Алгебра теории множеств.
Для любых множеств
А, В и С выполнимы следующие тождества:
-
Коммутативный
закон
(9)
-
Ассоциативный
закон
(10)
-
Дистрибутивный
закон
(11)
-
Закон
поглощения
(12)
-
Закон
идемпотентности
(13)
-
Закон
де Моргана
(14)
-
Закон
исключенного третьего
(15)
-
Закон
противоречия
(16)
-
Операции
с универсумом:
(17)
-
Операции
с пустым множеством:
(18)
-
(19)
-
Закон
двойного дополнения
(20)
-
(21)
-
(22)
При преобразованиях
выражений над множествами по законам
алгебры логики существуют следующие
приоритеты: самой приоритетной операцией
является дополнение, затем пересечение
и в последнюю очередь объединение.
Решение уравнений алгебры множеств.
Пусть дано уравнение
вида:
(23)
где X – неизвестное
множество. Необходимо определить это
неизвестное множество.
Алгоритм решения
уравнений алгебры множеств имеет
следующий алгоритм:
-
Представляем
данное уравнение в следующем виде:
(24)
2. Используя алгебру
множеств, преобразуем данное уравнение
к виду:
(25)
где C и D – некоторые
множества, не содержащие множество X и
его дополнение.
3. Решением уравнения
является следующее выражение:
(26)
Рис
2. Диаграмма Эйлера-Венна для решения
уравнения алгебры множеств.
ПРИМЕР.
Необходимо решить
уравнение:
1. Преобразуем
данное уравнение:
2. С помощью алгебры
множеств преобразуем данное выражение
следующим образом:
В
данном выражении присутствует множество
,
в котором не содержится ни множество X
, ни его дополнение, поэтому к этому
множеству применяем следующие
преобразования:
C учетом данных
преобразований имеем:
Таким образом,
имеем множества C и D в следующем виде:
.
Решением уравнения
будет множество:
.
Решение уравнения
(один из вариантов) может быть представлено
на диаграмме Эйлера-Венна
Рис
3 Диаграмма Эйлера-Венна для решения
уравнения алгебры множеств.
При изображении
решения уравнения алгебры множеств
следует иметь в виду, что два множества
могут иметь следующие диаграммы
Эйлера-Венна
Рис
4 Диаграмма Эйлера-Венна для решения
уравнения алгебры множеств.
Кортеж.
Кортеж
– это
упорядоченный набор элементов. Кортеж
характеризуется элементами и их порядком
расположения. Элементы кортежа называются
компонентами.
Компоненты
нумеруют слева направо. Число компонент
определяет длину кортежа. Кортеж
обозначается
а1,
а2,
…, аn.
Кортеж
длиной в две компоненты называется
парой, кортеж длиной в три компоненты
– тройка, длиной в n – n-ка.
Проекцией
кортежа на i-тую ось
называется
его i-тая
компонента.
Проекцией
кортежа на оси i1,
i2,
…, iq
оси
называется
кортеж, состоящий из i1,
i2,
… , iq
компонент, где
.
Проекцией
кортежа на пустое множество осей
является пустой кортеж.
ПРИМЕР
Пусть
дан кортеж А=< ,,,>.
Найти проекции на 1 ось, 3 ось, 5 ось, 1 и 4
оси, 4 и 2 оси.
Пр
А1=<>
Пр
А3=<>
Пр
А5 не
определена
Пр
А1,4=<>
Пр
А4,2
не определена.
Соседние файлы в предмете Дискретная математика
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Множества
Понятие множества является одним из исходных понятий математики в том смысле, что его нельзя определить с помощью более простых, чем оно само, понятий. В повседневной жизни часто приходится рассматривать набор некоторых объектов как единое целое. Скажем, когда биолог изучает флору и фауну некоторой местности, он делит организмы на виды, а виды на семейства. При этом каждый вид рассматривается как единое целое, состоящее из организмов.
Множество может состоять из объектов различной природы. Например, вес реки Азии или все слова в словаре могут рассматриваться как множества.
Знаменитый немецкий математик Г. Кантор (1845 -1918) дал следующую описательную формулировку: «Множество есть совокупность, мыслимая как единое целое».
Объекты, составляющие множество, называются его элементами.
Обычно, для удобства, множество обозначается заглавными буквами латинского алфавита, например, А, В, С,…, а его элементы – прописными.
Множество А, состоящее из элементов а, b, с, … , будем записывать в виде A = {а, b, с,…}. Отметим, что записи {6, 11} , {11, 6} , {11, 6, 6, 11} означают одно и то же множество.
При ведем примеры множеств. Например, множество {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} – множество цифр десятичной системы счисления ,
То, что х является элементом множества А, будем обозначать как а то, что он не является его элементом, будем обозначать как Эти записи в первом случае читаются как «элементах принадлежит А», а во втором случае как «элемент х не принадлежит А».
Например, для множества имеем однако
Если число элементов, составляющих множество, конечно, то такое множество будем называть конечным, в противном случае бесконечным. Например, множество конечно, а множество всех натуральных чисел бесконечно.
В качестве еще одного примера бесконечного множества можно привести множество всех натуральных чисел, не меньших 13.
Обозначим через число всех элементов конечного множества А. Если, например,
в силу того, что число всех его элементов равно 6. Множество, не содержащее ни одного элемента, называется пустым и обозначается так: 0
Пустое множество 0 считается конечным и для него я(0)= 0.
Для бесконечного множества А принято, что
Если вес элементы множества А также принадлежат множеству В, то говорят, что множество А – подмножество множества В и обозначают так: . В этом случае также говорят, что «множество А лежит во множестве В» или «множество А – часть В».
Во множестве {а} лежат два подмножества:
Множество {а, b} имеет четыре подмножества:
так как все элементы первого множества также являются элементами второго.
Если множество А имеет элементы, не принадлежащие В, то множество А не может быть подмножеством В. Этот факт мы будем записывать так:
Например, пусть А={ 1, 2, 3, 4}, В={2, 3, 4, 5}. Так как Очевидно, что справедливы соотношения:
Если то эти множества состоят из одних и тех же элементов. Такие множества называются равными (совпадающими), и этот факт мы будем записывать так: А = В.
Например, множество всех правильных треугольников совпадает со множеством всевозможных треугольников, у которых все углы равны. Причина этого заключается в том, что у любого правильного треугольника
все углы равны, и, наоборот, если у треугольника все углы равны, то он является правильным.
Напомним основные числовые множества:— множество натуральных чисел; — множество целых чисел; – множество рациональных чисел;
Множество действительных чисел
Объединение и пересечение множеств
1) Множество, состоящее из элементов, принадлежащих хотя бы одному из множеств А, В, называется объединением множеств.
Объединение множеств А, В обозначается через
Например, если
2) Множество, состоящее из элементов, принадлежащих обоим множествам А, В, называется пересечением множеств. Пересечение множеств А. В обозначается через
Например, если
Множества, не имеющие общих элементов, называются не пересекающимися.
Пример:
Для множеств
a) определите, какие из утверждений верны, а какие неверны:
b) найдите множества:
c) определите, какие из утверждений верны, а какие неверны:
Решение:
а) Так как число 4 не является элементом множества М, то утверждение неверно. Так как число 6 не является элементом множества, утверждение истинно.
b). так как только числа 3 и 9 – элементы обоих множеств. Для того, чтобы найти множествовыпишем элементы, принадлежащие либо М либо N: = {2, 3, 4, 5, 6, 7, 8, 9, 10};
c) Утверждение ложно, ибо существуют элементы множества М, не принадлежащие N. Утверждение истинно, ибо в множестве У есть элементы из {9, 6, 3}.
В некоторых случаях для задания множества указывается характеристическое свойство, истинное для всех элементов множества и ложное для остальных. Если мы кратко запишем тот факт, что элемент х удовлетворяет свойству Р как Р(х), то множество всех элементов, удовлетворяющих свойству Р обозначается так:
Например, запись читается следующим образом: “множество всех целых чисел, больших или равных -2, по меньших или равных 4”.
На числовом луче это множество изображается так:
Видно, что и оно, конечно, при этом
Аналогично запись читается так: “множество всех действительных чисел, больших или равных -2, но меньших 4”.
На числовом луче это множество изображается так:
Видно, что, и оно бесконечно, при этом
Пример:
a) Как читается эта запись?
b) Выпишите последовательно элементы этого множества.
c) Найдите
Решение:
a) “Множество всех целых чисел, больших 3 и меньших или равных 10”;
b).
c).
Рассмотрим множество всех натуральных чисел, больших или равных 1, но меньших или равных 8. Пусть нас интересуют только его подмножества.
В таком случае, обычно вводится множество называемое универсальным множеством.
Множество А содержащее все элементы универсального множества U, не являющиеся элементами множества А, называется дополнением множества А.
Например, если – универсальное множество, то дополнение множества имеет вид
Очевидно, что
т.е. множества А и А’ не имеют общих элементов, а также вес составляющие их элементы образуют в совокупности универсальное множество U.
Пример:
Пусть U универсальное множество. Найдите С’, если:
а) С = {все четные числа); b).
Решение:
Пример:
Пусть
Выпишите все элементы множеств:
Решение:
Пример:
Пусть {числа, кратные 4 и меньшие 50} и Q = {числа, кратные 6 и меньшие 50}. a) выпишите элементы множеств Р, Q;
b) найдите с) Найдите
d) проверьте выполнение равенства
Решение:
Значит, равенство является верным.
Диаграммы Венна
Например, на этом рисунке изображено множество А, лежащее внутри универсального множества Закрашенная область вне круга означает дополнение А ’ множества А:
Если и , то они изображаются на диаграмме Венна следующим образом:
Мы знаем, что если то любой элемент множества В принадлежит множеству А. Значит, на соответствующей диаграмме Венна круг, обозначающий множество В, лежит в круге, обозначающем множество А:
Все элементы пересечения лежат как в А, так и в В. Значит, на соответствующей диаграмме Венна закрашенная область изображает множество
Все элементы объединения A U В принадлежат либо А, либо В, либо обоим одновременно. Значит, на соответствующей диаграмме Венна область, соответствующая множеству A U В, изображается следующим образом:
Пример:
Пусть Изобразите на диаграмме
Венна множества:
Решение:
Удобно на диаграмме Венна множества раскрашивать.
