатка, а искомое частное =-54.

Ответ: (−1 404):26=−54.

Правило деления с остатком целых отрицательных чисел, примеры

Необходимо сформулировать правило деления с остатком целых отрицательных чисел.

Определение 3

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b, необходимо произвести вычисления по модулю, после чего прибавить 1, тогда сможем произвести вычисления по формуле d=a−b·c.

Отсюда следует, что неполное частное от деления целых отрицательных чисел будет число положительное.

Сформулируем данное правило в виде алгоритма:

  • найти модули делимого и делителя;
  • разделить модуль делимого на модуль делителя  с получением неполного частного с
  • остатком;
  • прибавление 1 к неполному частному;
  • вычисление остатка, исходя из формулы d=a−b·c.

Данный алгоритм рассмотрим на примере.

Пример 8

Найти неполное частное и остаток при делении -17 на -5.

Решение

Для правильности решения применим алгоритм для деления с остатком. Для начала раздели числа по модулю. Отсюда получим, что неполное частное =3, а остаток равен 2. По правилу необходимо сложить неполное частное и 1. Получим, что 3+1=4. Отсюда получим, что неполное частное от деления заданных чисел равно 4.

Для вычисления остатка мы применим формулу. По условию имеем, что a=−17, b=−5, c=4, тогда, используя формулу, получим d=a−b·c=−17−(−5)·4=−17−(−20)=−17+20=3. Искомый ответ, то есть остаток, равен 3, а неполное частное равно 4.

Ответ: (−17):(−5)=4 (ост. 3).

Проверка результата деления целых чисел с остатком

После выполнение деления чисел с остатком необходимо выполнять проверку. Данная проверка подразумевает 2 этапа. Вначале идет проверка остатка d на неотрицательность, выполнение условия 0≤d<b. При их выполнении разрешено выполнять 2 этап. Если 1 этап  не выполнился, значит вычисления произведены с ошибками. Второй этап состоит из того, что равенство a=b·c+d должно быть верным. Иначе в вычисления имеется ошибка.

Рассмотрим на примерах.

Пример 9

Произведено деление -521 на -12. Частное равно 44, остаток 7. Выполнить проверку.

Решение

Так как остаток – это число положительное, то его величина является меньше, чем модуль делителя. Делитель равен -12, значит, его модуль равен 12. Можно переходить к следующему пункту проверки.

По условию имеем, что a=−521, b=−12, c=44, d=7. Отсюда вычислим b·c+d, где b·c+d=−12·44+7=−528+7=−521. Отсюда следует, что равенство верное. Проверка пройдена.

Пример 10

Выполнить проверку деления (−17):5=−3 (ост. −2). Верно ли равенство?

Решение

Смысл первого этапа заключается в том, что необходимо проверить деление целых чисел с остатком. Отсюда видно, что действие произведено неверно, так как дан остаток, равный -2. Остаток не является отрицательным числом.

Имеем, что второе условие выполненное, но недостаточное для данного случая.

Ответ: нет.

Пример 11

Число -19 разделили на -3. Неполное частное равно 7, а остаток 1. Проверить, верно ли выполнено данное вычисление.

Решение

Дан остаток, равный 1. Он положительный. По величине меньше модуля делителя, значит, первый этап выполняется. Перейдем ко второму этапу.

Вычислим значение выражения b·c+d. По условию имеем, что b=−3, c=7, d=1, значит, подставив числовые значения, получим b·c+d=−3·7+1=−21+1=−20.  Следует, что a=b·c+d равенство не выполняется, так как в условии дано а=-19.

Отсюда следует вывод, что деление произведено с ошибкой.

Ответ: нет.

Деление чисел с остатком

О чем эта статья:

Деление с остатком целых положительных чисел

Деление — это разбиение целого на равные части.

Остаток от деления — это число, которое образуется при делении с остатком. То есть то, что «влезло» и осталось, как хвостик.