Например, на рисунке раскрашены множества А,
Высказывание
Высказывание – это повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Вопросительные предложения, повествовательные предложения, описывающие личное отношение субъекта, например «Зеленый цвет приятен», не являются высказываниями. Отметим, что существуют высказывания, истинность или ложность которых не определяются однозначно.
Например, высказывание “Этот писатель родился в Ташкенте” может быть истинным по отношению к некоторым писателям и ложным по отношению к другим.
Пример:
Укажите, какие из предложений являются высказываниями. В случае, когда предложение является высказыванием, однозначно ли определяется его истинность – ложность?
а) 20:4=80; b) 25-8=200;
с) Где мой карандаш? d) У тебя глаза голубые.
Решение:
a) Это высказывание и оно ложно, так как 20:4=5;
b) это высказывание и оно истинно;
c) это вопросительное предложение и поэтому оно не является высказыванием;
d) это высказывание. Истинность-ложность его определяется неоднозначно, так как применительно к некоторым людям оно истинно, а к другим – ложно.
Мы будем обозначать высказывания буквами p,q,r … .
Например, р: во вторник прошел дождь; q: 20:4=5; r: х – четное число. Для построения нескольких сложных высказываний служат символы, называемые логическими связками: (конъюнкция, “и”, “но”), (дизъюнкция, “или”), (отрицание,” не ….”,”неверно, что ….”).
Рассмотрим их подробней.
Отрицание
Для высказывания р высказывание вида “не р” или “неверно, что р” называется отрицанием высказывания р и обозначается как
Например,
отрицанием высказывания
р: Во вторник шел дождь
является высказывание
: Во вторник дождя не было;
Отрицанием высказывания
р: У Мадины глаза голубые
является высказывание
: У Мадины глаза не голубые.
Ясно, что если р истинно, то ложно, и наоборот, если р ложно, то истинно. Этот факт иллюстрируется так называемой таблицей истинности. Такая таблица позволяет, исходя из высказывания р, заключить об истинности или ложности нового высказывания
1 Буквы Т и F – начальные буквы английских слов “true” (истинно) и “false” (ложно) соответственно.
Пример:
Составьте отрицание высказывания:
Решение:
Удобно находить отрицание высказывания с помощью диаграмм Венна. Например, рассмотрим высказывание:
р: “Число х больше, чем 10 “.
На диаграмме U – множество всех чисел, множество Р – множество истинности высказывания р, то есть множество всех х , для которых это высказывание истинно. Множество Р’ является множеством истинности отрицания : “Число х меньше или равно 10”.
Пример:
На множестве рассмотрим высказывание р: х- простое число. Найдите множества истинности высказываний
Решение:
Пусть множество Р – множество истинности высказывания р, а множество Р’ – множество высказывания . Тогда эти множества изображаются на диаграмме Венна следующим образом:
Конъюнкция
Высказывание, образованное из двух высказываний с помощью связки “и”, называется конъюнкцией заданных высказываний.
Конъюнкция высказываний р, q обозначается через
Например, конъюнкция высказываний,
р: Эльдар на завтрак ел плов;
q: Эльдар на завтрак ел самсу.
имеет вид:
Эльдар на завтрак ел плов и самсу.
Видно, что высказывание верно, если Эльдар на завтрак ел и плов и самсу, то есть высказывание истинно при истинности обоих высказываний. Если хотя бы одно из высказываний р, q ложно, то высказывание является ложным. Конъюнкция высказываний р, q имеет следующую таблицу истинности:
истинно, когда оба высказывания р, q истинны. ложно, когда хотя бы одно из высказываний р, q ложно.
Первый и второй столбцы таблицы составлены из всех возможных значений истинности высказываний р, q.
На диаграмме Р – множество истинности высказывания р, Q – множество истинности высказывания q , а множество истинности высказывания является множеством на котором истинны оба высказывания:
Дизъюнкция
Высказывание, образованное из двух высказываний с помощью связки “или”, называется дизъюнкцией заданных высказываний.
Дизъюнкция высказываний р, q обозначается через
Например, дизъюнкция высказываний,
р: Эльдар сегодня посетит библиотеку,
q: Эльдар сегодня посетит театр .
имеет вид:
Эльдар сегодня посетит библиотеку или театр.
Высказывание истинно, когда сегодня Эльдар посетит либо библиотеку, либо театр, либо и то и другое.
Высказывание будет ложным, лишь когда оба высказывания р, q будут ложными одновременно.
Дизъюнкция имеет следующую таблицу истинности:
pVq истинно, когда хотя бы одно из высказываний р, q истинно.
pVq ложно, когда оба высказывания p, q ложны.
На диаграмме Р – множество истинности высказывания р, Q – множество истинности высказывания q, а множество истинности высказывания pVq является множество , на котором истинно хотя бы одно высказывание:
Логическая равносильность
Составим, используя буквы и символы логических связок таких, как отрицание, конъюнкция и дизъюнкция, символическую запись более сложных высказываний естественного языка, при этом не обращая внимания на их истинность или ложность.
Объединяя таблицы истинности для отрицания, конъюнкции и дизъюнкции, можно составить таблицы истинности для более сложных высказываний:
Пример 1. Составьте таблицу истинности высказывания
1 шаг.
Выпишем таблицу и заполним сначала первый и второй столбец всеми возможными значениями истинности р и q:
2 шаг. Учитывая значения истинности q, заполним третий столбец значениями истинности
3 шаг Учитывая значения истинности p и заполним четвертый столбец значениями истинности
Высказывание, являющееся истинным всегда, называется законом логики или тавтологией.
То, что высказывание является законом логики, можно доказать при помощи таблицы истинности.
Пример:
Докажите, что высказываниеявляется тавтологией.
Заполним таблицу истинности:
Решение:
Видно, что высказывание принимает только истинные значения (см. третий столбец). Поэтому данное высказывание является тавтологией.
Если для двух высказываний соответствующие их значениям истинности столбцы одинаковы, то эти высказывания называются логически равносильными.
Пример:
Докажите, что следующие высказывания являются логически равносильными
Решение:
Составим таблицы истинности для высказываний
Так как у высказываний соответствующие значениям истинности столбцы одинаковы, то эти высказывания являются логически равносильными.
Мы будем обозначать этот факт так:
Импликация
Высказывание, образуемое из двух высказываний с помощью связки “если …., то …” называется импликацией этих двух высказываний.
Импликация “Если р, то q” обозначается как и имеет также следующие интерпретации “Из р следует (вытекает) q”, “Высказывание р достаточно для q “, “Высказывание q необходимо для р”.
При этом высказывание р называется достаточным условием для q, а высказывание q – необходимым условием для р.
высказывание q – необходимым условием для р.
Рассмотрим , например, высказывания
р: У Сардора есть телевизор; q: Сардор будет смотреть кино.
Тогда высказывание означает:
Если у Сардора есть телевизор, то он будет смотреть кино.
Точно также
Для того, чтобы Сардор смотрел кино достаточно, чтобы у него был телевизор.
Можно заметить, что высказывание ложно, лишь когда высказывание р истинно, а высказывание q ложно, а в остальных случаях – истинно. Поэтому имеем следующую таблицу истинности:
Из высказываний и логических связок, не обращая на значения истинности, можно составить более сложные высказывания.
Пример:
Рассмотрим высказывания
р: “Анора часто смотрит кинофильмы”;
q: “Барно часто смотрит кинофильмы
r: “Барно не сдаст экзамен”;
s: “произойдет чудо”.
Имеем: 1. “Анора часто смотрит кинофильмы, а Барно – нет”.
2. “Если Анора часто смотрит кинофильмы, то Барно нет”.
3. “Если Барно часто смотрит кинофильмы, то она или не сдаст экзамен или произойдет чудо”.
4. “Если Барно часто смотрит кинофильмы и при этом не произойдет чуда, то Барно не сдаст экзамен”.
5. “Либо Барно часто смотрит кинофильмы и произойдет чудо, либо Барно не сдаст экзамен”.
Эквиваленция
Высказывание вида называется эквиваленцией высказываний и обозначается так:
Запись читается как “высказывание р необходимо и достаточно для q” или как “высказывание р истинно лишь при выполнении q”.
Пример:
р: х – четно, q: последняя цифра числа х четна. Выразите высказывание
Решение:
Рассмотрим высказывание,: Если х- четно, то его последняя цифра четна;
Если последняя цифра числа х четна, то х – четно.
Тогда запись читается , как “Для того чтобы число х было четно, необходимо и достаточно, чтобы последняя его цифра была четной”. ^ Теперь для заданных высказываний р и q составим таблицу истинности высказывания :
Видно, что высказывание будет истинным, лишь когда высказывания р и q принимают одинаковые значения истинности (то есть когда они оба одновременно истинны или одновременно ложны ).
Конверсия
Конверсией высказывания называется высказывание
Конверсия имеет следующую таблицу истинности:
Пример:
Рассмотрим высказывания
р: треугольник равнобедренный,
q: два угла треугольника равны.
Выразите на естественном языке высказывание и его конверсию.
Решение:
Если треугольник равнобедренный, то у него два угла равны.
Если два угла треугольника равны, то он равнобедренный .
Инверсия
Инверсией высказывания называется высказывание Инверсия имеет следующую таблицу истинности:
Эта таблица совпадает с таблицей истинности высказывания . Поэтому конверсия и инверсия логически равносильны.
Контрапозиция
Контрапозицией высказывания называется высказывание Контрапозиция имеет следующую таблицу истинности:
Эта таблица совпадает с таблицей истинности высказывания Поэтому импликация и контрапозиция логически равносильны.
Пример:
Рассмотрим высказывание. Все учителя живут поблизости от школы”. Составим его контрапозицию.
Решение:
Данное высказывание можно сформулировать так: “Если этот человек – учитель, что он живет поблизости от школы”.
Это предложение имеет форму , где
р: этот человек – учитель,
q: этот человек живет поблизости от школы.
Контрапозиция имеет вид:
“Если этот человек не живет поблизости от школы, то он не является учителем.
Пример:
Рассмотрим высказывания:
р: Самандар находится в библиотеке, q: Самандар читает книгу.
Составьте имликацию, конверсию, инверсию и контрапозицию
Решение:
Отметим, что импликация и конверсия логически не равносильны, так как , например , Самандар может читать книгу и в классе.
Предикаты и кванторы
В некоторых предложениях участвуют переменные, при этом подставив вместо них конкретные значения, получим высказывания. Такие предложения называются предикатами.
Пример:
Пусть задан предикат Определите истинность или ложность высказываний
Решение:
В некоторых предикатах переменную можно определить исходя из контекста.
Например, в предложениях “Этот писатель родился в Ташкенте” и “Он родился в Ташкенте” переменными являются словосочетание”. “Этот писатель” и местоимение “он” соответственно. Если вместо переменной подставить значение “Абдулла Кадыри”, получим истинное высказывание “Абдулла Кадыри родился в Ташкенте”. Если вместо переменной подставить значение “Шекспир”, получим ложное высказывание “Шекспир родился в Ташкенте”.
Обозначив переменную через х, вышеуказанные предложения можно записать в виде “х родился в Ташкенте”.
В предикате могут участвовать одно или несколько переменных. В зависимости от количества переменных, участвующих в предикате, будем обозначать его так:
Используя совместно с предикатом специальные символы (квантор всеобщности, “для всех … “) и (квантор существования, “существует такой, что ….”), можно образовать новые высказывания
Например, новое высказывание вида говорит о том, что для всех значений х верно Р(х), высказывание вида говорит о том, что значений х верно Р(х).
К примеру, рассмотрим предикат Р(х): “х родился в Самарканде”. Тогда высказывание читается как “все родились в Самарканде”, а высказывание – “некоторые родились в Самарканде”.
Приведем примеры, в которых можно определить истинность-ложность высказываний вида
Пример:
Пусть Докажите истинность высказывания:
Решение:
Проверим:
Значит, высказывание, истинно.
Следует отметить, что для того, чтобы доказать ложность высказывания достаточно, привести пример хотя бы одного значения х такого, что высказывание, ложно.
Действительно, при
Любое значениех, которое показывает, что высказывание ложно, называется контрпримером.
Пример:
Докажите истинность высказывания
Решение:
Так как то высказывание, истинно.
Если же , то высказывание ложно, ибо
Приведем два важных закона логики, связанных с операцией отрицания:
Для понимания смысла этих законов приведем пример.
Если запись означает “Среди моих одноклассников
не существует отличников”, тогда запись означает логически равносильное ему утверждение “Все мои одноклассники не являются отличниками”.
Точно также, формула означает высказывание “Неверно, что все мои одноклассники – отличники “, а формулаозначает логически равносильное ему высказывание “Некоторые мои одноклассники не являются отличниками”.
Очевидно, что с помощью кванторов и предиката можно построить зависящие от одной переменной предикаты вида:
из которых, в свою очередь, можно построить всказывания вида:
В то время, когда смысл высказываний
а также смысл высказываний,одинаков, оказывается, что высказывания не являются равносильными.
Рассмотрим, например, предикат Р(х,у): человек у – отец моего одноклассника х.
В этом случае = означает высказывание “у каждого моего одноклассника есть отец”; а означает высказывание “существует такой человек, который является отцом всех моих одноклассников”.
Аналогично можно показать, что высказывания,не являются равносильными (приведите примеры самостоятельно).
С помощью кванторов и предикатов можно построить и другие законы логики. Например, высказывание «Если все вороны черные, то ни одна не черная птица не является вороной “, служит примером закона логики вида:
Законы правильного мышления (аргументации)
В процессе познания действительности мы приобретаем новые знания. Некоторые из них непосредственно, в результате воздействия предметов внешнего мира на органы чувств. Но большую часть знаний мы получаем пу тем выведения новых знаний из знаний уже имеющихся. Чтобы научиться стройно и последовательно излагать свои мысли, правильно делать выводы, необходимо пользоваться законами логики. Определенность, непротиворечивость, последовательность и обоснованность являются обязательными качествами правильного мышления. Законы логики устанавливают необходимые связи в последовательном ряду мыслей и умозаключений.
Суждение представляет собой форму мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях. Например, в суждении «Железо-металл» утверждается связь между предметом (железо) и его признаком (являться металлом). В суждении «Яйцо появилось раньше курицы » утверждается связь между двумя предметами (яйцо и курица). Так как суждение выражается в форме повествовательного предложения, причем суждение может быть либо истинным, либо ложным, то каждое суждение имеет форму высказывания.
Умозаключение- это такая форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам получается некоторое суждение, называемое заключением или выводом.
Пусть S-совокупность исходных суждений (посылок), Р- заключение. В этом случае, умозаключение имеет логическую форму вида Совокупность высказываний S будем называть основанием, а высказывание Р- следствием. Основание и следствие будем связывать словом «следовательно» и отделять горизонтальной чертой: . Рассмотрим простой пример.
Если Собир занимается спортом, то будет здоров. Собир занимается спортом. Следовательно, Собир будет здоров.
Найдем логическую форму этого умозаключения.
Пусть р: Собир занимается спортом; q: Собир будет здоров. Тогда умозаключение имеет вид:
Так следствие вытекает из суждений и р, то умозаключение имеет следующую логическую форму
Составим соответствующую таблицу истинности:
Получили тавтологию. Это показывает правильность умозаключения, то есть мы из данного основания получили правильное следствие.
Пример:
Покажите неправильность умозаключения:
Если треугольник имеет три стороны, то 2+4-7.
Следовательно, треугольник имеет три стороны.
Решение:
Найдем логическую форму этого умозаключения.
р: треугольник имеет три стороны.
q: 2+4=7
Имеем:
Так как здесь следует q, то наше умозаключение имеет логическую форму
Составим соответствующую таблицу истинности:
В результате мы не получили тавтологию. Это показывает неверность умозаключения, то есть мы из данного основания не получили правильное следствие.
Ниже мы приведем некоторые правила правильных умозаключений:
Доказательство верности вышеуказанных умозаключений мы оставляем учащимся в качестве упражнения.
Софизмы и парадоксы
– представляют собой преднамеренные, сознательно совершаемые ошибки, рассчитанные на то, чтобы выдать ложь за истину, тем самым вводя человека в заблуждение.
Одним из первых соответствующие примеры привел математик Зенон, живший в 5 веке до нашей эры в Древней Греции. Например, Зенон «доказал», что быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения она находится впереди Ахиллеса. Приведем его рассуждения. Допустим, Ахиллес бежит в 10 раз быстрее, чем черепаха, и находи тся позади нее на расстоянии в 100 шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползет 10 шагов.
За то время, за которое Ахиллес пробежит 10 шагов, черепаха проползет еще 1 шаг, и так далее. Процесс будет длиться до бесконечности, Ахиллес так никогда и не догонит черепаху.
Примеры Зенона связаны с понятиями бесконечности и движения, которые имели большое значение в развитии физики и математики.
Некоторые софизмы обсуждали в переписке между собой наши великие соотечественники Беруни и Ибн Сино, а также они встречаются в произведениях Фараби.
Приведем простейшие примеры на софизмы и обсудим их.
Пример:
Куда пропали 1000 руб? Три друга отобедали в кафе, после чего официант дал им счет на 25000 руб. Каждый из трех друзей достал по купюре в 10000 руб, в итоге они отдали официанту 30000 руб. На сдачу официант отдал 5000 руб более мелкими купюрами. Друзья взяли по 1000 руб себе, а оставшиеся 2000 руб отдали другу на такси. Один из друзей стал рассуждать: “Каждый из нас потратил по 9000 руб, что в итоге составляет 27000 руб. Затем 2000 руб отдали на такси, значит, в итоге получается 29000 руб. Куда пропали 1000 руб?”
Решение:
Основной «подвох» в этом рассуждении заключается в том, что 2 От древнегреческого уловка.
расчеты сделаны неверно. Действительно, трое друзей сложились по 9000 руб и получили 27000 руб. Из этих денег 25000 руб заплатили за обед, а 2000 руб заплатили за такси. Следовательно, общая трата составила 27000 руб. Тс 2000 руб находятся внутри 27000 руб.
Пример:
Упростим верное равенство: 20-16-4=25-20-5
2(10—8—2)=25—20—5
2-2-(5—4—1)=5-(5—4—1)
Сократим левую и правую часть последнего равенства на общий делитель (5-4-1). В итоге получим равенство 2-2=5.
Основной «подвох» в этом рассуждении заключается в том, что мы поделили обе части равенства 2-2-(5-4-1)=5-(5-4-1) на нуль.
– странное мнение, высказывание, расходящееся с общепринятыми мнениями, научными положениями, а также мнение, противоречащее здравому смыслу. Сам термин «парадокс» использовался в античной философии для обозначения всякого странного, оригинального мнения.
Парадоксы, обычно, возникают в теориях, логические основы которых не определены полно.
Пример:
Парадокс лжеца. Рассмотрим высказывание “То, что я утверждаю сейчас – ложь”.
Если это высказывание истинно, значит, исходя из его содержания, верно то, что данное высказывание -ложь. Но если оно -ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.
Пример:
Прилагательное русского языка назовем рефлексивным, если оно обладает свойством, которое определяет.