Теорема

a = b · q + r, где a — делимое, b — делитель, q — неполное частное, r — остаток. 0 ⩽ r

Проверка деления с остатком

Пока решаешь пример, бывает всякое: то в окно отвлекся, то друг позвонил. Чтобы убедиться в том, что все правильно, важно себя проверять. Особенно ученикам 5 класса, которые только начали проходить эту тему.

Формула деления с остатком

a = b * c + d,

где a — делимое, b — делитель, c — неполное частное, d — остаток.

Эту формулу можно использовать для проверки деления с остатком.

Пример

Рассмотрим выражение: 15 : 2 = 7 (остаток 1).

В этом выражении: 15 — это делимое, 2 — делитель, 7 — неполное частное, а 1 — остаток.

Чтобы убедиться в правильности ответа, нужно неполное частное умножить на делитель (или наоборот) и к полученному произведению прибавить остаток. Если в результате получится число, которое равно делимому, то деление с остатком выполнено верно. Вот так:

Чтобы научиться делить числа с остатком, нужно усвоить некоторые правила. Начнем!

Все целые положительные числа являются натуральными. Поэтому деление целых чисел выполняется по всем правилам деления с остатком натуральных чисел.

Попрактикуемся в решении.

Пример

Разделить 14671 на 54.

Выполним деление столбиком:

Неполное частное равно 271, остаток — 37.

Ответ: 14671 : 54 = 271(остаток 37).

Деление с остатком положительного числа на целое отрицательное

Чтобы легко выполнить деление с остатком положительного числа на целое отрицательное, обратимся к правилу:

В результате деления целого положительного a на целое отрицательное b получаем число, которое противоположно результату от деления модулей чисел a на b. Тогда остаток равен остатку при делении |a| на |b|.

Неполное частное — это результат деления с остатком. Обычно в ответе записывают целое число и рядом остаток в скобках.

Это правило можно описать проще: делим два числа со знаком «плюс», а после подставляем «минус».

Все это значит, что «хвостик», который у нас остается, когда делим положительное число на отрицательное — всегда положительное число.

Алгоритм деления положительного числа на целое отрицательное (с остатком):

  • найти модули делимого и делителя;
  • разделить модуль делимого на модуль делителя
  • получить неполное частное и остаток;
  • записать число противоположное полученному.

Пример

Разделить 17 на −5 с остатком.

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное.

Разделим 17 на − 5 по модулю. Отсюда получим, что неполное частное равно 3, а остаток равен 2. Получим, что искомое число от деления 17 на − 5 = − 3 с остатком 2.

Проверка : a = b * q + r, 17 = −5 * (−3) + 2.

Ответ: 17 : (− 5) = −3 (остаток 2).

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Деление с остатком целого отрицательного числа на целое положительное

Чтобы быстро разделить с остатком целое отрицательное число на целое положительное, тоже придумали правило:

Чтобы получить неполное частное q при делении целого отрицательного a на положительное b, нужно применить противоположное данному числу и вычесть из него 1. Тогда остаток r будет вычисляться по формуле:

r = a − b * q

Из правила делаем вывод, что при делении получается целое неотрицательное число.

Для точности решения применим алгоритм деления а на b с остатком:

  • найти модули делимого и делителя;
  • разделить по модулю;
  • записать противоположное данному число и вычесть 1;
  • использовать формулу для остатка r = a − b * q.

Рассмотрим пример, где можно применить алгоритм.

Пример

Найти неполное частное и остаток от деления −17 на 5.

Разделим заданные числа по модулю.

Получаем, что при делении частное равно 3, а остаток 2.

Так как получили 3, противоположное ему −3.

Необходимо отнять единицу: −3 − 1 = −4.

Чтобы вычислить остаток, необходимо a = −17, b = 5, q = −4, тогда:

r = a − b * q = −17 − 5 * (−4) = −17 − (− 20) = −17 + 20 = 3.