Например, прилагательное «русский» – рефлексивное, а прилагательное «английский» – нерефлексивное, прилагательное «трехсложный» – рефлексивное (это слово состоит из трех слогов), а прилагательное «четырехсложный» – нерефлсксивное (состоит из пяти слогов). Вроде бы ничто не мешает нам определить множество {все рефлексивные прилагательные}. Но давайте рассмотрим прилагательное «нерефлексивный». Оно рефлексивное или нет?
Можно заявить, что прилагательное «нерефлексивный» не является ни рефлексивным, ни нерефлексивным. Действительно, если это слово рефлексивное, то по своему смыслу, оно нерефлексивное. Если же это от древнегреческого – неожиданный, странный слово нерефлексивное, то, в силу того, что оно обладает свойством, которое определяет, оно является рефлексивным. Противоречие.
Пример:
Два взаимно пересекающихся множества А, В делят универсальное множество на четыре части:
Следовательно, число элементов универсального множества является суммой количеств элементов этих частей.
На следующей диаграмме мы заключили известные количества элементов частей универсального множества в круглые скобки:
Здесь, например, обоим множествам А, В принадлежат 4 элемента, а 3 элемента не принадлежат ни одному из них.
Так как произвольный элемент множества U, принадлежит только одному из этих 4 частей , то число элементов множества U равно 7+4+6+3=20.
Пример:
Используя рисунок, найдите число элементов следующих множеств:
d). Множество элементов, принадлежащих Р, но не принадлежащих Q
е) Множество элементов, принадлежащих Q, но не принадлежащих Р;
f) Множество элементов, не принадлежащих ни Р, ни Q.
Пример:
Если
a) Найдите
b) Сколько элементов содержит множество элементов, принадлежащих А, но не принадлежащих В‘?
Решение:
Составим диаграмму Венна:
Из того, что Следовательно, b=6, а=8, с= 11, d=5.
Из диаграммы получаем следующее:
b) Число элементов, принадлежащих А, но не принадлежащих В, равно а= 8
Пример:
Из 27 учеников, посещающих спортивную секцию, 19 имеют темные волосы, 14 – черные глаза, а 11 имеют и темные волосы и черные глаза одновременно.
a) Изобразите эту информацию с помощью диаграммы Венна. Объясните ситуацию.
b) Найдите число учеников, которые I имеют или темные волосы или черные глаза; II темноволосых, но не черноглазых?
Решение:
а) Пусть Qs – множество темноволосых, a Qk множество черноглазых учеников.
Изобразим ситуацию на диаграмме:
b) Используя диаграмму, определим следующее:
I количество учеников, имеющих или темные волосы или черные глаза:
II количество темноволосых учеников, не обладающих черными глазами:
Пример:
На футбольном соревновании город представляют три команды А, В и С. 20 процентов населения города болеют за команду И, 24 процента – за В, 28 процентов – за С. 4 процента жителей болеют и за С и за И, 5 процент, жителей болеют и за В и за А, а 6 процентов жителей болеют и за В и за С. Кроме того, 1 процент населения болеет за все три команды.
Сколько процентов жителей:
a) болеют только за команду А;
b) болеют и за А и за В, но не болеют за команду С;
c) не болеют ни за одну из команд?
Решение:
Заполним для начала соответствующую диаграмму Венна.
а= 1, так как 1 процент жителей болеет за все команды.
a+d=4, так как 4 процента жителей болеет и за И и за В.
а+b=6, так как 6 процентов жителей болеют и за В и за С а+с=5, так как 5 процентов жителей болеют
—-
Множества
Понятие множества принадлежит к числу первичных, не определяемых через более простые. Под множеством понимается совокупность некоторых объектов, объединенных по определенному признаку. Объекты, которые образуют множество, называются элементами, или точками, этого множества.
Множества обозначаются прописными буквами, а их элементы – строчными. Если есть элемент множества А, то используется запись если b не является элементом множества А, то записывают
Например, – множество А состоит из элементов 1;3;6;8.
Множество, не содержащее ни одного элемента, называется пустым и обозначается Например, множество действительных корней уравнения есть пустое множество.
Два множества называются равными, если они состоят из одних и тех же элементов. Например, если т.е.
множества равны.
Объединением двух множеств А и В называется множество С, состоящее из элементов, принадлежащих хотя бы одному из данных множеств, т.е.
Пересечением двух множеств А и В называется множество D, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств А и В, т.е.
Разностью двух множеств А и В называется множество E, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е.
Пример 1. Даны множества Найти объединение, пересечение и разность множеств А и В.
Решение. Объединение двух данных множеств – их пересечение – а разностью – .
Множества, элементами которых являются действительные числа, называются числовыми.
Обозначения множеств:
– множество натуральных чисел.
– множество целых чисел;
– множество рациональных чисел;
R – множество действительных чисел;
I – множество иррациональных чисел;
– множество комплексных чисел.
Геометрически, каждому действительному числу соответствует точка числовой оси, и наоборот, каждой точке прямой – определенное действительное число.
Множество X, элементы которого удовлетворяют: неравенству называется отрезком неравенству называется интервалом неравенствам называются полуинтервалом соответственно
В дальнейшем все указанные множества мы объединяем термином промежуток X.
——
Множества и операции над ними
Под множеством будем понимать совокупность объектов, наделенных определенными свойствами. Эти свойства должны полностью определять данное множество, то есть являться признаками, по которым относительно любого объекта можно решить, принадлежит он данному множеству или нет. Синонимами термина “множество” являются термины “класс “семейство “совокупность”. Объекты, из которых состоит данное множество, называют его элементами.
Чаще всего множество обозначают большими буквами латинского или греческого алфавита, а его элементы — малыми буквами. Если a — элемент множества A, то пишут a ∈ A (читают: “a принадлежит множеству A”) или A 3 a (множество A содержит элемент a). Запись a ∈/ A означает, что a не является элементом множества A.
Множество обычно записывают одним из следующих способов:
A = {a , . . . , } или A = {x ∈ X : P (x)}.
Первая запись означает, что множество A состоит из элементов a, . . . , , то есть перечислены элементы, составляющие A, их может быть конечное число или бесконечно много. Вторая запись означает, что A есть совокупность всех тех объектов из множества X, для которых выполняется свойство P . Формально введем пустое множество — множество, не содержащее в себе никаких элементов, которое обозначим символом .
Определение 1.1. Множества A и B называются равными (или совпадающими), если они состоят из одних и тех же элементов, то есть x ∈ A тогда и только тогда, когда x ∈ B .
Коротко это высказывание записывают: A = B, а отрицание этого утверждения — в виде: .
Определение 1.2. Если каждый элемент множества A является элементом множества B , то говорят, что A есть подмножество множества B (или A есть часть B ), и пишут A ⊂ B (читается: “Множество A содержится в множестве B”) или B ⊃ A (читается: “Множестоо B содержит множество A”).
Отметим следующие свойства отношения включения:
1. A ⊂ A, то есть всякое множество есть подмножество себя самого;
2. Если A ⊂ B и B ⊂ C, то A ⊂ C (отношение включения транзитивно);
3. Если A ⊂ B и B ⊂ A, то A = B.
Удобно считать, что ⊂ A для любого множества A.
Пусть A и B — некоторые подмножества множества E. Введем наиболее простые операции с множествами.
Определение 1.3. Объединением множеств A и B называется множество, обозначаемое A ∪ B и состоящее из всех элементов, которые принадлежат или множеству A или B .
Таким образом, x ∈ A ∪ B , если x ∈ A, но x B , или x ∈ B , но x A, или x ∈ A и x ∈ B. Очевидно, что A ∪ A = A, A ∪ = A.
Определение 1.4. Пересечением множеств A и B называют множество, обозначаемое A∩B и состоящее из всех элементов, каждый из которых принадлежит и A и B .
Если множества A и B не имеют общих точек, то A ∩ B =. Очевидно, что A∩A= A, A∩= .
Определение 1.5. Разностью множеств A и B называют множество, обозначаемое A B и состоящее из всех элементов множества A, которые не принадлежат множеству B .
Если A ⊂ B , то часто множество A B называют дополнением множества B до A. По определению A A = , A = A.
Пример 1.1. Пусть A = {1,3,4,8, 15} ,B = {1,2,7,8, 12}. Тогда
A∪B = {1,2,3,4,7,8,12,15}, A∩B = {1, 8},
AB = {3, 4, 15}, BA= {2, 7, 12}
Определение 1.6. Набор, состоящий из двух элементов x1 и x2, называют упорядоченным, если известно, какой из этих элементов является первым, а какой — вторым. Такой упорядоченный набор называют упорядоченной парой и обозначают (x1, x2). Элементы x1 , x2 называют, соответственно, первой и второй координатами пары (x1, x2). Пары (x1, x2) и (y1 , y2) называют совпадающими, если x1 = y1 и x2 = y2 .
Определение 1.7. Декартовым (или, по-другому, прямым) произведением множеств A и B называют множество упорядоченных пар (x, y), где первый элемент x является элементом множества A, а второй y — элементом множества B . Это множество обозначают символом A × B .
Таким образом, A × B = { (x, y) | x ∈ A, y ∈ B}. Но, вообще говоря, A × B B × A. Известная всем плоскость с декартовой системой координат является декартовым произведением двух числовых прямых (осей).
Пусть A и B — числовые отрезки, помещенные на взаимно перпендикулярных осях плоскости. Упорядоченная пара (x, y) — это точка пересечения перпендикуляров, восстановленных в точках x ∈ A и y ∈ B . Произведением A × B является прямоугольник.
Логическая символика
В последующем, как и в большинстве математических текстов используется ряд специальных символов, многие из которых вводятся по мере надобности. Применяются распространенные символы математической логики , , ∃, ∀, которые читаются, соответственно, как “влечет” , “равносильно” , “существует” (“найдется”), “любой” (“каждый” , “для каждого” , “для любого” ).
Запись A B читают одним из следующих способов: A влечет B , B следует из A, B — необходимое условие A, A — достаточное условие (признак) B.