Значит, неполным частным от деления является число −4 с остатком 3.

Проверка: a = b * q + r, −17 = 5 * (−4) + 3.

Ответ: (−17) : 5 = −4 (остаток 3).

Деление с остатком целых отрицательных чисел

Сформулируем правило деления с остатком целых отрицательных чисел:

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b, нужно произвести вычисления по модулю, после чего прибавить 1. Тогда можно произвести вычисления по формуле:

r = a − b * q

Из правила следует, что неполное частное от деления целых отрицательных чисел — положительное число.

Алгоритм деления с остатком целых отрицательных чисел:

  • найти модули делимого и делителя;
  • разделить модуль делимого на модуль делителя;
  • получить неполное частное и остаток;
  • прибавить 1 к неполному частному;
  • вычислить остаток, исходя из формулы r = a − b * q.

Пример

Найти неполное частное и остаток при делении −17 на −5.

Применим алгоритм для деления с остатком.

Разделим числа по модулю. Получим, что неполное частное равно 3, а остаток равен 2.

Сложим неполное частное и 1: 3 + 1 = 4. Из этого следует, что неполное частное от деления заданных чисел равно 4.

Для вычисления остатка применим формулу. По условию a = −17, b = −5, c = 4, тогда получим r = a − b * q = −17 − (−5) * 4 = −17 − (−20) = −17 + 20 = 3.

Получилось, что остаток равен 3, а неполное частное равно 4.

Проверка: a = b * q + r, −17 = −5 * 4 + 3.

Ответ: (−17) : (−5) = 4 (остаток 3).

Деление с остатком с помощью числового луча

Деление с остатком можно выполнить и на числовом луче.

Пример 1

Рассмотрим выражение: 10 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления помещаются полностью три раза и одно деление осталось.

Решение: 10 : 3 = 3 (остаток 1).

Пример 2

Рассмотрим выражение: 11 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления поместились три раза и два деления осталось.

Деление с остатком

Содержание

И так, мы уже познакомились с тем, что же такое деление. Но есть еще один важный и нужный вид деления — это деление с остатком.

Представим, что мы купили 10 яблок. К нам пришли друзья и мы захотели поделиться с ними яблоками, и при этом дать каждому равное количество.

Если друга всего 2, то каждому дадим по 5 яблок; если их 5, то по 2; а если 10, то по одному.

Но что делать, если друзей будет 3, 7 или 9? Нам не получится разделить 10 яблок поровну на такое количество человек.

Откуда берется остаток

Предположим, что в итоге у нас 7 друзей и 10 яблок. Чтобы никого не обидеть, мы можем дать каждому по одному и у нас останется 3 яблока. Теперь давайте рассмотрим пример:

В данном случае, 10 яблок — это делимое, 7 друзей — делитель, а 1 — неполное частное. Что же означает цифра 3 и откуда она взялась?

То число, которое осталось при делении, называют остатком.

Соответственно, в нашем случае 3 яблока и будут остатком.

Как найти остаток

Рассмотрим другой пример:

Давайте попробуем найти $x$ и $y$:

  1. Сначала нужно проверить, будет ли остаток равен нулю или нет. В нашем случае 42 не делится нацело на 9, значит остаток есть.
  2. Теперь подберем самое большое число, которое можно разделить нацело на делитель. При этом данное число должно быть меньше самого делимого. 36 — самое большое число, которое делится нацело на 9.
  3. Чтобы получить 36, нужно 9 умножить на 4, значит 4 и будет неполным частным $x$.
  4. Из 42 вычтем произведение делителя и неполного частного (42 — 36). В ответе получаем 6 — это как раз таки и будет остаток $y$. Пример решен!

Запомним еще 2 правила, которые необходимы при работе с остатком:

Остаток всегда меньше делителя.

Если остаток равен нулю, то говорят, что делимое делится на делитель без остатка, то есть нацело.

Как найти делимое

Нужно уметь находить не только частное и остаток, но и делимое. На самом деле, здесь также все просто.

Чтобы найти делимое при делении с остатком, нужно умножить неполное частное на делитель и к полученному произведению прибавить остаток.

Чтобы найти делимое $x$, нам нужно умножить делитель на частное, а затем прибавить остаток. Умножаем 11 на 3 — получаем 33. К этому значению прибавляем 9, и в ответе получается 42. Это и есть искомый $x$!

Деление с остатком. Формула деления с остатком и проверка.

Деление с остатком.

Рассмотрим простой пример:
15:5=3
В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.

Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу:
В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?

Решение:
Поделим число 16 на 5 столбиком получим:


Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.

a=bc+d
a – делимое,
b – делитель,
c – неполное частное,
d – остаток.

Ответ: каждый ребенок возьмет по 3 игрушки и одна игрушка останется.

Остаток от деления

Остаток всегда должен быть меньше делителя.

Если при делении остаток равен нулю, то это значит, что делимое делиться нацело или без остатка на делитель.

Если при делении остаток больше делителя, это значит, что найденное число не самое большое. Существует число большее, которое поделит делимое и остаток будет меньше делителя.

Вопросы по теме “Деление с остатком”:
Остаток может быть больше делителя?
Ответ: нет.

Остаток может быть равен делителю?
Ответ: нет.

Как найти делимое по неполному частному, делителю и остатку?
Ответ: значения неполного частного, делителя и остатка подставляем в формулу и находим делимое. Формула:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)

Пример №1:
Выполните деление с остатком и сделайте проверку: а) 258:7 б) 1873:8

Решение:
а) Делим столбиком:

258 – делимое,
7 – делитель,
36 – неполное частное,
6 – остаток. Остаток меньше делителя 6 Category: 5 класс, Натуральные числа Leave a comment

[spoiler title=”источники:”]

http://obrazavr.ru/matematika/5-klass-matematika/naturalnye-chisla/umnozhenie-delenie-stepen/delenie-s-ostatkom/

http://tutomath.ru/5-klass/delenie-s-ostatkom-formula-deleniya-s-ostatkom-i-proverka.html

[/spoiler]

На этом уроке продолжим разговор о делении натуральных чисел.

Вспомним название компонентов арифметической операции деления и установим, по каким правилам находится каждое из них.

Эта информация доступна зарегистрированным пользователям

Познакомимся с делением натуральных чисел с остатком, выясним алгоритм выполнения такой математической операции.

Определим компоненты арифметической операции деления с остатком.

Подробно рассмотрим взаимосвязь между компонентами деления с остатком и закрепим полученные знания, решая текстовые задачи по теме.

О математической операции деления вы уже имеете общее представление.

Уроком ранее выяснили, что деление- это арифметическая операция, с помощью которой по произведению и одному из множителей находят другой множитель.

Другими словами, деление- это математическая операция, противоположная умножению.

Разделить число а на число b– это значит найти такое число с, при умножении которого на число b, получается число а.

а ÷ b = с

а = с ∙ b

Рассмотрим данное утверждение на примере.

Умножение:

На детский праздник приготовили пирожные.

Всего на празднике присутствовало 6 детей, каждому ребенку досталось по 2 пирожных.

Определим сколько пирожных для детей приготовили на праздник.

Эта информация доступна зарегистрированным пользователям

Ответ: 12 пирожных.

Деление:

На детский праздник приготовили 12 пирожных.

Всего на празднике присутствовало 6 детей, каждого ребенка угостили одинаковым количеством пирожных.

Выясним сколько пирожных досталось каждому ребенку.

Эта информация доступна зарегистрированным пользователям

Ответ: каждому ребенку досталось по 2 пирожных.

Делимое- это число, которое делят.

Делитель- это число, на которое делят делимое.

Частное (от слова «часть»)- результат арифметической операции деления (число, которое получается в результате деления одного числа на другое).