Запись A B читают одним из следующих способов: A равносильно B, A необходимо и достаточно для B , A верно тогда и только тогда, когда верно B . Квантор равносильности часто применяется в символьной записи определений и утверждений.
Запись “∃ x ∈ X ” означает: существует элемент x из множества X .
Запись “∀ x ∈ X ” означает: для любого элемента x из множества X или каков бы ни был элемент x из множества X .
Часто в символьной записи математических утверждений используют символ “:” или эквивалентный ему символ “| которые читают: “такой, что”. В частности, запись “∃ x ∈ X : x2 – 1 = 0″ означает: существует такой элемент x в множестве X , что x2 – 1 = 0.
- Заказать решение задач по высшей математике
Множества
Множества и операции над ними
Понятие множества и его элементов
Элемент принадлежит множеству
Элемент не принадлежит множеству
В множестве нет элементов
Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий.
Каждый объект, принадлежащий множеству , называется элементом этого множества.
Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается
Подмножество
Если каждый элемент множества является элементом множества , то говорят, что множество является подмножеством множества , и записывают так: Используется также запись , если множество или является подмножеством множества , или равно множеству
Равенство множеств
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества
Пересечение множеств
Пересечением множеств и называют их общую часть, то есть множество всех элементов, принадлежащих как множеству , так и множеству
Объединение множеств
Объединением множеств и называют множество , состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств ( или )
Разность множеств
Разностью множеств и называется множество , которое состоит из всех элементов, принадлежащих множеству и не принадлежащих множеству
Дополнение множеств
Если все рассматриваемые множества являются подмножествами некоторого универсального множества , то разность называется дополнением множества . Другими словами, дополнением множества называется множество, состоящее из всех элементов, не принадлежащих множеству (но принадлежащих универсальному множеству )
Объяснение и обоснование:
Понятие множества
Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д. В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество состоит из чисел 1; 2; 3, то его обозначают так: = {1; 2; 3}. Тот факт, что число 2 входит в это множество (является элементом данного множества ), записывается с помощью специального значка е следующим образом: ; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: .
Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например, множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом , множество всех натуральных чисел — буквой , множество всех целых чисел — буквой , множество всех рациональных чисел — буквой , а множество всех действительных чисел — буквой . Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества и — конечные, потому что содержат конечное число элементов, а множества — бесконечные.
Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило — характеристическое свойство, которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, множество задано перечислением элементов, а множество четных целых чисел — характеристическим свойством элементов множества. Последнее множество иногда записывают так: или так: — здесь после вертикальной черточки записано характеристическое .
В общем виде запись множества с помощью характеристического свойства можно обозначить так: , где — характеристическое свойство. Например,
В этом случае и в записи решений тригонометрических уравнений и неравенств в разделе 3 запись означает, что принимает любое целое значение, что также можно записать как
Равенство множеств
Пусть — множество цифр трехзначного числа 312, то есть , а — множество натуральных чисел, меньших чем 4, то есть . Поскольку эти множества состоят из одних и тех же элементов, то они считаются равными. Это записывают так: . Для бесконечных множеств таким способом (сравнивая все элементы) установить их равенство невозможно. Поэтому в общем случае равенство множеств определяется следующим образом.
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, , поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.
Подмножество
Если каждый элемент множества является элементом множества , то говорят, что множество является подмножеством множества .
Это записывают следующим образом:
Например, (поскольку любое натуральное число — целое), (поскольку любое целое число — рациональное), (поскольку любое рациональное число — действительное).
Полагают, что всегда , то есть пустое множество является подмножеством любого непустого множества.
Иногда вместо записи используется также запись , если множество является подмножеством множества , или равно множеству . Например,
Сопоставим определение равенства множеств с определением подмножества. Если множества и равны, то: 1) каждый элемент множества является элементом множества , следовательно, — подмножество ; 2) каждый элемент множества является элементом множества , следовательно, — подмножество .
Таким образом, два множества равны, если каждое из них является подмножеством другого.
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера—Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами .
Операции над множествами
Над множествами можно выполнять определенные действия: пересечение, объединение, находить разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов Эйлера—Венна.
Пересечением множеств и называют их общую часть, то есть множество всех элементов, принадлежащих как множеству , так и множеству .
Пересечение множеств обозначают знаком (на рисунке 3 приведена иллюстрация определения пересечения множеств).
Например, если то .
Объединением множеств и называют множество , состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств ( или ).
Объединение множеств обозначают знаком (на рисунке 4 приведена иллюстрация определения объединения множеств).
Например, для множеств и из предыдущего примера Если обозначить множество иррациональных чисел через , то .
Разностью множеств и называется множество , состоящее из всех элементов, которые принадлежат множеству и не принадлежат множеству В.
Разность множеств обозначают знаком . На рисунке 5 приведена иллюстрация определения разности множеств.
Например, если
Если — подмножество , то разность называют дополнением множества В до множества (рис. 6).
Например, если обозначить множество всех иррациональных чисел через , то : множество всех иррациональных чисел дополняет множество всех рациональных чисел до множества всех действительных чисел.
Если все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества (на рисунке его обычно изображают в виде прямоугольника, а все остальные множества — в виде кругов внутри этого прямоугольника, то разность называют дополнением множества (рис. 7). То есть дополнением множества называется множество, состоящее из всех элементов, не принадлежащих множеству , но принадлежащих универсальному множеству .
Дополнение множества обозначается (можно читать: « с чертой» или «дополнение »).
Например, если и , то . Для этого примера удобно использовать традиционную иллюстрацию множества действительных чисел на числовой прямой (рис. 8).
Числовые множества. Множество действительных чисел
Числовые множества:
Действительные числа
Числа, которые можно представить в виде бесконечной десятичной дроби
Рациональные числа
Можно представить в виде несократимой дроби , где — целое, — натуральное число. Записываются в виде бесконечной периодической десятичной дроби
Иррациональные числа
Нельзя представить в виде несократимой дроби , где — целое, — натуральное число. Записываются в виде бесконечной непериодической десятичной дроби
Целые числа
Включают натуральные числа, числа, противоположные им, и число нуль
Дробные числа
Числа, состоящие из целого числа частей единицы
( – обыкновенная дробь, 1,23 — десятичная дробь: )
Натуральные числа (целые положительные)
Для школьного курса математики натуральное число – основное не определяемое понятие
Число 0
Такое число, при сложение с которым любое число не изменяется
Целые отрицательные числа
Числа, противоположные натуральным
Модуль действительного числа и его свойства
Определение:
Модулем положительного числа называется само это число, модулем отрицательного числа называется число, противоположное ему, модуль нуля равен нулю
Геометрический смысл модуля
На координатной прямой модуль — это расстояние от начала координат до точки, изображающей это число.
Модуль разности двух чисел и — это расстояние между точками и на координатной прямой
Свойства
1. Модуль любого числа — неотрицательное число
2. Модули противоположных чисел равны
3. , то есть Каждое число не больше своего модуля
4. При
5. При
6. Модуль произведения равен произведению модулей множителей
7. Модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю)
8.
9.
Модуль суммы не превышает суммы модулей слагаемых
10.
Объяснение и обоснование:
Числовые множества
В курсе математики вы встречались с разными числами: натуральными, целыми, рациональными, иррациональными, действительными. Представление о числах у человечества складывалось постепенно, под воздействием требований практики. Например, натуральные числа появились в связи с необходимостью подсчета предметов. Но для того чтобы дать ответ на вопрос «Сколько спичек в пустой коробке из-под спичек?», множества натуральных чисел недостаточно — для этого необходимо иметь еще и число нуль. Присоединяя к множеству натуральных чисел число 0, получаем множество неотрицательных целых чисел. Его часто обозначают . Одних только неотрицательных целых чисел оказалось недостаточно для решения задач практики (а следовательно, и математических задач, отображающих заданную реальную ситуацию). Так, для того чтобы охарактеризовать температуру воздуха выше и ниже нуля или движение тела в противоположных направлениях, необходимы противоположные натуральным числа, то есть отрицательные числа. Для натурального числа противоположным считается число , а для числа противоположным считается число . Нуль считают противоположным самому себе.
Натуральные числа, числа, противоположные натуральным, и число нуль составляют множество целых чисел.
Измерение величин привело к необходимости расширения множества целых чисел и введения рациональных чисел. Например, средняя многолетняя температура воздуха в январе в г. Харькове — , длительность урока — 45 минут, или часа.
Таким образом, выбирая какую-либо единицу измерения, мы получаем числовое значение величин, которое может выражаться с помощью разных рациональных чисел — целых и дробных, положительных и отрицательных.
Целые и дробные числа составляют множество рациональных чисел.
Любое рациональное число можно записать в виде дроби , где
(то есть числитель является целым числом, а знаменатель — натуральным).
Рациональное число может быть записано разными дробями. Например,
Как видно из приведенных примеров, среди дробей, которые изображают данное рациональное число, всегда есть единственная несократимая дробь (для целых чисел — это дробь, знаменатель которой равен 1).
Обратим внимание, что рациональное число, записанное в виде дроби , где , можно также записать в виде конечной или бесконечной периодической десятичной дроби, разделив числитель на знаменатель. Например, .
Договоримся, что конечную десятичную дробь можно изображать в виде бесконечной, у которой после последнего десятичного знака, отличного от нуля, на месте следующих десятичных знаков записываются нули, например, .
Целые числа также договоримся записывать в виде бесконечной десятичной дроби, у которой справа от запятой на месте десятичных знаков стоят нули, например . Таким образом, любое рациональное число может быть записано как бесконечная периодическая дробь. Напомним, что у бесконечной периодической дроби, начиная с некоторого разряда, все десятичные знаки повторяются. Группу цифр, которая повторяется, называют периодом дроби; при записи дроби период записывают в скобках. Например, .
Таким образом, каждое рациональное число может быть записано в виде бесконечной периодической десятичной дроби и наоборот, каждая бесконечная периодическая дробь задает рациональное число.