Для записи деления используют математический знак в виде двух точек, как двоеточие «:».

Эта информация доступна зарегистрированным пользователям

Знак деления располагается между делимым и делителем.

Делимое всегда находится слева от знака делить, а делитель- справа.

В общем виде операция деления выглядит так:

Эта информация доступна зарегистрированным пользователям

Часто, решая различного рода задачи, приходится сталкиваться с ситуацией, когда один из компонентов операции деления неизвестен и его необходимо найти.

Определим, по каким правилам можно найти каждый компонент операции деления.

1. Так как частное- это результат, полученный при выполнении деления, то очевидно, что частное находят с помощью данной арифметической операции.

Зная делимое и делитель, можно найти частное.

Эта информация доступна зарегистрированным пользователям

Рассмотрим пример.

Дима купил 12 разноцветных воздушных шариков.

Каждому своему другу он подарил по 2 шарика.

Сколько друзей получили шарики?

Эта информация доступна зарегистрированным пользователям

Решение:

12 шариков (общее количество шариков)- делимое.

2 шарика (число шариков, которое достанется каждому другу)- делитель.

Частное- число друзей (это число, которое показывает на сколько частей придется разделить все шарики)- ?

Эта информация доступна зарегистрированным пользователям

Ответ: 6 друзей получили воздушные шарики.

2. Делимое- это общее количество чего-либо, число, которое делят на части.

Если неизвестно делимое число, то необходимо перемножить два известных компонента деления: делимое и частное.

Правило: чтобы найти неизвестное делимое, нужно частное умножить на делитель или делитель умножить на частное.

Эта информация доступна зарегистрированным пользователям

Рассмотрим пример.

Вова должен решить некоторое количество задач по математике за 3 дня.

Он собирался решать по 5 задач в день.

Сколько всего задач ему необходимо решить за три дня?

Эта информация доступна зарегистрированным пользователям

Решение:

5 задач (число задач, которые необходимо решать каждый день)- делитель.

3 дня (число промежутков времени, за которое необходимо решить все задачи)- частное

Делимое (общее количество задач)- ?

Эта информация доступна зарегистрированным пользователям

Ответ: 15 задач нужно решить Вове.

3. Делитель- это число, на которое делят делимое.

Если исходное делимое число разделить на равные части, то в итоге получится некоторое количество таких частей.

Правило: чтобы найти делитель, нужно делимое разделить на частное.

Эта информация доступна зарегистрированным пользователям

Рассмотрим пример.

Эта информация доступна зарегистрированным пользователям

Восемь кусочков пиццы разделили на четверых человек.

Каждому досталось одинаковое количество кусочков пиццы.

По сколько кусочков пиццы получил каждый?

Решение:

8 кусков пиццы (общее количество кусочков, которые необходимо разделить)- делимое.

4 человека (число человек, на которых делят пиццу)- частное.

Делитель (число кусочков пиццы, которые получит каждый)- ?

Эта информация доступна зарегистрированным пользователям

Ответ: по 2 кусочка пиццы получит каждый человек.

Эта информация доступна зарегистрированным пользователям

Математическая операция деление связано с разделением чего-либо на части.

Делить натуральное число на равные части вы уже умеете, данная математическая операция не вызовет у вас большого затруднения.

Однако, не всегда удается разделить натуральное число на равные части.

Рассмотрим пример.

Разложим поровну на 4 тарелки 13 абрикосов.

Сначала в каждую тарелку положим по одному абрикосу, далее по второму, затем по третьему.

В результате у нас останется 1 абрикос, но тарелок 4.

Таким образом, в каждую тарелку удалось положить по 3 абрикоса и еще 1 остался.

Эта информация доступна зарегистрированным пользователям

Так мы разделили число 13 на равные части, и у нас остался остаток.

Продемонстрируем рассмотренный пример на координатном луче.

Изобразим координатный луч, направленный вправо, с началом отсчета в точке О и единичным отрезком 1 деление = 1 единица.

Эта информация доступна зарегистрированным пользователям

На координатном луче отметим точку А(13)- эта точка показывает общее количество абрикосов, которые нужно поделить.

Отрезок ОА разобьем на 4 отрезка по 3 деления (так как абрикосы раскладывали на четыре тарелки по три абрикоса).

Заметим следующее: по три деления мы отложили четыре раза и одно деление еще осталось (это деление нам указывает на остаток абрикосов- 1 шт).

При делении с остатком результат деления записывают двумя числами: первое число называют неполным частным, так как число делится не полностью, второе число называют остатком.

Запись деления с остатком соответствует следующей схеме:

Эта информация доступна зарегистрированным пользователям

Неполное частное- это наибольшее число, которое может быть получено при умножении его на делитель, и не превосходящее делимое.

В буквенном виде деление с остатком можно записать так:

Эта информация доступна зарегистрированным пользователям

Для разобранного выше примера про абрикосы получаем следующее:

13 ÷ 3 = 4 (ост. 1)

Число 13– это делимое

Число 3– это делитель

Число 4– это неполное частное

Число 1– это остаток от деления

Важно знать и помнить, что остаток всегда должен быть меньше делителя.

Если при делении одного натурального числа на другое остаток равен нулю, то говорят: «Число делится нацело», т.е. первое число делится на второе без остатка.

Рассмотрим алгоритм деления с остатком.

1. Найти наибольшее число, которое будет удовлетворять одновременно следующим требованиям:

    • найденное число будет меньше делимого
    • это число делится на делитель без остатка.

2. Подобранное число разделить на делитель.

Таким образом находится значение неполного частного.

3. Вычесть из делимого наибольшее число (найденное в пункте 1 нашего алгоритма), полученный результат- это остаток.

4. Проверяем остаток сравнением, он должен быть меньше делителя.

Записывать деление с остатком можно в строчку а ÷ b = с (ост. r) или в столбик- «деление уголком».

Приведем пример.

Найдем значение выражения 19 ÷ 6.

Наибольшее число, которое меньше 19 и делится на 6– это 18.

18 разделим на делитель 6, получим 3-это неполное частное.

Вычтем из делимого числа 19 найденное наибольшее число 18, получим число 1– это остаток от деления.

Соберем все известные и полученные данные в равенство: 19 ÷ 6 = 3 (ост 1).

19– делимое.

6– делитель.

3– неполное частное.

1-остаток от деления.

Эта информация доступна зарегистрированным пользователям

Деление с остатком «уголком» выполняется по той же схеме, как и без остатка.

Разберем пример.

Разделим 45 на 13.

1. Выделим в делимом наибольшее неполное делимое, которое делится на 13.

В нашем случае это само число 45, следовательно, в неполном частном будет только одна цифра.

Эта информация доступна зарегистрированным пользователям

2. Разделим неполное делимое на делитель.

Предположим, что результатом такого деления будет число 4, тогда, умножив 13 на 4, получим число 52, но это число противоречит действительности, так как делимое 45 меньше числа 52, полученного при умножении 13 и 4.

Число 4 в качестве неполного частного нам не подходит.

Тогда возьмем число, которое предшествует 4, это число 3.

Делитель 13 умножим на 3.

3. Умножим делитель на найденное число.

13 ∙ 3 = 39 (полученное число 39 показывает, сколько единиц разделили из 45)

Число 39 меньше делимого 45, значит подобранная пробная цифра 3 подходит, записываем ее в частное

Эта информация доступна зарегистрированным пользователям

Произведение 13 и 3 запишем под делимым 45.

Эта информация доступна зарегистрированным пользователям

Важно помнить, что деление чисел в столбик происходит и записывается по разрядам, а начинается с высшего разряда.

4. Найдем остаток от деления вычитанием.