Обратим внимание, что любая периодическая десятичная дробь с периодом девять равна бесконечной десятичной дроби с периодом нуль, у которой десятичный разряд, предшествующий периоду, увеличен на единицу по сравнению с разрядом первой дроби. Например, бесконечные периодические дроби и являются записью одного и того же рационального числа . Действительно, учитывая, что сумма бесконечной убывающей геометрической прогрессии с первым членом и знаменателем вычисляется по формуле , имеем:
В дальнейшем, записывая рациональные числа с помощью бесконечных периодических десятичных дробей, договоримся исключить из рассмотрения бесконечные периодические дроби, период которых равен девяти.
Каждое рациональное число можно изобразить точкой на координатной прямой (то есть прямой, на которой выбраны начало отсчета, положительное направление и единица измерения). Например, на рисунке изображены несколько рациональных чисел .
Однако на координатной прямой есть точки, изображающие числа, которые не являются рациональными. Например, из курса алгебры известно, что число не является рациональным. Это так называемое иррациональное число. Если построить квадрат со стороной, равной 1, на координатной прямой (рис. 10), то его диагональ будет равна . Тогда, проведя дугу окружности радиуса с центром в точке , получим точку , координата которой равна . Кроме числа вы также встречались с иррациональными числами и т. д.
Рациональные и иррациональные числа составляют множество действительных чисел . На координатной прямой каждому действительному числу соответствует единственная точка и, наоборот, каждой точке координатной прямой соответствует единственное действительное число (в этом случае говорят, что между множеством действительных чисел и множеством точек координатной прямой устанавливается взаимно однозначное соответствие).
Каждое действительное число может быть записано в виде бесконечной десятичной дроби: рациональные числа — в виде бесконечной периодической десятичной дроби, а иррациональные — в виде бесконечной непериодической десятичной дроби.
Напомним, что для сравнения действительных чисел и выполнения действий над ними (в случае, когда хотя бы одно из них не является рациональным) используются приближенные значения этих чисел. В частности, для сравнения двух действительных чисел последовательно рассматриваем их приближенные значения с недостатком с точностью до целых, десятых, сотых и т. д. до тех пор, пока не получим, что какое-то приближенное значение одного числа больше соответствующего приближенного значения второго. Тогда то число, у которого приближенное значение больше, и считается большим. Например, если
, то (поскольку ).
Для выполнения сложения или умножения рассмотренных чисел и последовательно записывают их приближенные значения с недостатком и с избытком (с точностью до целых, десятых, сотых и т. д.) и выполняют действия над полученными рациональными числами. В результате последовательно получаем значение суммы или произведения с необходимой точностью.
Как видим,
В курсе математического анализа доказывается, что в случае, когда приближенные значения чисел и последовательно берутся с точностью до целых, десятых, сотых и т. д., то значения суммы с недостатком и с избытком стремятся к одному и тому же числу, которое и принимается за значение суммы (аналогично определяется и произведение ).
Модуль действительного числа и его свойства
Напомним определение модуля.
Модулем положительного числа называется само это число, модулем отрицательного числа — число, противоположное ему, модуль нуля равен нулю.
Это определение можно коротко записать несколькими способами. а при а > 0,
, или или или
При необходимости мы будем пользоваться любой из этих записей определения модуля. Для нахождения по определению необходимо знать знак числа и использовать соответствующую формулу. Например,
На координатной прямой модуль числа — это расстояние от начала координат до точки, изображающей это число.
Действительно, если (рис. 11), то расстояние
Если , то расстояние
Модуль разности двух чисел и — это расстояние между точками и на координатной прямой.
Для доказательства можно воспользоваться тем, что при параллельном переносе вдоль оси координат на единиц абсцисса соответствующей точки изменяется на : к абсциссе данной точки прибавляется число , то есть при точка переносится вправо, а при — влево. Обозначим на координатной прямой числа соответственно точками . На рисунке 12 эти точки изображены для случая и , хотя приведенное далее обоснование не зависит от знаков и .
При параллельном переносе вдоль оси на единиц точка перейдет в точку , а точка (с координатой ) — в точку с координатой , то есть в точку . Тогда . Но расстояние — это расстояние от точки до начала координат, следовательно, , а значит, и .
Используя определение модуля и его геометрический смысл, можно обосновать свойства модуля, приведенные в таблице 2.
Например, учитывая, что — это расстояние от точки до точки , а расстояние может выражаться только неотрицательным числом, получаем
то есть модуль любого числа является неотрицательным числом.
Учитывая, что точки и находятся на одинаковом расстоянии от точки , получаем
это означает, что модули противоположных чисел равны.
Если то а если , то . Следовательно, всегда
то есть каждое число не превышает его модуль.
Если в последнее неравенство вместо подставить и учесть, что , то получаем неравенство . Отсюда , что вместе с неравенством свидетельствует о том, что для любого действительного числа а выполняется двойное неравенство
(1)
При неравенство означает, что число на координатной прямой находится от точки на расстоянии, которое не превышает (рис. 13), то есть в промежутке . Наоборот, если число находится в этом промежутке, то есть . Следовательно,
при (2)
Обратим внимание, что последнее утверждение справедливо и при (тогда двум неравенствам удовлетворяет только одно значение ).
Аналогично при неравенство означает, что число на координатной прямой находится от точки на расстоянии, которое больше или равно (рис. 13),
то есть в этом случае или . Наоборот, если число удовлетворяет одному из этих неравенств, то . Следовательно, при неравенство равносильно совокупности неравенств или , что можно записать так:
при
Свойства модуля произведения и модуля дроби фиксируют известные правила действий над числами с одинаковыми и разными знаками:
модуль произведения равен произведению модулей множителей, то есть
модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю), то есть
Формулу для нахождения модуля произведения можно обобщить для случая нескольких множителей
(3)
Если в формуле (3) взять , получаем формулу
Используя последнюю формулу справа налево при и учитывая, что при всех значениях , получаем . Следовательно,
. Для обоснования неравенства
(4)
запишем неравенство (1) для чисел и :
Складывая почленно эти неравенства, получаем
Учитывая неравенство (2), имеем
(5)
то есть модуль суммы не превышает суммы модулей слагаемых. Если в неравенстве (4) заменить на и учесть, что , то получим неравенство
Если записать число так: и использовать неравенство (4), то получим неравенство . Отсюда
(6)
Если в неравенстве (6) заменить на и учесть, что , то получим неравенство
(7)
то есть модуль суммы двух чисел не меньше разности их модулей.
Меняя местами буквы и в неравенствах (6) и (7) и учитывая, что , имеем также неравенства
(8)
Полученные неравенства (4)-(8) можно коротко записать так:
Примеры решения задач:
Пример №402
Докажите, что сумма, разность, произведение, натуральная степень и частное (если делитель не равен нулю) двух рациональных чисел всегда является рациональным числом.
Решение:
► Пусть заданы два рациональных числа и где и – целые, а и – натуральные числа. Поскольку сумма, разность, произведение, натуральная степень и частное двух обыкновенных дробей всегда являются обыкновенными дробями, то полученный результат всегда будет рациональным числом. Например,
где – целое число, а – натуральное.
Комментарий:
Любое рациональное число может быть записано как дробь , где — целое, — натуральное число.
Чтобы доказать утверждение задачи, достаточно доказать, что сумма, разность, произведение и частное двух дробей вида также будет дробью такого вида.
Пример №403
Докажите, что для любого натурального числа число или натуральное, или иррациональное.
Комментарий:
Для доказательства утверждения задачи можно использовать метод от противного: предположить, что заданное положительное число является рациональным ненатуральным (то есть дробью), и получить противоречие с условием или с каким-либо известным фактом.
Записывая в виде несократимой дроби, следует учесть, что при натуральных значениях это число всегда будет положительным.
Решение:
► Допустим, что не является иррациональным числом (тогда это число рациональное) и не является натуральным числом. Следовательно, это число может быть только рациональной несократимой дробью , где и — натуральные числа . По определению квадратного корня имеем то есть . Учитывая, что , получаем, что дробь , равная натуральному числу , должна быть сократимой.
Следовательно, у натуральных множителей, которые стоят в числителе и знаменателе этой дроби, должен быть общий натуральный делитель, отличный от 1. Но в числителе стоят только множители , а в знаменателе — только множители . Тогда числа и имеют натуральный делитель, отличный от 1, то есть дробь является сократимой дробью, что противоречит условию. Таким образом, наше предположение неверно, и для любого натурального числа число или натуральное, или иррациональное.
Например, поскольку числа и не являются натуральными числами , то и — иррациональные числа.
Пример №404
Докажите, что — число иррациональное.
Решение:
► Допустим, что число рациональное. Тогда Возведя обе части последнего равенства в квадрат, имеем Отсюда
Следовательно,
Но правая часть этого равенства — рациональное число (поскольку по предположению — рациональное число), а левая — иррациональное. Полученное противоречие означает, что наше предположение неверно и число — иррациональное.
Комментарий:
Для доказательства утверждения задачи можно использовать метод «от противного» — допустить, что заданное число является рациональным, и получить противоречие с каким-либо известным фактом, например с тем, что — иррациональное число.
При анализе полученных выражений используем результат задачи 1: если число — рациональное, то числа и и их частное тоже будут рациональными.
Заметим, что знаменатель полученной дроби
Пример №405
Решите уравнение
Решение
I способ
►
Ответ:
Комментарий:
Заданное уравнение имеет вид (в данном случае ). Его удобно решать, используя геометрический смысл модуля: — это расстояние от точки 0 до точки . Но расстояние 7 может быть отложено от 0 как вправо (получаем число 7), так и влево (получаем число -7). Следовательно, равенство возможно тогда и только тогда, когда или .
II способ
Ответ:
Комментарий:
С геометрической точки зрения — это расстояние между точками и на координатной прямой. Запишем данное уравнение так: . Тогда равенство означает, что расстояние от точки до точки -5 равно 7. На расстоянии 7 от точки -5 находятся точки 2 и -12 (рис. 14). Таким образом, данное равенство выполняется тогда и только тогда, когда или то есть данное уравнение равносильно указанной в решении совокупности уравнений.