Из 45 вычтем 39, получаем остаток, он равен 45 – 39 = 6.

5. Сравним остаток от деления с делителем.

По правилу остаток всегда меньше делителя, иначе можно было бы продолжать деление.

Сравним: 13 > 6 (остаток 6 меньше делителя 13)

Эта информация доступна зарегистрированным пользователям

В делимом разрядов больше нет, выделить следующее неполное делимое не удается, следовательно, на этом деление можно считать законченным.

6. Однако, если есть следующее неполное делимое, то необходимо далее следовать данному алгоритму, начиная с пункта 2.

Эта информация доступна зарегистрированным пользователям

Запишем математическую операцию деления с остатком следующим образом:

Эта информация доступна зарегистрированным пользователям

Где а– это делимое, b– это делитель, с– это неполное частное, r– это остаток от деления.

1. Нахождение делимого, если известны делитель, неполное частное и остаток от деления.

Правило: чтобы найти неизвестное делимое, нужно неполное частное умножить на делитель (или наоборот делитель умножить на неполное частное) и к полученному произведению прибавить остаток.

Эта информация доступна зарегистрированным пользователям

Данное равенство используют для проверки операции деления с остатком.

В предыдущем разделе данного урока искали значение выражения 45 ÷ 13.

Нами был получен результат: 45 ÷ 13 = 3 (ост 6).

Проверим полученный результат деления с остатком.

Умножим делитель 13 на неполное частное 3 и прибавим остаток 6, если в итоге получится число, равное делимому 45, то деление с остатком выполнено верно.

Проверяем: 13 ∙ 3 + 6 = 39 + 6 = 45.

Деление было выполнено верно, неполное частное и остаток найдены правильно.

2. Нахождение делителя, если известны делимое, неполное частное и остаток от деления.

Правило: чтобы определить неизвестный делитель, нужно из делимого вычесть остаток, полученную разность разделить на неполное частное.

Данное правило в буквенной форме запишем так:

Эта информация доступна зарегистрированным пользователям

Рассмотрим пример, иллюстрирующий данное правило.

Мальчик заплатил за несколько альбомов 50 рублей.

Цена каждого альбома 15 рублей.

Ему сдали сдачу 5 рублей.

Сколько альбомов купил мальчик на 50 рублей?

Обозначим условно:

а– делимое (общее количество денег, которое было у мальчика).

с– неполное частное (часть денег, потраченных на каждый альбом).

r– остаток (сдача).

b– делитель (число альбомов, которое нужно купить на 50 руб.).

Запишем решение данной задачи.

Эта информация доступна зарегистрированным пользователям

3. Нахождение неполного частного, если известны все остальные компоненты деления с остатком.

Правило: чтобы найти неизвестное неполное частное, нужно из делимого вычесть остаток, полученную разность разделить на делитель.

Правило в буквенной форме запишем так:

Эта информация доступна зарегистрированным пользователям

Рассмотрим пример, демонстрирующий данное правило.

У бабушки было 30 конфет.

Она решила угостить ими своих внуков.

Каждому внуку дала по 7 конфет, и у нее осталось 2 конфеты.

Сколько внуков получило конфеты?

Введем условные обозначения для данной задачи.

а– делимое (общее количество конфет, которое было у бабушки).

b– делитель (число конфет, которые получил каждый внук).

r– остаток (оставшиеся конфеты).

с– неполное частное (число внуков).

Запишем решение данной задачи.

Эта информация доступна зарегистрированным пользователям

4. Нахождение остатка, если известно делимое, делитель, неполное частное.

Правило: остаток от деления равен разности делимого и произведения делителя на неполное частное.

Для данного случая справедливо равенство:

Эта информация доступна зарегистрированным пользователям

Рассмотрим данное правило на примере.

У учителя было 25 тетрадей.

Он раздал 12 ученикам по 2 тетради.

Сколько тетрадей осталось у учителя?

Введем условные обозначения для данной задачи.

а– делимое (общее количество тетрадей, которое были у учителя).

b– делитель (число тетрадей, которые получил каждый ученик).

с– неполное частное (число учеников, которым раздали тетради).

r– остаток (оставшиеся тетради).

Запишем решение данной задачи.

Эта информация доступна зарегистрированным пользователям

Читайте также

Деление с остатком.

Рассмотрим простой пример:
15:5=3
В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.

Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу:
В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?

Решение:
Поделим число 16 на 5 столбиком получим:

Деление с остатком
Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.

16=5⋅3+1

a=bc+d
a – делимое,
b – делитель,
c – неполное частное,
d – остаток.

Ответ: каждый ребенок возьмет по 3 игрушки и одна игрушка останется.

Остаток от деления

Остаток всегда должен быть меньше делителя.

Если при делении остаток равен нулю, то это значит, что делимое делиться нацело или без остатка на делитель.

Если при делении остаток больше делителя, это значит, что найденное число не самое большое. Существует число большее, которое поделит делимое и остаток будет меньше делителя.

Вопросы по теме “Деление с остатком”:
Остаток может быть больше делителя?
Ответ: нет.

Остаток может быть равен делителю?
Ответ: нет.

Как найти делимое по неполному частному, делителю и остатку?
Ответ: значения неполного частного, делителя и остатка подставляем в формулу и находим делимое. Формула:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)

Пример №1:
Выполните деление с остатком и сделайте проверку: а) 258:7 б) 1873:8

Решение:
а) Делим столбиком:
Деленис с остатком 258:7

258 – делимое,
7 – делитель,
36 – неполное частное,
6 – остаток. Остаток меньше делителя 6<7.

Подставим в формулу и проверим правильно ли мы решили пример:
7⋅36+6=252+6=258

б) Делим столбиком:
Деление с остатком 1873:8

1873 – делимое,
8 – делитель,
234 – неполное частное,
1 – остаток. Остаток меньше делителя 1<8.

Подставим в формулу и проверим правильно ли мы решили пример:
8⋅234+1=1872+1=1873

Пример №2:
Какие остатки получаются при делении натуральных чисел: а) 3 б)8?

Ответ:
а) Остаток меньше делителя, следовательно, меньше 3. В нашем случае остаток может быть равен 0, 1 или 2.
б) Остаток меньше делителя, следовательно, меньше 8. В нашем случае остаток может быть равен 0, 1, 2, 3, 4, 5, 6 или 7.

Пример №3:
Какой наибольший остаток может получиться при делении натуральных чисел: а) 9 б) 15?

Ответ:
а) Остаток меньше делителя, следовательно, меньше 9. Но нам надо указать наибольший остаток. То есть ближайшее число к делителю. Это число 8.
б) Остаток меньше делителя, следовательно, меньше 15. Но нам надо указать наибольший остаток. То есть ближайшее число к делителю. Это число 14.

Пример №4:
Найдите делимое: а) а:6=3(ост.4) б) с:24=4(ост.11)

Решение:
а) Решим с помощью формулы:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)
а:6=3(ост.4)
(a – делимое, 6 – делитель, 3 – неполное частное, 4 – остаток.) Подставим цифры в формулу:
а=6⋅3+4=22
Ответ: а=22

б) Решим с помощью формулы:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)
с:24=4(ост.11)
(с – делимое, 24 – делитель, 4 – неполное частное, 11 – остаток.) Подставим цифры в формулу:
с=24⋅4+11=107
Ответ: с=107

Задача:

Проволоку 4м. нужно разрезать на куски по 13см. Сколько таких кусков получится?

Решение:
Сначала надо метры перевести в сантиметры.
4м.=400см.
Можно поделить столбиком или в уме получим:
400:13=30(ост.10)
Проверим:
13⋅30+10=390+10=400

Ответ: 30 кусков получиться и 10 см. проволоки останется.

Добавить комментарий