Пример №406
Решите неравенство
Решение:
Решая эти неравенства (рис. 15), получаем
Следовательно, или
Ответ:
Комментарий:
Заданное неравенство имеет вид (в данном случае ), и его можно решать, используя геометрический смысл модуля. С геометрической точки зрения, — это расстояние от точки 0 до точки . На расстоянии 6 от 0 находятся числа 6 и -6.
Тогда неравенству удовлетворяют все те и только те точки, которые находятся в промежутке то есть Для решения полученного двойного неравенства его удобно заменить соответствующей системой.
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Прямые и плоскости в пространстве
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
- Векторы и координаты в пространстве
Пусть U – произвольное множество, «универсум». Мы будем рассматривать теоретико-множественные выражения, которые получаются из символов с помощью операций над множествами, например:
.
Определение
Теоретико-множественное выражение H = H(X1, …, Xm), полученное из подмножеств (X1, …, Xm)ÍU, определяется по индукции:
1) X1, …, Xm, U, Æ – теоретико-множественные выражения;
2) если H – теоретико-множественное выражение, то – теоретико-множественное выражение;
3) если H1 и H2 – теоретико-множественные выражения, то (H1ÈH2), (H1ÇH2), (H1H2), (H1DH2) – теоретико-множественные выражения.
Наша цель – научиться решать уравнения
H(X, A1, …, An)= Æ,
где H(X, A1, …, An) – теоретико-множественное выражение, полученное из подмножеств X, A1, …, AnÍU.
Предложение
Для всякого теоретико-множественного выражения H(X, A1, …, An) существуют такие теоретико-множественные выражения
R(A1, …, An), S(A1, …, An), T(A1, …, An),
что для любого XÍU следующие условия равносильны:
1) H(X, A1, …, An)= Æ;
2) R(A1, …, An)È(S(A1, …, An)ÇX)È(T(A1, …, An)Ç ) = Æ.
Доказательство
Поскольку PQ= PÇ и PDQ = (P È Q)(P Ç Q), то можно считать, что H построена с помощью операций PÈ Q, PÇ Q и . Далее применяется индукция по количеству операций в H(X, A1, …, An).
Следствие
В условиях предыдущего предложения, уравнение H(X, A1, …, An)= Æ будет иметь решения тогда и только тогда, когда будут выполнены соотношения:
1.
S(A1, …, An)ÇX = Æ,
2. T(A1, …, An)Ç = Æ,
3. R(A1, …, An) = Æ.
Метод решения уравнения
H1(X, A1, …, An)= H2(X, B1, …, Bm).
Здесь A1, …, An и B1, …, Bm – некоторые заданные множества. Обозначим символом 0 пустое множество.
Это уравнение сначала приводят к уравнению
H(X, A1, …, An)= 0,
где
H(X,A1,…, An)= (H1(X, A1, …, An) H2(X, B1, …, Bm)) È ( H2(X, B1, …, Bm) H1(X, A1, …, An)).
Потом для полученного уравнения находим формулы для R, S, T из предыдущего предложения. И, наконец, применим предыдущее следствие. Разберем этот метод решение на следующем примере.
Пример
Рассмотрим, например, уравнение:
AÇX = BÇ.
Оно равносильно уравнению вида:
= 0.
Следующим шагом решения будет преобразование левой части к объединению пересечений множеств. Это достигается с помощью формул:
PQ = PÇ .
После применения этих формул получим:
= 0.
А после применения формул де Моргана приходим к уравнению:
= 0.
С помощью закона дистрибутивности получаем уравнение:
= 0.
Поскольку
и ,
то это уравнение примет вид:
=0.
Последнее равенство выполняется тогда и только тогда, когда X удовлетворяет системе уравнений:
Первое уравнение равносильно включению , а второе – . Отсюда вытекает следующий ответ:
.
Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.
С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.
В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.
Что такое уравнение?
Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.
Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5.
А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x, значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.
Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.
Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет
Говорят, что число 2 является корнем или решением уравнения 3 + x = 5
Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.
Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.
Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.
Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.
Выразить одно через другое
Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.
Рассмотрим следующее выражение:
8 + 2
Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10
8 + 2 = 10
Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.
Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.
Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:
2 = 10 − 8
Мы выразили число 2 из равенства 8 + 2 = 10. Как видно из примера, ничего сложного в этом нет.
При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.
Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8. Данное равенство можно прочесть так:
2 есть 10 − 8
То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:
Число 2 есть разность числа 10 и числа 8
или
Число 2 есть разница между числом 10 и числом 8.
Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.
Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:
8 + 2 = 10
Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2
8 = 10 − 2
Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:
8 + 2 = 10
В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:
10 = 8 + 2
Пример 2. Рассмотрим равенство 8 − 2 = 6
Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:
8 = 6 + 2
Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:
8 − 2 = 6
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6
2 = 8 − 6
Пример 3. Рассмотрим равенство 3 × 2 = 6
Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2
Вернем получившееся равенство в первоначальное состояние:
3 × 2 = 6
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3
Пример 4. Рассмотрим равенство
Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5
15 = 3 × 5
Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:
Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3
Правила нахождения неизвестных
Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.
Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.
В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.
Чтобы выразить число 2, мы поступили следующим образом:
2 = 10 − 8
То есть из суммы 10 вычли слагаемое 8.
Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x
8 + x = 10
В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10, а переменная x берет на себя роль так называемого неизвестного слагаемого
Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10. Для нахождения неизвестного слагаемого предусмотрено следующее правило:
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10. Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8
2 = 10 − 8
А сейчас, чтобы найти неизвестное слагаемое x, мы должны из суммы 10 вычесть известное слагаемое 8:
x = 10 − 8
Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x
x = 2
Мы решили уравнение. Значение переменной x равно 2. Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:
В результате получается верное числовое равенство. Значит уравнение решено правильно.
Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.
x + 2 = 10
В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x, нужно из суммы 10 вычесть известное слагаемое 2
x = 10 − 2
x = 8
Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.
В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность
Чтобы выразить число 8, мы поступили следующим образом:
8 = 6 + 2
То есть сложили разность 6 и вычитаемое 2.
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x
x − 2 = 6
В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого
Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:
Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6. Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.
А сейчас, чтобы найти неизвестное уменьшаемое x, мы должны к разности 6 прибавить вычитаемое 2
x = 6 + 2
Если вычислить правую часть, то можно узнать чему равна переменная x
x = 8
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x
8 − x = 6
В этом случае переменная x берет на себя роль неизвестного вычитаемого
Для нахождения неизвестного вычитаемого предусмотрено следующее правило:
Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.
А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6
x = 8 − 6
Вычисляем правую часть и находим значение x
x = 2
Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.
В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение
Чтобы выразить число 3 мы поступили следующим образом:
То есть разделили произведение 6 на множитель 2.
Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x
x × 2 = 6
В этом случае переменная x берет на себя роль неизвестного множимого.
Для нахождения неизвестного множимого предусмотрено следующее правило:
Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.
Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6. Произведение 6 мы разделили на множитель 2.
А сейчас для нахождения неизвестного множимого x, нужно произведение 6 разделить на множитель 2.
Вычисление правой части позволяет нам найти значение переменной x
x = 3
Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x.
В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:
Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.
Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6. Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.
А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.
Вычисление правой части равенства позволяет узнать чему равно x
x = 2
Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:
Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.
Например, решим уравнение 9 × x = 18. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9
Отсюда .
Решим уравнение x × 3 = 27. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3
Отсюда .
Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.
Чтобы выразить число 15 мы поступили следующим образом:
15 = 3 × 5
То есть умножили частное 3 на делитель 5.
Теперь представим, что в равенстве вместо числа 15 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного делимого.
Для нахождения неизвестного делимого предусмотрено следующее правило:
Чтобы найти неизвестное делимое, нужно частное умножить на делитель.
Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.
А сейчас, чтобы найти неизвестное делимое x, нужно частное 3 умножить на делитель 5
x = 3 × 5
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.
x = 15
Теперь представим, что в равенстве вместо числа 5 располагается переменная x.
В этом случае переменная x берет на себя роль неизвестного делителя.
Для нахождения неизвестного делителя предусмотрено следующее правило:
Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.
А сейчас, чтобы найти неизвестный делитель x, нужно делимое 15 разделить на частное 3
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.
x = 5
Итак, для нахождения неизвестных мы изучили следующие правила:
- Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
- Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
- Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
- Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
- Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Компоненты
Компонентами мы будем называть числа и переменные, входящие в равенство
Так, компонентами сложения являются слагаемые и сумма
Компонентами вычитания являются уменьшаемое, вычитаемое и разность
Компонентами умножения являются множимое, множитель и произведение
Компонентами деления являются делимое, делитель и частное
В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.
Пример 1. Найти корень уравнения 45 + x = 60
45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:
x = 60 − 45
Вычислим правую часть, получим значение x равное 15
x = 15
Значит корень уравнения 45 + x = 60 равен 15.
Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.
Пример 2. Решить уравнение
Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x
В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.
При этом слагаемое 2x содержит переменную x. После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:
Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:
Вычислим правую часть получившегося уравнения:
Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение
При этом переменная x является не просто множителем, а неизвестным множителем
Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:
Вычислим правую часть, получим значение переменной x
Для проверки найденный корень отправим в исходное уравнение и подставим вместо x
Получили верное числовое равенство. Значит уравнение решено правильно.
Пример 3. Решить уравнение 3x + 9x + 16x = 56
Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.
Приведем подобные слагаемые в левой части данного уравнения:
Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:
Отсюда x равен 2
Равносильные уравнения
В предыдущем примере при решении уравнения 3x + 9x + 16x = 56, мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56. Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.
Уравнения называют равносильными, если их корни совпадают.
Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2. Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56, а затем в уравнение 28x = 56, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства
Согласно порядку действий, в первую очередь выполняется умножение:
Подставим корень 2 во второе уравнение 28x = 56
Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.
Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56, которое проще решать.
Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.
Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение
Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
и аналогично:
Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.
Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.
Пример 1. Решить уравнение
Вычтем из обеих частей уравнения число 10
Приведем подобные слагаемые в обеих частях:
Получили уравнение 5x = 10. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 10 разделить на известный сомножитель 5.
Отсюда .
Вернемся к исходному уравнению и подставим вместо x найденное значение 2
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы вычли из обеих частей уравнения число 10. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2
Пример 2. Решить уравнение 4(x + 3) = 16
Раскроем скобки в левой части равенства:
Вычтем из обеих частей уравнения число 12
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 4x, а в правой части число 4
Получили уравнение 4x = 4. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 4 разделить на известный сомножитель 4
Отсюда
Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12. В результате получили равносильное уравнение 4x = 4. Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1
Пример 3. Решить уравнение
Раскроем скобки в левой части равенства:
Прибавим к обеим частям уравнения число 8
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 2x, а в правой части число 9
В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.
Рассмотрим следующее уравнение:
Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство
Получается верное равенство. Значит число 2 действительно является корнем уравнения .
Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.
Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:
Получилось уравнение 12 = 9x − 3x. Приведем подобные слагаемые в правой части данного уравнения:
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда x = 2. Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.
На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.
Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x
Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.
Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.
Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12. В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:
Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.
Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.
Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.
Пример 1. Решить уравнение
При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.
В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:
Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8
Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:
В результате останется простейшее уравнение
Ну и нетрудно догадаться, что корень этого уравнения равен 4
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получается верное числовое равенство. Значит уравнение решено правильно.
При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.
Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:
От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:
Пример 2. Решить уравнение
Умнóжим обе части уравнения на 15
В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5
Перепишем то, что у нас осталось:
Раскроем скобки в правой части уравнения:
Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:
Приведем подобные слагаемые в обеих частях, получим
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 5
Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15. Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x. Корень этого уравнения, как и уравнения равен 5. Значит эти уравнения равносильны.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на 3
В левой части можно сократить две тройки, а правая часть будет равна 18
Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 9
Получается верное числовое равенство. Значит уравнение решено правильно.
Пример 4. Решить уравнение
Умнóжим обе части уравнения на 6
В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:
Сократим в обеих частях уравнениях то, что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки в обеих частях уравнения:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x, сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:
Приведем подобные слагаемые в обеих частях:
Теперь найдем значение переменной x. Для этого разделим произведение 28 на известный сомножитель 7
Отсюда x = 4.
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получилось верное числовое равенство. Значит уравнение решено правильно.
Пример 5. Решить уравнение
Раскроем скобки в обеих частях уравнения там, где это можно:
Умнóжим обе части уравнения на 15
Раскроем скобки в обеих частях уравнения:
Сократим в обеих частях уравнения, то что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки там, где это можно:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:
Приведем подобные слагаемые в обеих частях уравнения:
Найдём значение x
В получившемся ответе можно выделить целую часть:
Вернемся к исходному уравнению и подставим вместо x найденное значение
Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A, а правую часть равенства в переменную B
Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B
Найдем значение выражения, находящегося в переменной А.
Значение переменной А равно . Теперь найдем значение переменной B. То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно
Видим, что значение переменной B, как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.
Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.
Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42. Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x
Подставим найденное значение 2 вместо x в исходное уравнение:
Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:
Выполним сокращение в каждом слагаемом:
Перепишем то, что у нас осталось:
Решим это уравнение, пользуясь известными тождественными преобразованиями:
Получили корень 2. Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.
Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14, нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7
Этим методом мы тоже будем пользоваться часто.
Умножение на минус единицу
Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.
Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1.
Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.
Рассмотрим уравнение . Чему равен корень этого уравнения?
Прибавим к обеим частям уравнения число 5
Приведем подобные слагаемые:
А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x
То есть минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:
Имеем дело с компонентами умножения. Чтобы найти х, нужно произведение −5 разделить на известный сомножитель −1.
или разделить обе части уравнения на −1, что еще проще
Итак, корень уравнения равен 5. Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице
Получилось верное числовое равенство. Значит уравнение решено верно.
Теперь попробуем умножить обе части уравнения на минус единицу:
После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10
Корень этого уравнения, как и уравнения равен 5
Значит уравнения и равносильны.
Пример 2. Решить уравнение
В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1.
Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.
Так, умножение уравнения на −1 можно записать подробно следующим образом:
либо можно просто поменять знаки всех компонентов:
Получится то же самое, но разница будет в том, что мы сэкономим себе время.
Итак, умножив обе части уравнения на −1, мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3
Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на −1. Тогда все компоненты поменяют свои знаки на противоположные:
Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:
Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:
Приравнивание к нулю
Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.
В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x
Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:
Приведем подобные слагаемые в левой части:
Прибавим к обеим частям 77, и разделим обе части на 7
Альтернатива правилам нахождения неизвестных
Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.
К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2
Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5
Уравнения вида мы решали выражая неизвестное слагаемое:
Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:
Далее разделить обе части на 2
В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .
Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:
В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:
Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.
Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.
Когда корней несколько
Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9.
В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9), которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).
То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.
x = 0 или x + 9 = 0
Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0. Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0. Несложно догадаться, что корень этого уравнения равен −9. Проверка показывает, что корень верный:
−9 + 9 = 0
Пример 2. Решить уравнение
Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2). А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2)).
Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:
Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:
Когда корней бесконечно много
Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.
Пример 1. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14. Это равенство будет получаться при любом x
Пример 2. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x
Когда корней нет
Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x, левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид
Пусть
Пример 2. Решить уравнение
Раскроем скобки в левой части равенства:
Приведем подобные слагаемые:
Видим, что левая часть не равна правой части. И так будет при любом значении y. Например, пусть y = 3.
Буквенные уравнения
Уравнение может содержать не только числа с переменными, но и буквы.
Например, формула нахождения скорости является буквенным уравнением:
Данное уравнение описывает скорость движения тела при равноускоренном движении.
Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s.
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении левую и правую часть поменяем местами:
У нас получилась формула нахождения расстояния, которую мы изучали ранее.
Попробуем из уравнения определить время. Для этого нужно выразить переменную t.
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении v × t = s обе части разделим на v
В левой части переменные v сократим на v и перепишем то, что у нас осталось:
У нас получилась формула определения времени, которую мы изучали ранее.
Предположим, что скорость поезда равна 50 км/ч
v = 50 км/ч
А расстояние равно 100 км
s = 100 км
Тогда буквенное уравнение примет следующий вид
Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t. Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t
либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t
Затем разделить обе части на 50
Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x
Вычтем из обеих частей уравнения a
Разделим обе части уравнения на b
Теперь, если нам попадется уравнение вида a + bx = c, то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.
Решим уравнение 2 + 4x = 10. Оно похоже на буквенное уравнение a + bx = c. Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:
Видим, что второе решение намного проще и короче.
Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0), поскольку деление на ноль на допускается.
Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x
Раскроем скобки в обеих частях уравнения
Воспользуемся переносом слагаемых. Параметры, содержащие переменную x, сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.
В левой части вынесем за скобки множитель x
Разделим обе части на выражение a − b
В левой части числитель и знаменатель можно сократить на a − b. Так окончательно выразится переменная x
Теперь, если нам попадется уравнение вида a(x − c) = b(x + d), то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.
Допустим нам дано уравнение 4(x − 3) = 2(x + 4). Оно похоже на уравнение a(x − c) = b(x + d). Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:
Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d. Это позволит нам не ошибиться при подстановке:
Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0). Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.
Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d). В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:
Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x
Приведем левую часть уравнения к общему знаменателю:
Умнóжим обе части на a
В левой части x вынесем за скобки
Разделим обе части на выражение (1 − a)
Линейные уравнения с одним неизвестным
Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.
Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».
Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2(x + 3) = 16. Давайте решим его.
Раскроем скобки в левой части уравнения, получим 2x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x, разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.
Уравнение 2(x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10, для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».
Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.
Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x. Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.
Если в линейном уравнении a = 0 и b = 0, то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0. При любом значении x левая часть будет равна правой части.
Если в линейном уравнении a = 0 и b ≠ 0, то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5. Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.
Если в линейном уравнении a ≠ 0, и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a
Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3, и b равно какому-нибудь числу, скажем числу 6, то уравнение примет вид .
Отсюда .
Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0. Это то же самое уравнение, что и ax = b, но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0. Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.
В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.
Задания для самостоятельного решения
Задание 1. Используя метод переноса слагаемого, решите следующее уравнение:
Задание 2. Используя метод прибавления (или вычитания) числа к обеим частям, решите следующее уравнение:
Задание 3. Решите уравнение:
Задание 4. Решите уравнение:
Задание 5. Решите уравнение:
Задание 6. Решите уравнение:
Задание 7. Решите уравнение:
Задание 8. Решите уравнение:
Задание 9. Решите уравнение:
Задание 10. Решите уравнение:
Задание 11. Решите уравнение:
Задание 12. Решите уравнение:
Задание 13. Решите уравнение:
Задание 14. Решите уравнение:
Задание 15. Решите уравнение:
Задание 16. Решите уравнение:
Задание 17. Решите уравнение:
Задание 18. Решите уравнение:
Задание 19. Решите уравнение:
Задание 20. Решите уравнение:
Задание 21. Решите уравнение:
Задание 22. Решите уравнение:
Задание 23. Решите уравнение:
Задание 24. Решите уравнение:
Задание 25. Решите уравнение:
Задание 26. Решите уравнение:
Задание 27. Решите уравнение:
Задание 28. Решите уравнение:
Задание 29. Решите уравнение:
Задание 30. Решите уравнение:
Задание 31. Решите уравнение:
Задание 32. В следующем буквенном уравнении выразите переменную x:
Задание 33. В следующем буквенном уравнении выразите переменную x:
Задание 34. В следующем буквенном уравнении выразите переменную x:
Задание 35. В следующем буквенном уравнении выразите переменную x:
Задание 36. В следующем буквенном уравнении выразите переменную y:
Задание 37. В следующем буквенном уравнении выразите переменную z:
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже