Как найти неизвестное множество

Алгебра теории множеств.

Для любых множеств
А, В и С выполнимы следующие тождества:

  1. Коммутативный
    закон

(9)

  1. Ассоциативный
    закон

(10)

  1. Дистрибутивный
    закон

(11)

  1. Закон
    поглощения

(12)

  1. Закон
    идемпотентности

(13)

  1. Закон
    де Моргана

(14)

  1. Закон
    исключенного третьего

(15)

  1. Закон
    противоречия

(16)

  1. Операции
    с универсумом:

(17)

  1. Операции
    с пустым множеством:

(18)

  1. (19)

  2. Закон
    двойного дополнения

(20)

  1. (21)

  2. (22)

При преобразованиях
выражений над множествами по законам
алгебры логики существуют следующие
приоритеты: самой приоритетной операцией
является дополнение, затем пересечение
и в последнюю очередь объединение.

Решение уравнений алгебры множеств.

Пусть дано уравнение
вида:

(23)

где X – неизвестное
множество. Необходимо определить это
неизвестное множество.

Алгоритм решения
уравнений алгебры множеств имеет
следующий алгоритм:

  1. Представляем
    данное уравнение в следующем виде:

(24)

2. Используя алгебру
множеств, преобразуем данное уравнение
к виду:

(25)

где C и D – некоторые
множества, не содержащие множество X и
его дополнение.

3. Решением уравнения
является следующее выражение:

(26)

Рис
2. Диаграмма Эйлера-Венна для решения
уравнения алгебры множеств.

ПРИМЕР.

Необходимо решить
уравнение:

1. Преобразуем
данное уравнение:

2. С помощью алгебры
множеств преобразуем данное выражение
следующим образом:

В
данном выражении присутствует множество
,
в котором не содержится ни множество X
, ни его дополнение, поэтому к этому
множеству применяем следующие
преобразования:

C учетом данных
преобразований имеем:

Таким образом,
имеем множества C и D в следующем виде:

.

Решением уравнения
будет множество:

.

Решение уравнения
(один из вариантов) может быть представлено
на диаграмме Эйлера-Венна

Рис
3 Диаграмма Эйлера-Венна для решения
уравнения алгебры множеств.

При изображении
решения уравнения алгебры множеств
следует иметь в виду, что два множества
могут иметь следующие диаграммы
Эйлера-Венна

Рис
4 Диаграмма Эйлера-Венна для решения
уравнения алгебры множеств.

Кортеж.

Кортеж
это
упорядоченный набор элементов. Кортеж
характеризуется элементами и их порядком
расположения. Элементы кортежа называются
компонентами.
Компоненты
нумеруют слева направо. Число компонент
определяет длину кортежа. Кортеж
обозначается 
а1,
а2,
…, аn.

Кортеж
длиной в две компоненты называется
парой, кортеж длиной в три компоненты
– тройка, длиной в n – n-ка.

Проекцией
кортежа на i-тую ось

называется
его i-тая
компонента.

Проекцией
кортежа на оси i
1,
i
2,
…, i
q
оси

называется
кортеж, состоящий из i1,
i
2,
… , i
q
компонент, где
.

Проекцией
кортежа на пустое множество осей

является пустой кортеж.

ПРИМЕР

Пусть
дан кортеж А=< ,,,>.
Найти проекции на 1 ось, 3 ось, 5 ось, 1 и 4
оси, 4 и 2 оси.

Пр
А1=<>

Пр
А3=<>

Пр
А5 не
определена

Пр
А1,4=<>

Пр
А4,2
не определена.

Соседние файлы в предмете Дискретная математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Множества

Понятие множества является одним из исходных понятий математики в том смысле, что его нельзя определить с помощью более простых, чем оно само, понятий. В повседневной жизни часто приходится рассматривать набор некоторых объектов как единое целое. Скажем, когда биолог изучает флору и фауну некоторой местности, он делит организмы на виды, а виды на семейства. При этом каждый вид рассматривается как единое целое, состоящее из организмов.

Множество может состоять из объектов различной природы. Например, вес реки Азии или все слова в словаре могут рассматриваться как множества.

Знаменитый немецкий математик Г. Кантор (1845 -1918) дал следующую описательную формулировку: «Множество есть совокупность, мыслимая как единое целое».

Объекты, составляющие множество, называются его элементами.

Обычно, для удобства, множество обозначается заглавными буквами латинского алфавита, например, А, В, С,…, а его элементы – прописными.

Множество А, состоящее из элементов а, b, с, … , будем записывать в виде A = {а, b, с,…}. Отметим, что записи {6, 11} , {11, 6} , {11, 6, 6, 11} означают одно и то же множество.

При ведем примеры множеств. Например, множество {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} – множество цифр десятичной системы счисления ,Множества - определение и вычисление с примерами решения

То, что х является элементом множества А, будем обозначать как Множества - определение и вычисление с примерами решенияа то, что он не является его элементом, будем обозначать как Множества - определение и вычисление с примерами решения Эти записи в первом случае читаются как «элементах принадлежит А», а во втором случае как «элемент х не принадлежит А».

Например, для множества Множества - определение и вычисление с примерами решения имеем Множества - определение и вычисление с примерами решенияоднако Множества - определение и вычисление с примерами решения

Если число элементов, составляющих множество, конечно, то такое множество будем называть конечным, в противном случае бесконечным. Например, множество Множества - определение и вычисление с примерами решения конечно, а множество Множества - определение и вычисление с примерами решения всех натуральных чисел бесконечно.

В качестве еще одного примера бесконечного множества можно привести множество всех натуральных чисел, не меньших 13.

Обозначим через Множества - определение и вычисление с примерами решения число всех элементов конечного множества А. Если, например,Множества - определение и вычисление с примерами решения

в силу того, что число всех его элементов равно 6. Множество, не содержащее ни одного элемента, называется пустым и обозначается так: 0

Пустое множество 0 считается конечным и для него я(0)= 0.

Для бесконечного множества А принято, что Множества - определение и вычисление с примерами решения

Если вес элементы множества А также принадлежат множеству В, то говорят, что множество А – подмножество множества В и обозначают так: Множества - определение и вычисление с примерами решения. В этом случае также говорят, что «множество А лежит во множестве В» или «множество А – часть В».

Во множестве {а} лежат два подмножества:Множества - определение и вычисление с примерами решения

Множество {а, b} имеет четыре подмножества: Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения так как все элементы первого множества также являются элементами второго.

Если множество А имеет элементы, не принадлежащие В, то множество А не может быть подмножеством В. Этот факт мы будем записывать так:Множества - определение и вычисление с примерами решения

Например, пусть А={ 1, 2, 3, 4}, В={2, 3, 4, 5}. Так как Множества - определение и вычисление с примерами решения Очевидно, что справедливы соотношения:Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения то эти множества состоят из одних и тех же элементов. Такие множества называются равными (совпадающими), и этот факт мы будем записывать так: А = В.

Например, множество всех правильных треугольников совпадает со множеством всевозможных треугольников, у которых все углы равны. Причина этого заключается в том, что у любого правильного треугольника

все углы равны, и, наоборот, если у треугольника все углы равны, то он является правильным.

Напомним основные числовые множества:Множества - определение и вычисление с примерами решения— множество натуральных чисел; Множества - определение и вычисление с примерами решения — множество целых чисел; Множества - определение и вычисление с примерами решения– множество рациональных чисел; Множества - определение и вычисление с примерами решения

Множество действительных чисел

Объединение и пересечение множеств

1) Множество, состоящее из элементов, принадлежащих хотя бы одному из множеств А, В, называется объединением множеств.

Объединение множеств А, В обозначается через Множества - определение и вычисление с примерами решения

Например, если Множества - определение и вычисление с примерами решения

2) Множество, состоящее из элементов, принадлежащих обоим множествам А, В, называется пересечением множеств. Пересечение множеств А. В обозначается через Множества - определение и вычисление с примерами решения

Например, если Множества - определение и вычисление с примерами решения

Множества, не имеющие общих элементов, называются не пересекающимися.

Пример:

Для множеств Множества - определение и вычисление с примерами решения

a) определите, какие из утверждений верны, а какие неверны: Множества - определение и вычисление с примерами решения

b) найдите множества: Множества - определение и вычисление с примерами решения

c) определите, какие из утверждений верны, а какие неверны:Множества - определение и вычисление с примерами решения

Решение:

а) Так как число 4 не является элементом множества М, то утверждение Множества - определение и вычисление с примерами решения неверно. Так как число 6 не является элементом множества, утверждение Множества - определение и вычисление с примерами решения истинно.

b). Множества - определение и вычисление с примерами решения так как только числа 3 и 9 – элементы обоих множеств. Для того, чтобы найти множествоМножества - определение и вычисление с примерами решениявыпишем элементы, принадлежащие либо М либо N: Множества - определение и вычисление с примерами решения = {2, 3, 4, 5, 6, 7, 8, 9, 10};

c) Утверждение Множества - определение и вычисление с примерами решения ложно, ибо существуют элементы множества М, не принадлежащие N. Утверждение Множества - определение и вычисление с примерами решения истинно, ибо в множестве У есть элементы из {9, 6, 3}. 

В некоторых случаях для задания множества указывается характеристическое свойство, истинное для всех элементов множества и ложное для остальных. Если мы кратко запишем тот факт, что элемент х удовлетворяет свойству Р как Р(х), то множество всех элементов, удовлетворяющих свойству Р обозначается так: Множества - определение и вычисление с примерами решения

Например, запись Множества - определение и вычисление с примерами решения читается следующим образом: “множество всех целых чисел, больших или равных -2, по меньших или равных 4”.

На числовом луче это множество изображается так:

Множества - определение и вычисление с примерами решения

Видно, что Множества - определение и вычисление с примерами решения и оно, конечно, при этом Множества - определение и вычисление с примерами решения

Аналогично запись Множества - определение и вычисление с примерами решения читается так: “множество всех действительных чисел, больших или равных -2, но меньших 4”.

На числовом луче это множество изображается так:

Множества - определение и вычисление с примерами решения

Видно, что, Множества - определение и вычисление с примерами решения и оно бесконечно, при этом Множества - определение и вычисление с примерами решения

Пример:

Множества - определение и вычисление с примерами решения

a) Как читается эта запись?

b) Выпишите последовательно элементы этого множества.

c) Найдите Множества - определение и вычисление с примерами решения

Решение:

a) “Множество всех целых чисел, больших 3 и меньших или равных 10”;

b). Множества - определение и вычисление с примерами решения

c). Множества - определение и вычисление с примерами решения

Рассмотрим множество всех натуральных чисел, больших или равных 1, но меньших или равных 8. Пусть нас интересуют только его подмножества.

В таком случае, обычно вводится множество Множества - определение и вычисление с примерами решения называемое универсальным множеством.

Множество А содержащее все элементы универсального множества U, не являющиеся элементами множества А, называется дополнением множества А.

Например, если Множества - определение и вычисление с примерами решения – универсальное множество, то дополнение множества Множества - определение и вычисление с примерами решенияимеет вид Множества - определение и вычисление с примерами решения

Очевидно, что Множества - определение и вычисление с примерами решения

т.е. множества А и А’ не имеют общих элементов, а также вес составляющие их элементы образуют в совокупности универсальное множество U.

Пример:

Пусть U универсальное множество. Найдите С’, если:

а) С = {все четные числа); b). Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения Выпишите все элементы множеств:

Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения {числа, кратные 4 и меньшие 50} и Q = {числа, кратные 6 и меньшие 50}. a) выпишите элементы множеств Р, Q;

b) найдите Множества - определение и вычисление с примерами решения с) Найдите Множества - определение и вычисление с примерами решения

d) проверьте выполнение равенства Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Значит, Множества - определение и вычисление с примерами решения равенство является верным. 

Диаграммы Венна

Множества - определение и вычисление с примерами решения

Например, на этом рисунке изображено множество А, лежащее внутри универсального множества Множества - определение и вычисление с примерами решенияЗакрашенная область вне круга означает дополнение А ’ множества А:

Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решенияи Множества - определение и вычисление с примерами решения, то они изображаются на диаграмме Венна следующим образом:

Множества - определение и вычисление с примерами решения

Мы знаем, что если Множества - определение и вычисление с примерами решения то любой элемент множества В принадлежит множеству А. Значит, на соответствующей диаграмме Венна круг, обозначающий множество В, лежит в круге, обозначающем множество А:

Множества - определение и вычисление с примерами решения

Все элементы пересечения Множества - определение и вычисление с примерами решениялежат как в А, так и в В. Значит, на соответствующей диаграмме Венна закрашенная область изображает множество Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Все элементы объединения A U В принадлежат либо А, либо В, либо обоим одновременно. Значит, на соответствующей диаграмме Венна область, соответствующая множеству A U В, изображается следующим образом: Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения Изобразите на диаграмме

Венна множества:

Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Удобно на диаграмме Венна множества раскрашивать.

Например, на рисунке раскрашены множества А, Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Высказывание

Высказывание – это повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Вопросительные предложения, повествовательные предложения, описывающие личное отношение субъекта, например «Зеленый цвет приятен», не являются высказываниями. Отметим, что существуют высказывания, истинность или ложность которых не определяются однозначно.

Например, высказывание “Этот писатель родился в Ташкенте” может быть истинным по отношению к некоторым писателям и ложным по отношению к другим.

Пример:

Укажите, какие из предложений являются высказываниями. В случае, когда предложение является высказыванием, однозначно ли определяется его истинность – ложность?

а) 20:4=80; b) 25-8=200;

с) Где мой карандаш? d) У тебя глаза голубые.

Решение:

a) Это высказывание и оно ложно, так как 20:4=5;

b) это высказывание и оно истинно;

c) это вопросительное предложение и поэтому оно не является высказыванием;

d) это высказывание. Истинность-ложность его определяется неоднозначно, так как применительно к некоторым людям оно истинно, а к другим – ложно.

Мы будем обозначать высказывания буквами p,q,r … .

Например, р: во вторник прошел дождь; q: 20:4=5; r: х – четное число. Для построения нескольких сложных высказываний служат символы, называемые логическими связками: Множества - определение и вычисление с примерами решения(конъюнкция, “и”, “но”), Множества - определение и вычисление с примерами решения(дизъюнкция, “или”), Множества - определение и вычисление с примерами решения(отрицание,” не ….”,”неверно, что ….”).

Рассмотрим их подробней.

Отрицание

Для высказывания р высказывание вида “не р” или “неверно, что р” называется отрицанием высказывания р и обозначается как Множества - определение и вычисление с примерами решения

Например,

отрицанием высказывания

р: Во вторник шел дождь

является высказывание

Множества - определение и вычисление с примерами решения: Во вторник дождя не было;

Отрицанием высказывания

р: У Мадины глаза голубые

является высказывание

Множества - определение и вычисление с примерами решения: У Мадины глаза не голубые.

Ясно, что если р истинно, то Множества - определение и вычисление с примерами решения ложно, и наоборот, если р ложно, то Множества - определение и вычисление с примерами решенияистинно. Этот факт иллюстрируется так называемой таблицей истинности. Такая таблица позволяет, исходя из высказывания р, заключить об истинности Множества - определение и вычисление с примерами решения или ложности Множества - определение и вычисление с примерами решения нового высказывания Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

1 Буквы Т и F – начальные буквы английских слов “true” (истинно) и “false” (ложно) соответственно.

Пример:

Составьте отрицание высказывания:

Множества - определение и вычисление с примерами решения

Решение:

Удобно находить отрицание высказывания с помощью диаграмм Венна. Например, рассмотрим высказывание: Множества - определение и вычисление с примерами решения

р: “Число х больше, чем 10 “.

На диаграмме U – множество всех чисел, множество Р – множество истинности высказывания р, то есть множество всех х , для которых это высказывание истинно. Множество Р’ является множеством истинности отрицания Множества - определение и вычисление с примерами решения: “Число х меньше или равно 10”.

Пример:

На множестве Множества - определение и вычисление с примерами решениярассмотрим высказывание р: х- простое число. Найдите множества истинности высказываний Множества - определение и вычисление с примерами решения

Решение:

Пусть множество Р – множество истинности высказывания р, а множество Р’ – множество высказывания Множества - определение и вычисление с примерами решения. Тогда эти множества изображаются на диаграмме Венна следующим образом:

Множества - определение и вычисление с примерами решения

Конъюнкция

Высказывание, образованное из двух высказываний с помощью связки “и”, называется конъюнкцией заданных высказываний.

Конъюнкция высказываний р, q обозначается через Множества - определение и вычисление с примерами решения

Например, конъюнкция высказываний,

р: Эльдар на завтрак ел плов;

q: Эльдар на завтрак ел самсу.

имеет вид:

Множества - определение и вычисление с примерами решения Эльдар на завтрак ел плов и самсу.

Видно, что высказывание Множества - определение и вычисление с примерами решения верно, если Эльдар на завтрак ел и плов и самсу, то есть высказывание Множества - определение и вычисление с примерами решения истинно при истинности обоих высказываний. Если хотя бы одно из высказываний р, q ложно, то высказывание Множества - определение и вычисление с примерами решения является ложным. Конъюнкция высказываний р, q имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения истинно, когда оба высказывания р, q истинны. Множества - определение и вычисление с примерами решения ложно, когда хотя бы одно из высказываний р, q ложно.

Первый и второй столбцы таблицы составлены из всех возможных значений истинности высказываний р, q.

На диаграмме Р – множество истинности высказывания р, Q – множество истинности высказывания q , а множество истинности высказывания Множества - определение и вычисление с примерами решения является множеством Множества - определение и вычисление с примерами решения на котором истинны оба высказывания:

Множества - определение и вычисление с примерами решения

Дизъюнкция

Высказывание, образованное из двух высказываний с помощью связки “или”, называется дизъюнкцией заданных высказываний.

Дизъюнкция высказываний р, q обозначается через Множества - определение и вычисление с примерами решения

Например, дизъюнкция высказываний,

р: Эльдар сегодня посетит библиотеку,

q: Эльдар сегодня посетит театр .

имеет вид:

Множества - определение и вычисление с примерами решения Эльдар сегодня посетит библиотеку или театр.

ВысказываниеМножества - определение и вычисление с примерами решения истинно, когда сегодня Эльдар посетит либо библиотеку, либо театр, либо и то и другое.

Высказывание Множества - определение и вычисление с примерами решения будет ложным, лишь когда оба высказывания р, q будут ложными одновременно.

Дизъюнкция имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

pVq истинно, когда хотя бы одно из высказываний р, q истинно.

pVq ложно, когда оба высказывания p, q ложны.

На диаграмме Р – множество истинности высказывания р, Q – множество истинности высказывания q, а множество истинности высказывания pVq является множество Множества - определение и вычисление с примерами решения, на котором истинно хотя бы одно высказывание:

Множества - определение и вычисление с примерами решения

Логическая равносильность

Составим, используя буквы и символы логических связок таких, как отрицание, конъюнкция и дизъюнкция, символическую запись более сложных высказываний естественного языка, при этом не обращая внимания на их истинность или ложность.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Объединяя таблицы истинности для отрицания, конъюнкции и дизъюнкции, можно составить таблицы истинности для более сложных высказываний: Множества - определение и вычисление с примерами решения

Пример 1. Составьте таблицу истинности высказывания Множества - определение и вычисление с примерами решения

1 шаг.

Выпишем таблицу и заполним сначала первый и второй столбец всеми возможными значениями истинности р и q:

Множества - определение и вычисление с примерами решения

2 шаг. Учитывая значения истинности q, заполним третий столбец значениями истинности Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

3 шаг Учитывая значения истинности p и Множества - определение и вычисление с примерами решениязаполним четвертый столбец значениями истинности Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Высказывание, являющееся истинным всегда, называется законом логики или тавтологией.

То, что высказывание является законом логики, можно доказать при помощи таблицы истинности.

Пример:

Докажите, что высказываниеМножества - определение и вычисление с примерами решенияявляется тавтологией.

Заполним таблицу истинности:

Множества - определение и вычисление с примерами решения

Решение:

Видно, что высказывание Множества - определение и вычисление с примерами решения принимает только истинные значения (см. третий столбец). Поэтому данное высказывание является тавтологией. 

Если для двух высказываний соответствующие их значениям истинности столбцы одинаковы, то эти высказывания называются логически равносильными.

Пример:

Докажите, что следующие высказывания являются логически равносильнымиМножества - определение и вычисление с примерами решения

Решение:

Составим таблицы истинности для высказываний Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Так как у высказыванийМножества - определение и вычисление с примерами решения соответствующие значениям истинности столбцы одинаковы, то эти высказывания являются логически равносильными.

Мы будем обозначать этот факт так:Множества - определение и вычисление с примерами решения

Импликация

Высказывание, образуемое из двух высказываний с помощью связки “если …., то …” называется импликацией этих двух высказываний.

Импликация “Если р, то q” обозначается какМножества - определение и вычисление с примерами решения и имеет также следующие интерпретации “Из р следует (вытекает) q”, “Высказывание р достаточно для q “, “Высказывание q необходимо для р”.

При этом высказывание р называется достаточным условием для q, а высказывание q – необходимым условием для р.

высказывание q – необходимым условием для р.

Рассмотрим , например, высказывания

р: У Сардора есть телевизор; q: Сардор будет смотреть кино.

Тогда высказывание Множества - определение и вычисление с примерами решения означает:

Если у Сардора есть телевизор, то он будет смотреть кино.

Точно такжеМножества - определение и вычисление с примерами решения

Для того, чтобы Сардор смотрел кино достаточно, чтобы у него был телевизор.

Можно заметить, что высказывание Множества - определение и вычисление с примерами решения ложно, лишь когда высказывание р истинно, а высказывание q ложно, а в остальных случаях – истинно. Поэтому имеем следующую таблицу истинности:

Множества - определение и вычисление с примерами решения Из высказываний и логических связок, не обращая на значения истинности, можно составить более сложные высказывания.

Пример:

Рассмотрим высказывания

р: “Анора часто смотрит кинофильмы”;

q: “Барно часто смотрит кинофильмы

r: “Барно не сдаст экзамен”;

s: “произойдет чудо”.

 Имеем: 1. Множества - определение и вычисление с примерами решения“Анора часто смотрит кинофильмы, а Барно – нет”.

2. Множества - определение и вычисление с примерами решения“Если Анора часто смотрит кинофильмы, то Барно нет”.

3. Множества - определение и вычисление с примерами решения “Если Барно часто смотрит кинофильмы, то она или не сдаст экзамен или произойдет чудо”.

4. Множества - определение и вычисление с примерами решения “Если Барно часто смотрит кинофильмы и при этом не произойдет чуда, то Барно не сдаст экзамен”.

5. Множества - определение и вычисление с примерами решения “Либо Барно часто смотрит кинофильмы и произойдет чудо, либо Барно не сдаст экзамен”.

Эквиваленция

Высказывание вида Множества - определение и вычисление с примерами решения называется эквиваленцией высказываний и обозначается так: Множества - определение и вычисление с примерами решения

Запись Множества - определение и вычисление с примерами решения читается как “высказывание р необходимо и достаточно для q” или как “высказывание р истинно лишь при выполнении q”.

Пример:

р: х – четно, q: последняя цифра числа х четна. Выразите высказывание Множества - определение и вычисление с примерами решения

Решение:

Рассмотрим высказывание,Множества - определение и вычисление с примерами решения: Если х- четно, то его последняя цифра четна;

Множества - определение и вычисление с примерами решения Если последняя цифра числа х четна, то х – четно.

Тогда запись Множества - определение и вычисление с примерами решениячитается , как “Для того чтобы число х было четно, необходимо и достаточно, чтобы последняя его цифра была четной”. ^ Теперь для заданных высказываний р и q составим таблицу истинности высказывания Множества - определение и вычисление с примерами решения:

Множества - определение и вычисление с примерами решения

Видно, что высказывание Множества - определение и вычисление с примерами решениябудет истинным, лишь когда высказывания р и q принимают одинаковые значения истинности (то есть когда они оба одновременно истинны или одновременно ложны ).

Множества - определение и вычисление с примерами решения

Конверсия

Конверсией высказывания Множества - определение и вычисление с примерами решения называется высказываниеМножества - определение и вычисление с примерами решения

Конверсия имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Пример:

Рассмотрим высказывания

р: треугольник равнобедренный,

q: два угла треугольника равны.

Выразите на естественном языке высказывание Множества - определение и вычисление с примерами решения и его конверсию.

Решение:

Множества - определение и вычисление с примерами решенияЕсли треугольник равнобедренный, то у него два угла равны.

Множества - определение и вычисление с примерами решенияЕсли два угла треугольника равны, то он равнобедренный .

Инверсия

Инверсией высказыванияМножества - определение и вычисление с примерами решения называется высказывание Множества - определение и вычисление с примерами решения Инверсия имеет следующую таблицу истинности:

Эта таблица совпадает с таблицей истинности высказывания Множества - определение и вычисление с примерами решения. Поэтому конверсия и инверсия логически равносильны.

Множества - определение и вычисление с примерами решения

Контрапозиция

Контрапозицией высказывания Множества - определение и вычисление с примерами решенияназывается высказывание Множества - определение и вычисление с примерами решения Контрапозиция имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Эта таблица совпадает с таблицей истинности высказывания Множества - определение и вычисление с примерами решенияПоэтому импликация и контрапозиция логически равносильны.

Пример:

Рассмотрим высказывание. Все учителя живут поблизости от школы”. Составим его контрапозицию.

Решение:

Данное высказывание можно сформулировать так: “Если этот человек – учитель, что он живет поблизости от школы”.

Это предложение имеет форму Множества - определение и вычисление с примерами решения, где

р: этот человек – учитель,

q: этот человек живет поблизости от школы.

Контрапозиция Множества - определение и вычисление с примерами решения имеет вид:

“Если этот человек не живет поблизости от школы, то он не является учителем.

Пример:

Рассмотрим высказывания:

р: Самандар находится в библиотеке, q: Самандар читает книгу.

Составьте имликацию, конверсию, инверсию и контрапозицию

Решение:

Множества - определение и вычисление с примерами решения

Отметим, что импликация и конверсия логически не равносильны, так как , например , Самандар может читать книгу и в классе.

Предикаты и кванторы

В некоторых предложениях участвуют переменные, при этом подставив вместо них конкретные значения, получим высказывания. Такие предложения называются предикатами.

Пример:

Пусть задан предикат Множества - определение и вычисление с примерами решения Определите истинность или ложность высказываний Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

В некоторых предикатах переменную можно определить исходя из контекста.

Например, в предложениях “Этот писатель родился в Ташкенте” и “Он родился в Ташкенте” переменными являются словосочетание”. “Этот писатель” и местоимение “он” соответственно. Если вместо переменной подставить значение “Абдулла Кадыри”, получим истинное высказывание “Абдулла Кадыри родился в Ташкенте”. Если вместо переменной подставить значение “Шекспир”, получим ложное высказывание “Шекспир родился в Ташкенте”.

Обозначив переменную через х, вышеуказанные предложения можно записать в виде “х родился в Ташкенте”.

В предикате могут участвовать одно или несколько переменных. В зависимости от количества переменных, участвующих в предикате, будем обозначать его так: Множества - определение и вычисление с примерами решения

Используя совместно с предикатом специальные символы Множества - определение и вычисление с примерами решения(квантор всеобщности, “для всех … “) и Множества - определение и вычисление с примерами решения (квантор существования, “существует такой, что ….”), можно образовать новые высказывания

Например, новое высказывание вида Множества - определение и вычисление с примерами решения говорит о том, что для всех значений х верно Р(х), высказывание вида Множества - определение и вычисление с примерами решения говорит о том, что значений х верно Р(х).

К примеру, рассмотрим предикат Р(х): “х родился в Самарканде”. Тогда высказывание Множества - определение и вычисление с примерами решениячитается как “все родились в Самарканде”, а высказывание Множества - определение и вычисление с примерами решения – “некоторые родились в Самарканде”.

Приведем примеры, в которых можно определить истинность-ложность высказываний видаМножества - определение и вычисление с примерами решения

Пример:

ПустьМножества - определение и вычисление с примерами решения Докажите истинность высказывания: Множества - определение и вычисление с примерами решения

Решение:

 Проверим: Множества - определение и вычисление с примерами решения

Значит, высказывание, Множества - определение и вычисление с примерами решенияистинно.

Следует отметить, что для того, чтобы доказать ложность высказывания Множества - определение и вычисление с примерами решения достаточно, привести пример хотя бы одного значения х такого, что высказываниеМножества - определение и вычисление с примерами решения, ложно.

Действительно, приМножества - определение и вычисление с примерами решения

Любое значениех, которое показывает, что высказывание Множества - определение и вычисление с примерами решенияложно, называется контрпримером.

Пример:

Докажите истинность высказывания Множества - определение и вычисление с примерами решения

Решение:

Так как Множества - определение и вычисление с примерами решения то высказывание, Множества - определение и вычисление с примерами решенияистинно.

Если же Множества - определение и вычисление с примерами решения, то высказывание Множества - определение и вычисление с примерами решения ложно, ибо

Множества - определение и вычисление с примерами решения

Приведем два важных закона логики, связанных с операцией отрицания:Множества - определение и вычисление с примерами решения

Для понимания смысла этих законов приведем пример.

Если запись Множества - определение и вычисление с примерами решения означает Множества - определение и вычисление с примерами решения“Среди моих одноклассников

не существует отличников”, тогда запись означает логически равносильное ему утверждение “Все мои одноклассники не являются отличниками”.

Точно также, формула Множества - определение и вычисление с примерами решения означает высказывание “Неверно, что все мои одноклассники – отличники “, а формулаМножества - определение и вычисление с примерами решенияозначает логически равносильное ему высказывание “Некоторые мои одноклассники не являются отличниками”.

Очевидно, что с помощью кванторов и предиката Множества - определение и вычисление с примерами решения можно построить зависящие от одной переменной предикаты вида:

Множества - определение и вычисление с примерами решения

из которых, в свою очередь, можно построить всказывания вида:

Множества - определение и вычисление с примерами решения

В то время, когда смысл высказываний Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решенияа также смысл высказыванийМножества - определение и вычисление с примерами решения,одинаков, оказывается, что высказывания Множества - определение и вычисление с примерами решенияне являются равносильными.

Рассмотрим, например, предикат Р(х,у): человек у – отец моего одноклассника х.

В этом случаеМножества - определение и вычисление с примерами решения = означает высказывание “у каждого моего одноклассника есть отец”; а Множества - определение и вычисление с примерами решенияозначает высказывание “существует такой человек, который является отцом всех моих одноклассников”.

Аналогично можно показать, что высказывания,Множества - определение и вычисление с примерами решенияне являются равносильными (приведите примеры самостоятельно).

С помощью кванторов и предикатов можно построить и другие законы логики. Например, высказывание «Если все вороны черные, то ни одна не черная птица не является вороной “, служит примером закона логики вида:

Множества - определение и вычисление с примерами решения

Законы правильного мышления (аргументации)

В процессе познания действительности мы приобретаем новые знания. Некоторые из них непосредственно, в результате воздействия предметов внешнего мира на органы чувств. Но большую часть знаний мы получаем пу тем выведения новых знаний из знаний уже имеющихся. Чтобы научиться стройно и последовательно излагать свои мысли, правильно делать выводы, необходимо пользоваться законами логики. Определенность, непротиворечивость, последовательность и обоснованность являются обязательными качествами правильного мышления. Законы логики устанавливают необходимые связи в последовательном ряду мыслей и умозаключений.

Суждение представляет собой форму мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях. Например, в суждении «Железо-металл» утверждается связь между предметом (железо) и его признаком (являться металлом). В суждении «Яйцо появилось раньше курицы » утверждается связь между двумя предметами (яйцо и курица). Так как суждение выражается в форме повествовательного предложения, причем суждение может быть либо истинным, либо ложным, то каждое суждение имеет форму высказывания.

Умозаключение- это такая форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам получается некоторое суждение, называемое заключением или выводом.

Пусть S-совокупность исходных суждений (посылок), Р- заключение. В этом случае, умозаключение имеет логическую форму вида Множества - определение и вычисление с примерами решенияСовокупность высказываний S будем называть основанием, а высказывание Р- следствием. Основание и следствие будем связывать словом «следовательно» и отделять горизонтальной чертой: Множества - определение и вычисление с примерами решения . Рассмотрим простой пример.

Если Собир занимается спортом, то будет здоров. Собир занимается спортом. Следовательно, Собир будет здоров.

Найдем логическую форму этого умозаключения.

Пусть р: Собир занимается спортом; q: Собир будет здоров. Тогда умозаключение имеет вид:

Множества - определение и вычисление с примерами решения

Так следствие вытекает из суждений Множества - определение и вычисление с примерами решенияи р, то умозаключение имеет следующую логическую форму Множества - определение и вычисление с примерами решения

Составим соответствующую таблицу истинности: Множества - определение и вычисление с примерами решения

Получили тавтологию. Это показывает правильность умозаключения, то есть мы из данного основания получили правильное следствие.

Пример:

Покажите неправильность умозаключения:

Если треугольник имеет три стороны, то 2+4-7.

Следовательно, треугольник имеет три стороны.

Решение:

Найдем логическую форму этого умозаключения.

р: треугольник имеет три стороны.

q: 2+4=7

Имеем:

Множества - определение и вычисление с примерами решения

Так как здесь Множества - определение и вычисление с примерами решенияследует q, то наше умозаключение имеет логическую форму Множества - определение и вычисление с примерами решения

Составим соответствующую таблицу истинности:

Множества - определение и вычисление с примерами решения

В результате мы не получили тавтологию. Это показывает неверность умозаключения, то есть мы из данного основания не получили правильное следствие.

Ниже мы приведем некоторые правила правильных умозаключений:

Множества - определение и вычисление с примерами решения

Доказательство верности вышеуказанных умозаключений мы оставляем учащимся в качестве упражнения.

Софизмы и парадоксы

Множества - определение и вычисление с примерами решения– представляют собой преднамеренные, сознательно совершаемые ошибки, рассчитанные на то, чтобы выдать ложь за истину, тем самым вводя человека в заблуждение.

Одним из первых соответствующие примеры привел математик Зенон, живший в 5 веке до нашей эры в Древней Греции. Например, Зенон «доказал», что быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения она находится впереди Ахиллеса. Приведем его рассуждения. Допустим, Ахиллес бежит в 10 раз быстрее, чем черепаха, и находи тся позади нее на расстоянии в 100 шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползет 10 шагов.

За то время, за которое Ахиллес пробежит 10 шагов, черепаха проползет еще 1 шаг, и так далее. Процесс будет длиться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Примеры Зенона связаны с понятиями бесконечности и движения, которые имели большое значение в развитии физики и математики.

Некоторые софизмы обсуждали в переписке между собой наши великие соотечественники Беруни и Ибн Сино, а также они встречаются в произведениях Фараби.

Приведем простейшие примеры на софизмы и обсудим их.

Пример:

Куда пропали 1000 руб? Три друга отобедали в кафе, после чего официант дал им счет на 25000 руб. Каждый из трех друзей достал по купюре в 10000 руб, в итоге они отдали официанту 30000 руб. На сдачу официант отдал 5000 руб более мелкими купюрами. Друзья взяли по 1000 руб себе, а оставшиеся 2000 руб отдали другу на такси. Один из друзей стал рассуждать: “Каждый из нас потратил по 9000 руб, что в итоге составляет 27000 руб. Затем 2000 руб отдали на такси, значит, в итоге получается 29000 руб. Куда пропали 1000 руб?”

Решение:

 Основной «подвох» в этом рассуждении заключается в том, что 2 От древнегреческого уловка.

расчеты сделаны неверно. Действительно, трое друзей сложились по 9000 руб и получили 27000 руб. Из этих денег 25000 руб заплатили за обед, а 2000 руб заплатили за такси. Следовательно, общая трата составила 27000 руб. Тс 2000 руб находятся внутри 27000 руб.

Пример:

Множества - определение и вычисление с примерами решенияУпростим верное равенство: 20-16-4=25-20-5

2(10—8—2)=25—20—5

2-2-(5—4—1)=5-(5—4—1)

Сократим левую и правую часть последнего равенства на общий делитель (5-4-1). В итоге получим равенство 2-2=5.

Основной «подвох» в этом рассуждении заключается в том, что мы поделили обе части равенства 2-2-(5-4-1)=5-(5-4-1) на нуль.

Множества - определение и вычисление с примерами решения – странное мнение, высказывание, расходящееся с общепринятыми мнениями, научными положениями, а также мнение, противоречащее здравому смыслу. Сам термин «парадокс» использовался в античной философии для обозначения всякого странного, оригинального мнения.

Парадоксы, обычно, возникают в теориях, логические основы которых не определены полно.

Пример:

Парадокс лжеца. Рассмотрим высказывание “То, что я утверждаю сейчас – ложь”.

Если это высказывание истинно, значит, исходя из его содержания, верно то, что данное высказывание -ложь. Но если оно -ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.

Пример:

Прилагательное русского языка назовем рефлексивным, если оно обладает свойством, которое определяет.

Например, прилагательное «русский» – рефлексивное, а прилагательное «английский» – нерефлексивное, прилагательное «трехсложный» – рефлексивное (это слово состоит из трех слогов), а прилагательное «четырехсложный» – нерефлсксивное (состоит из пяти слогов). Вроде бы ничто не мешает нам определить множество {все рефлексивные прилагательные}. Но давайте рассмотрим прилагательное «нерефлексивный». Оно рефлексивное или нет?

Можно заявить, что прилагательное «нерефлексивный» не является ни рефлексивным, ни нерефлексивным. Действительно, если это слово рефлексивное, то по своему смыслу, оно нерефлексивное. Если же это от древнегреческого Множества - определение и вычисление с примерами решения – неожиданный, странный слово нерефлексивное, то, в силу того, что оно обладает свойством, которое определяет, оно является рефлексивным. Противоречие.

Пример:

Два взаимно пересекающихся множества А, В делят универсальное множество на четыре части:

Множества - определение и вычисление с примерами решения

Следовательно, число элементов универсального множества является суммой количеств элементов этих частей.

На следующей диаграмме мы заключили известные количества элементов частей универсального множества в круглые скобки: Множества - определение и вычисление с примерами решения

Здесь, например, обоим множествам А, В принадлежат 4 элемента, а 3 элемента не принадлежат ни одному из них.

Так как произвольный элемент множества U, принадлежит только одному из этих 4 частей , то число элементов множества U равно 7+4+6+3=20.

Пример:

Используя рисунок, найдите число элементов следующих множеств: Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

d). Множество элементов, принадлежащих Р, но не принадлежащих Q

е) Множество элементов, принадлежащих Q, но не принадлежащих Р;

f) Множество элементов, не принадлежащих ни Р, ни Q.

Множества - определение и вычисление с примерами решения

Пример:

Если Множества - определение и вычисление с примерами решения

a) Найдите Множества - определение и вычисление с примерами решения

b) Сколько элементов содержит множество элементов, принадлежащих А, но не принадлежащих В‘?

Решение:

Составим диаграмму Венна:

Из того, что Множества - определение и вычисление с примерами решенияСледовательно, b=6, а=8, с= 11, d=5.

Множества - определение и вычисление с примерами решения

Из диаграммы получаем следующее:

Множества - определение и вычисление с примерами решения

b) Число элементов, принадлежащих А, но не принадлежащих В, равно а= 8

Пример:

Из 27 учеников, посещающих спортивную секцию, 19 имеют темные волосы, 14 – черные глаза, а 11 имеют и темные волосы и черные глаза одновременно.

a) Изобразите эту информацию с помощью диаграммы Венна. Объясните ситуацию.

b) Найдите число учеников, которые I имеют или темные волосы или черные глаза; II темноволосых, но не черноглазых?

Решение:

а) Пусть Qs – множество темноволосых, a Qk множество черноглазых учеников.

Изобразим ситуацию на диаграмме:

Множества - определение и вычисление с примерами решения

b) Используя диаграмму, определим следующее:

I количество учеников, имеющих или темные волосы или черные глаза:

Множества - определение и вычисление с примерами решения

II количество темноволосых учеников, не обладающих черными глазами:

Множества - определение и вычисление с примерами решения

Пример:

На футбольном соревновании город представляют три команды А, В и С. 20 процентов населения города болеют за команду И, 24 процента – за В, 28 процентов – за С. 4 процента жителей болеют и за С и за И, 5 процент, жителей болеют и за В и за А, а 6 процентов жителей болеют и за В и за С. Кроме того, 1 процент населения болеет за все три команды.

Сколько процентов жителей:

a) болеют только за команду А;

b) болеют и за А и за В, но не болеют за команду С;

c) не болеют ни за одну из команд?

Решение:

Заполним для начала соответствующую диаграмму Венна.

Множества - определение и вычисление с примерами решения

а= 1, так как 1 процент жителей болеет за все команды.

a+d=4, так как 4 процента жителей болеет и за И и за В.

а+b=6, так как 6 процентов жителей болеют и за В и за С а+с=5, так как 5 процентов жителей болеют

—-

Множества

Понятие множества принадлежит к числу первичных, не определяемых через более простые. Под множеством понимается совокупность некоторых объектов, объединенных по определенному признаку. Объекты, которые образуют множество, называются элементами, или точками, этого множества.

Множества обозначаются прописными буквами, а их элементы – строчными. Если Множества - определение и вычисление с примерами решения есть элемент множества А, то используется запись Множества - определение и вычисление с примерами решения если b не является элементом множества А, то записывают Множества - определение и вычисление с примерами решения

Например, Множества - определение и вычисление с примерами решения – множество А состоит из элементов 1;3;6;8.

Множество, не содержащее ни одного элемента, называется пустым и обозначается Множества - определение и вычисление с примерами решения Например, множество действительных корней уравнения Множества - определение и вычисление с примерами решения есть пустое множество.

Два множества называются равными, если они состоят из одних и тех же элементов. Например, если Множества - определение и вычисление с примерами решения т.е.
множества равны.

Объединением двух множеств А и В называется множество С, состоящее из элементов, принадлежащих хотя бы одному из данных множеств, т.е. Множества - определение и вычисление с примерами решения

Пересечением двух множеств А и В называется множество D, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств А и В, т.е. Множества - определение и вычисление с примерами решения

Разностью двух множеств А и В называется множество E, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е. Множества - определение и вычисление с примерами решения

Пример 1. Даны множества  Множества - определение и вычисление с примерами решения Найти объединение, пересечение и разность множеств А и В.

Решение. Объединение двух данных множеств – Множества - определение и вычисление с примерами решения их пересечение – Множества - определение и вычисление с примерами решения а разностью – Множества - определение и вычисление с примерами решения  .

Множества, элементами которых являются действительные числа, называются числовыми.

Обозначения множеств:

Множества - определение и вычисление с примерами решения – множество натуральных чисел.

Множества - определение и вычисление с примерами решения – множество целых чисел;
Множества - определение и вычисление с примерами решения– множество рациональных чисел;

R – множество действительных чисел;

I – множество иррациональных чисел;

Множества - определение и вычисление с примерами решения – множество комплексных чисел.

Геометрически, каждому действительному числу соответствует точка числовой оси, и наоборот, каждой точке прямой – определенное действительное число.

Множество X, элементы  которого удовлетворяют: неравенству Множества - определение и вычисление с примерами решенияназывается отрезком Множества - определение и вычисление с примерами решения неравенству Множества - определение и вычисление с примерами решения называется интервалом Множества - определение и вычисление с примерами решениянеравенствам Множества - определение и вычисление с примерами решения называются полуинтервалом соответственно Множества - определение и вычисление с примерами решения

В дальнейшем все указанные множества мы объединяем термином промежуток X.

——

Множества и операции над ними

Под множеством будем понимать совокупность объектов, наделенных определенными свойствами. Эти свойства должны полностью определять данное множество, то есть являться признаками, по которым относительно любого объекта можно решить, принадлежит он данному множеству или нет. Синонимами термина “множество” являются термины “класс “семейство “совокупность”. Объекты, из которых состоит данное множество, называют его элементами.

Чаще всего множество обозначают большими буквами латинского или греческого алфавита, а его элементы — малыми буквами. Если a — элемент множества A, то пишут a ∈ A (читают: “a принадлежит множеству A”) или A 3 a (множество A содержит элемент a). Запись a ∈/ A означает, что a не является элементом множества A.
Множество обычно записывают одним из следующих способов:

A = {a , . . . , Множества - определение и вычисление с примерами решения} или A = {x ∈ X : P (x)}.

Первая запись означает, что множество A состоит из элементов a, . . . , Множества - определение и вычисление с примерами решения , то есть перечислены элементы, составляющие A, их может быть конечное число или бесконечно много. Вторая запись означает, что A есть совокупность всех тех объектов из множества X, для которых выполняется свойство P . Формально введем пустое множество — множество, не содержащее в себе никаких элементов, которое обозначим символом Множества - определение и вычисление с примерами решения.

Определение 1.1. Множества A и B называются равными (или совпадающими), если они состоят из одних и тех же элементов, то есть x ∈ A тогда и только тогда, когда x ∈ B .

Коротко это высказывание записывают: A = B, а отрицание этого утверждения — в виде: Множества - определение и вычисление с примерами решения .

Определение 1.2. Если каждый элемент множества A является элементом множества B , то говорят, что A есть подмножество множества B (или A есть часть B ), и пишут A ⊂ B (читается: “Множество A содержится в множестве B”) или B ⊃ A (читается: “Множестоо B содержит множество A”).

Отметим следующие свойства отношения включения:
1.    A ⊂ A, то есть всякое множество есть подмножество себя самого;
2.    Если A ⊂ B и B ⊂ C, то A ⊂ C (отношение включения транзитивно);
3.    Если A ⊂ B и B ⊂ A, то A = B.

Удобно считать, что Множества - определение и вычисление с примерами решения⊂ A для любого множества A.

Пусть A и B — некоторые подмножества множества E. Введем наиболее простые операции с множествами.

Определение 1.3. Объединением множеств A и B называется множество, обозначаемое A ∪ B и состоящее из всех элементов, которые принадлежат или множеству A или B .

Таким образом, x ∈ A ∪ B , если x ∈ A, но x Множества - определение и вычисление с примерами решения B , или x ∈ B , но x Множества - определение и вычисление с примерами решения A, или x ∈ A и x ∈ B. Очевидно, что A ∪ A = A, A ∪ Множества - определение и вычисление с примерами решения = A.

Определение 1.4. Пересечением множеств A и B называют множество, обозначаемое A∩B и состоящее из всех элементов, каждый из которых принадлежит и A и B .

Если множества A и B не имеют общих точек, то A ∩ B =Множества - определение и вычисление с примерами решения. Очевидно, что A∩A= A, A∩Множества - определение и вычисление с примерами решения= Множества - определение и вычисление с примерами решения.

Определение 1.5. Разностью множеств A и B называют множество, обозначаемое A B и состоящее из всех элементов множества A, которые не принадлежат множеству B .

Если A ⊂ B , то часто множество A B называют дополнением множества B до A. По определению A A = Множества - определение и вычисление с примерами решения, A Множества - определение и вычисление с примерами решения = A.

Пример 1.1. Пусть A = {1,3,4,8, 15} ,B = {1,2,7,8, 12}. Тогда

A∪B = {1,2,3,4,7,8,12,15}, A∩B = {1, 8},

AB = {3, 4, 15}, BA= {2, 7, 12}

Определение 1.6. Набор, состоящий из двух элементов x1 и x2, называют упорядоченным, если известно, какой из этих элементов является первым, а какой — вторым. Такой упорядоченный набор называют упорядоченной парой и обозначают (x1, x2). Элементы x1 , x2 называют, соответственно, первой и второй координатами пары (x1, x2). Пары (x1, x2) и (y1 , y2) называют совпадающими, если x1 = y1 и x2 = y2 .

Определение 1.7. Декартовым (или, по-другому, прямым) произведением множеств A и B называют множество упорядоченных пар (x, y), где первый элемент x является элементом множества A, а второй y — элементом множества B . Это множество обозначают символом A × B .

Таким образом, A × B = { (x, y) | x ∈ A, y ∈ B}. Но, вообще говоря, A × BМножества - определение и вычисление с примерами решения B × A. Известная всем плоскость с декартовой системой координат является декартовым произведением двух числовых прямых (осей).

Пусть A и B — числовые отрезки, помещенные на взаимно перпендикулярных осях плоскости. Упорядоченная пара (x, y) — это точка пересечения перпендикуляров, восстановленных в точках x ∈ A и y ∈ B . Произведением A × B является прямоугольник.

Логическая символика

В последующем, как и в большинстве математических текстов используется ряд специальных символов, многие из которых вводятся по мере надобности. Применяются распространенные символы математической логики Множества - определение и вычисление с примерами решения, Множества - определение и вычисление с примерами решения, ∃, ∀, которые читаются, соответственно, как “влечет” , “равносильно” , “существует” (“найдется”), “любой” (“каждый” , “для каждого” , “для любого” ).

Запись A Множества - определение и вычисление с примерами решения B читают одним из следующих способов: A влечет B , B следует из A, B — необходимое условие A, A — достаточное условие (признак) B.

Запись A Множества - определение и вычисление с примерами решения B читают одним из следующих способов: A равносильно B, A необходимо и достаточно для B , A верно тогда и только тогда, когда верно B . Квантор равносильности часто применяется в символьной записи определений и утверждений.

Запись “∃ x ∈ X ” означает: существует элемент x из множества X .
Запись “∀ x ∈ X ” означает: для любого элемента x из множества X или каков бы ни был элемент x из множества X .

Часто в символьной записи математических утверждений используют символ “:” или эквивалентный ему символ “| которые читают: “такой, что”. В частности, запись “∃ x ∈ X : x2 – 1 = 0″ означает: существует такой элемент x в множестве X , что x2 – 1 = 0.

  • Заказать решение задач по высшей математике

Множества

Множества и операции над ними

Понятие множества и его элементов

Элемент Множества - определение и вычисление с примерами решения принадлежит множеству Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения

Элемент Множества - определение и вычисление с примерами решения не принадлежит множеству Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

В множестве нет элементов Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий.

Каждый объект, принадлежащий множеству Множества - определение и вычисление с примерами решения, называется элементом этого множества.

Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается Множества - определение и вычисление с примерами решения

Подмножество Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Если каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, то говорят, что множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения, и записывают так: Множества - определение и вычисление с примерами решения Используется также запись Множества - определение и вычисление с примерами решения, если множество Множества - определение и вычисление с примерами решения или является подмножеством множества Множества - определение и вычисление с примерами решения, или равно множеству Множества - определение и вычисление с примерами решения

Равенство множеств

Множества - определение и вычисление с примерами решения

Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества

Пересечение множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Пересечением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют их общую часть, то есть множество Множества - определение и вычисление с примерами решения всех элементов, принадлежащих как множеству Множества - определение и вычисление с примерами решения, так и множеству Множества - определение и вычисление с примерами решения

Объединение множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Объединением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения)

Разность множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Разностью множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называется множество Множества - определение и вычисление с примерами решения, которое состоит из всех элементов, принадлежащих множеству Множества - определение и вычисление с примерами решения и не принадлежащих множеству Множества - определение и вычисление с примерами решения

Дополнение множеств

Множества - определение и вычисление с примерами решения

Если все рассматриваемые множества являются подмножествами некоторого универсального множества Множества - определение и вычисление с примерами решения, то разность Множества - определение и вычисление с примерами решения называется дополнением множества Множества - определение и вычисление с примерами решения. Другими словами, дополнением множества Множества - определение и вычисление с примерами решения называется множество, состоящее из всех элементов, не принадлежащих множеству Множества - определение и вычисление с примерами решения (но принадлежащих универсальному множеству Множества - определение и вычисление с примерами решения)

Объяснение и обоснование:

Понятие множества

Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д. В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.

Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество Множества - определение и вычисление с примерами решения состоит из чисел 1; 2; 3, то его обозначают так: Множества - определение и вычисление с примерами решения = {1; 2; 3}. Тот факт, что число 2 входит в это множество (является элементом данного множества Множества - определение и вычисление с примерами решения), записывается с помощью специального значка е следующим образом: Множества - определение и вычисление с примерами решения; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: Множества - определение и вычисление с примерами решения.

Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.

Например, множество простых делителей числа 1 — пустое множество.

Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом Множества - определение и вычисление с примерами решения, множество всех натуральных чисел — буквой Множества - определение и вычисление с примерами решения, множество всех целых чисел — буквой Множества - определение и вычисление с примерами решения, множество всех рациональных чисел — буквой Множества - определение и вычисление с примерами решения, а множество всех действительных чисел — буквой Множества - определение и вычисление с примерами решения. Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — конечные, потому что содержат конечное число элементов, а множества Множества - определение и вычисление с примерами решения — бесконечные.

Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило — характеристическое свойство, которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, множество Множества - определение и вычисление с примерами решения задано перечислением элементов, а множество Множества - определение и вычисление с примерами решения четных целых чисел — характеристическим свойством элементов множества. Последнее множество иногда записывают так: Множества - определение и вычисление с примерами решения или так: Множества - определение и вычисление с примерами решения — здесь после вертикальной черточки записано характеристическое Множества - определение и вычисление с примерами решения.

В общем виде запись множества с помощью характеристического свойства можно обозначить так: Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — характеристическое свойство. Например, Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решенияВ этом случае и в записи решений тригонометрических уравнений и неравенств в разделе 3 запись Множества - определение и вычисление с примерами решения означает, что Множества - определение и вычисление с примерами решения принимает любое целое значение, что также можно записать как Множества - определение и вычисление с примерами решения

Равенство множеств

Пусть Множества - определение и вычисление с примерами решения — множество цифр трехзначного числа 312, то есть Множества - определение и вычисление с примерами решения, а Множества - определение и вычисление с примерами решения — множество натуральных чисел, меньших чем 4, то есть Множества - определение и вычисление с примерами решения. Поскольку эти множества состоят из одних и тех же элементов, то они считаются равными. Это записывают так: Множества - определение и вычисление с примерами решения. Для бесконечных множеств таким способом (сравнивая все элементы) установить их равенство невозможно. Поэтому в общем случае равенство множеств определяется следующим образом.

Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.

Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, Множества - определение и вычисление с примерами решения, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.

Подмножество

Если каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, то говорят, что множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения.

Это записывают следующим образом: Множества - определение и вычисление с примерами решения

Например, Множества - определение и вычисление с примерами решения (поскольку любое натуральное число — целое), Множества - определение и вычисление с примерами решения (поскольку любое целое число — рациональное), Множества - определение и вычисление с примерами решения (поскольку любое рациональное число — действительное).

Полагают, что всегда Множества - определение и вычисление с примерами решения, то есть пустое множество является подмножеством любого непустого множества.

Иногда вместо записи Множества - определение и вычисление с примерами решения используется также запись Множества - определение и вычисление с примерами решения, если множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения, или равно множеству Множества - определение и вычисление с примерами решения. Например, Множества - определение и вычисление с примерами решения

Сопоставим определение равенства множеств с определением подмножества. Если множества Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения равны, то: 1) каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, следовательно, Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения; 2) каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, следовательно, Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения.

Таким образом, два множества равны, если каждое из них является подмножеством другого.

Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера—Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Операции над множествами

Над множествами можно выполнять определенные действия: пересечение, объединение, находить разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов Эйлера—Венна.

Пересечением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют их общую часть, то есть множество Множества - определение и вычисление с примерами решения всех элементов, принадлежащих как множеству Множества - определение и вычисление с примерами решения, так и множеству Множества - определение и вычисление с примерами решения.

Пересечение множеств обозначают знаком Множества - определение и вычисление с примерами решения (на рисунке 3 приведена иллюстрация определения пересечения множеств).

Например, если Множества - определение и вычисление с примерами решения то Множества - определение и вычисление с примерами решения.

Объединением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения).

Объединение множеств обозначают знаком Множества - определение и вычисление с примерами решения (на рисунке 4 приведена иллюстрация определения объединения множеств).

Например, для множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения из предыдущего примера Множества - определение и вычисление с примерами решения Если обозначить множество иррациональных чисел через Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения.

Разностью множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называется множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, которые принадлежат множеству Множества - определение и вычисление с примерами решения и не принадлежат множеству В.

Разность множеств обозначают знаком Множества - определение и вычисление с примерами решения. На рисунке 5 приведена иллюстрация определения разности множеств.

Например, если Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения, то разность Множества - определение и вычисление с примерами решения называют дополнением множества В до множества Множества - определение и вычисление с примерами решения (рис. 6).

Множества - определение и вычисление с примерами решения

Например, если обозначить множество всех иррациональных чисел через Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения: множество Множества - определение и вычисление с примерами решения всех иррациональных чисел дополняет множество Множества - определение и вычисление с примерами решения всех рациональных чисел до множества Множества - определение и вычисление с примерами решения всех действительных чисел.

Если все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества Множества - определение и вычисление с примерами решения (на рисунке его обычно изображают в виде прямоугольника, а все остальные множества — в виде кругов внутри этого прямоугольника, то разность Множества - определение и вычисление с примерами решения называют дополнением множества Множества - определение и вычисление с примерами решения (рис. 7). То есть дополнением множества Множества - определение и вычисление с примерами решения называется множество, состоящее из всех элементов, не принадлежащих множеству Множества - определение и вычисление с примерами решения, но принадлежащих универсальному множеству Множества - определение и вычисление с примерами решения.

Дополнение множества Множества - определение и вычисление с примерами решения обозначается Множества - определение и вычисление с примерами решения (можно читать: «Множества - определение и вычисление с примерами решения с чертой» или «дополнение Множества - определение и вычисление с примерами решения»).

Например, если Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения. Для этого примера удобно использовать традиционную иллюстрацию множества действительных чисел на числовой прямой (рис. 8).

Множества - определение и вычисление с примерами решения

Числовые множества. Множество действительных чисел

Числовые множества:

Действительные числа Множества - определение и вычисление с примерами решения

Числа, которые можно представить в виде бесконечной десятичной дроби

Рациональные числа Множества - определение и вычисление с примерами решения

Можно представить в виде несократимой дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, — натуральное число. Записываются в виде бесконечной периодической десятичной дроби

Множества - определение и вычисление с примерами решения

Иррациональные числа

Нельзя представить в виде несократимой дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, Множества - определение и вычисление с примерами решения — натуральное число. Записываются в виде бесконечной непериодической десятичной дроби

Множества - определение и вычисление с примерами решения

Целые числа Множества - определение и вычисление с примерами решения

Включают натуральные числа, числа, противоположные им, и число нуль

Дробные числа

Числа, состоящие из целого числа частей единицы

(Множества - определение и вычисление с примерами решения – обыкновенная дробь, 1,23 — десятичная дробь: Множества - определение и вычисление с примерами решения)

Натуральные числа Множества - определение и вычисление с примерами решения (целые положительные)

Для школьного курса математики натуральное число – основное не определяемое понятие

Число 0

Такое число, при сложение с которым любое число не изменяется

Множества - определение и вычисление с примерами решения

Целые отрицательные числа

Числа, противоположные натуральным

Модуль действительного числа и его свойства

Определение:

Модулем положительного числа называется само это число, модулем отрицательного числа называется число, противоположное ему, модуль нуля равен нулю

Множества - определение и вычисление с примерами решения

Геометрический смысл модуля

Множества - определение и вычисление с примерами решения

На координатной прямой модуль — это расстояние от начала координат до точки, изображающей это число.

Модуль разности двух чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой

Свойства

1. Множества - определение и вычисление с примерами решения Модуль любого числа — неотрицательное число

2. Множества - определение и вычисление с примерами решения Модули противоположных чисел равны

3. Множества - определение и вычисление с примерами решения, то естьМножества - определение и вычисление с примерами решения Каждое число не больше своего модуля

4. При Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

5. При Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

6. Множества - определение и вычисление с примерами решения Модуль произведения равен произведению модулей множителей

7. Множества - определение и вычисление с примерами решения Модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю)

8. Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

9. Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Модуль суммы не превышает суммы модулей слагаемых

10. Множества - определение и вычисление с примерами решения

Объяснение и обоснование:

Числовые множества

В курсе математики вы встречались с разными числами: натуральными, целыми, рациональными, иррациональными, действительными. Представление о числах у человечества складывалось постепенно, под воздействием требований практики. Например, натуральные числа появились в связи с необходимостью подсчета предметов. Но для того чтобы дать ответ на вопрос «Сколько спичек в пустой коробке из-под спичек?», множества натуральных чисел Множества - определение и вычисление с примерами решения недостаточно — для этого необходимо иметь еще и число нуль. Присоединяя к множеству Множества - определение и вычисление с примерами решения натуральных чисел число 0, получаем множество неотрицательных целых чисел. Его часто обозначают Множества - определение и вычисление с примерами решения. Одних только неотрицательных целых чисел оказалось недостаточно для решения задач практики (а следовательно, и математических задач, отображающих заданную реальную ситуацию). Так, для того чтобы охарактеризовать температуру воздуха выше и ниже нуля или движение тела в противоположных направлениях, необходимы противоположные натуральным числа, то есть отрицательные числа. Для натурального числа Множества - определение и вычисление с примерами решения противоположным считается число Множества - определение и вычисление с примерами решения, а для числа Множества - определение и вычисление с примерами решения противоположным считается число Множества - определение и вычисление с примерами решения. Нуль считают противоположным самому себе.

Натуральные числа, числа, противоположные натуральным, и число нуль составляют множество Множества - определение и вычисление с примерами решения целых чисел.

Измерение величин привело к необходимости расширения множества целых чисел и введения рациональных чисел. Например, средняя многолетняя температура воздуха в январе в г. Харькове — Множества - определение и вычисление с примерами решения, длительность урока — 45 минут, или Множества - определение и вычисление с примерами решения часа.

Таким образом, выбирая какую-либо единицу измерения, мы получаем числовое значение величин, которое может выражаться с помощью разных рациональных чисел — целых и дробных, положительных и отрицательных.

Целые и дробные числа составляют множество Множества - определение и вычисление с примерами решения рациональных чисел.

Любое рациональное число можно записать в виде дроби Множества - определение и вычисление с примерами решения, где

Множества - определение и вычисление с примерами решения (то есть числитель Множества - определение и вычисление с примерами решения является целым числом, а знаменатель Множества - определение и вычисление с примерами решения — натуральным).

Рациональное число может быть записано разными дробями. Например,

Множества - определение и вычисление с примерами решения

Как видно из приведенных примеров, среди дробей, которые изображают данное рациональное число, всегда есть единственная несократимая дробь (для целых чисел — это дробь, знаменатель которой равен 1).

Обратим внимание, что рациональное число, записанное в виде дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения, можно также записать в виде конечной или бесконечной периодической десятичной дроби, разделив числитель на знаменатель. Например, Множества - определение и вычисление с примерами решения.

Договоримся, что конечную десятичную дробь можно изображать в виде бесконечной, у которой после последнего десятичного знака, отличного от нуля, на месте следующих десятичных знаков записываются нули, например, Множества - определение и вычисление с примерами решения .

Целые числа также договоримся записывать в виде бесконечной десятичной дроби, у которой справа от запятой на месте десятичных знаков стоят нули, например Множества - определение и вычисление с примерами решения . Таким образом, любое рациональное число может быть записано как бесконечная периодическая дробь. Напомним, что у бесконечной периодической дроби, начиная с некоторого разряда, все десятичные знаки повторяются. Группу цифр, которая повторяется, называют периодом дроби; при записи дроби период записывают в скобках. Например, Множества - определение и вычисление с примерами решения.

Таким образом, каждое рациональное число может быть записано в виде бесконечной периодической десятичной дроби и наоборот, каждая бесконечная периодическая дробь задает рациональное число.

Обратим внимание, что любая периодическая десятичная дробь с периодом девять равна бесконечной десятичной дроби с периодом нуль, у которой десятичный разряд, предшествующий периоду, увеличен на единицу по сравнению с разрядом первой дроби. Например, бесконечные периодические дроби Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения являются записью одного и того же рационального числа Множества - определение и вычисление с примерами решения. Действительно, учитывая, что сумма бесконечной убывающей геометрической прогрессии с первым членом Множества - определение и вычисление с примерами решения и знаменателем Множества - определение и вычисление с примерами решениявычисляется по формуле Множества - определение и вычисление с примерами решения, имеем:

Множества - определение и вычисление с примерами решения

В дальнейшем, записывая рациональные числа с помощью бесконечных периодических десятичных дробей, договоримся исключить из рассмотрения бесконечные периодические дроби, период которых равен девяти.

Каждое рациональное число можно изобразить точкой на координатной прямой (то есть прямой, на которой выбраны начало отсчета, положительное направление и единица измерения). Например, на рисунке изображены несколько рациональных чисел Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Однако на координатной прямой есть точки, изображающие числа, которые не являются рациональными. Например, из курса алгебры известно, что число Множества - определение и вычисление с примерами решения не является рациональным. Это так называемое иррациональное число. Если построить квадрат со стороной, равной 1, на координатной прямой Множества - определение и вычисление с примерами решения (рис. 10), то его диагональ будет равна Множества - определение и вычисление с примерами решения. Тогда, проведя дугу окружности радиуса Множества - определение и вычисление с примерами решения с центром в точке Множества - определение и вычисление с примерами решения, получим точку Множества - определение и вычисление с примерами решения, координата которой равна Множества - определение и вычисление с примерами решения. Кроме числа Множества - определение и вычисление с примерами решения вы также встречались с иррациональными числами Множества - определение и вычисление с примерами решения и т. д.

Рациональные и иррациональные числа составляют множество действительных чисел Множества - определение и вычисление с примерами решения. На координатной прямой каждому действительному числу соответствует единственная точка и, наоборот, каждой точке координатной прямой соответствует единственное действительное число (в этом случае говорят, что между множеством действительных чисел и множеством точек координатной прямой устанавливается взаимно однозначное соответствие).

Каждое действительное число может быть записано в виде бесконечной десятичной дроби: рациональные числа — в виде бесконечной периодической десятичной дроби, а иррациональные — в виде бесконечной непериодической десятичной дроби.

Напомним, что для сравнения действительных чисел и выполнения действий над ними (в случае, когда хотя бы одно из них не является рациональным) используются приближенные значения этих чисел. В частности, для сравнения двух действительных чисел последовательно рассматриваем их приближенные значения с недостатком с точностью до целых, десятых, сотых и т. д. до тех пор, пока не получим, что какое-то приближенное значение одного числа больше соответствующего приближенного значения второго. Тогда то число, у которого приближенное значение больше, и считается большим. Например, если

Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения (поскольку Множества - определение и вычисление с примерами решения).

Для выполнения сложения или умножения рассмотренных чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения последовательно записывают их приближенные значения с недостатком и с избытком (с точностью до целых, десятых, сотых и т. д.) и выполняют действия над полученными рациональными числами. В результате последовательно получаем значение суммы или произведения с необходимой точностью.

Множества - определение и вычисление с примерами решения

Как видим, Множества - определение и вычисление с примерами решения

В курсе математического анализа доказывается, что в случае, когда приближенные значения чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения последовательно берутся с точностью до целых, десятых, сотых и т. д., то значения суммы Множества - определение и вычисление с примерами решения с недостатком и с избытком стремятся к одному и тому же числу, которое и принимается за значение суммы Множества - определение и вычисление с примерами решения (аналогично определяется и произведение Множества - определение и вычисление с примерами решения).

Модуль действительного числа и его свойства

Напомним определение модуля.

Модулем положительного числа называется само это число, модулем отрицательного числа — число, противоположное ему, модуль нуля равен нулю.

Это определение можно коротко записать несколькими способами. а при а > 0,

Множества - определение и вычисление с примерами решения, или Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения или

Множества - определение и вычисление с примерами решения

При необходимости мы будем пользоваться любой из этих записей определения модуля. Для нахождения Множества - определение и вычисление с примерами решения по определению необходимо знать знак числа Множества - определение и вычисление с примерами решения и использовать соответствующую формулу. Например, Множества - определение и вычисление с примерами решения

На координатной прямой модуль числа — это расстояние от начала координат до точки, изображающей это число.

Множества - определение и вычисление с примерами решения

Действительно, если Множества - определение и вычисление с примерами решения (рис. 11), то расстояние Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения, то расстояние Множества - определение и вычисление с примерами решения

Модуль разности двух чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой.

Для доказательства можно воспользоваться тем, что при параллельном переносе вдоль оси координат на Множества - определение и вычисление с примерами решения единиц абсцисса соответствующей точки изменяется на Множества - определение и вычисление с примерами решения: к абсциссе данной точки прибавляется число Множества - определение и вычисление с примерами решения, то есть при Множества - определение и вычисление с примерами решения точка переносится вправо, а при Множества - определение и вычисление с примерами решения — влево. Обозначим на координатной прямой числа Множества - определение и вычисление с примерами решения соответственно точками Множества - определение и вычисление с примерами решения. На рисунке 12 эти точки изображены для случая Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения, хотя приведенное далее обоснование не зависит от знаков Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

При параллельном переносе вдоль оси Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения единиц точка Множества - определение и вычисление с примерами решения перейдет в точку Множества - определение и вычисление с примерами решения, а точка Множества - определение и вычисление с примерами решения (с координатой Множества - определение и вычисление с примерами решения) — в точку с координатой Множества - определение и вычисление с примерами решения, то есть в точку Множества - определение и вычисление с примерами решения. Тогда Множества - определение и вычисление с примерами решения. Но расстояние Множества - определение и вычисление с примерами решения — это расстояние от точки Множества - определение и вычисление с примерами решения до начала координат, следовательно, Множества - определение и вычисление с примерами решения, а значит, и Множества - определение и вычисление с примерами решения.

Используя определение модуля и его геометрический смысл, можно обосновать свойства модуля, приведенные в таблице 2.

Например, учитывая, что Множества - определение и вычисление с примерами решения — это расстояние от точки Множества - определение и вычисление с примерами решения до точки Множества - определение и вычисление с примерами решения, а расстояние может выражаться только неотрицательным числом, получаем

Множества - определение и вычисление с примерами решения

то есть модуль любого числа является неотрицательным числом.

Учитывая, что точки Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения находятся на одинаковом расстоянии от точки Множества - определение и вычисление с примерами решения, получаем

Множества - определение и вычисление с примерами решения

это означает, что модули противоположных чисел равны.

Если Множества - определение и вычисление с примерами решения то Множества - определение и вычисление с примерами решения а если Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения. Следовательно, всегда

Множества - определение и вычисление с примерами решения

то есть каждое число не превышает его модуль.

Если в последнее неравенство вместо Множества - определение и вычисление с примерами решения подставить Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получаем неравенство Множества - определение и вычисление с примерами решения. Отсюда Множества - определение и вычисление с примерами решения, что вместе с неравенством Множества - определение и вычисление с примерами решения свидетельствует о том, что для любого действительного числа а выполняется двойное неравенство

Множества - определение и вычисление с примерами решения (1)

При Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения означает, что число Множества - определение и вычисление с примерами решения на координатной прямой находится от точки Множества - определение и вычисление с примерами решения на расстоянии, которое не превышает Множества - определение и вычисление с примерами решения (рис. 13), то есть в промежутке Множества - определение и вычисление с примерами решения. Наоборот, если число Множества - определение и вычисление с примерами решения находится в этом промежутке, то есть Множества - определение и вычисление с примерами решения. Следовательно,

при Множества - определение и вычисление с примерами решения (2)

Обратим внимание, что последнее утверждение справедливо и при Множества - определение и вычисление с примерами решения (тогда двум неравенствам удовлетворяет только одно значение Множества - определение и вычисление с примерами решения).

Аналогично при Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения означает, что число Множества - определение и вычисление с примерами решения на координатной прямой находится от точки Множества - определение и вычисление с примерами решения на расстоянии, которое больше или равно Множества - определение и вычисление с примерами решения (рис. 13),

Множества - определение и вычисление с примерами решения

то есть в этом случае Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения. Наоборот, если число Множества - определение и вычисление с примерами решения удовлетворяет одному из этих неравенств, то Множества - определение и вычисление с примерами решения. Следовательно, при Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения равносильно совокупности неравенств Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения, что можно записать так:

при Множества - определение и вычисление с примерами решения

Свойства модуля произведения и модуля дроби фиксируют известные правила действий над числами с одинаковыми и разными знаками:

модуль произведения равен произведению модулей множителей, то есть

Множества - определение и вычисление с примерами решения

модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю), то есть

Множества - определение и вычисление с примерами решения

Формулу для нахождения модуля произведения можно обобщить для случая нескольких множителей

Множества - определение и вычисление с примерами решения (3)

Если в формуле (3) взять Множества - определение и вычисление с примерами решения, получаем формулу

Множества - определение и вычисление с примерами решения

Используя последнюю формулу справа налево при Множества - определение и вычисление с примерами решения и учитывая, что Множества - определение и вычисление с примерами решения при всех значениях Множества - определение и вычисление с примерами решения, получаем Множества - определение и вычисление с примерами решения. Следовательно,

Множества - определение и вычисление с примерами решения. Для обоснования неравенства

Множества - определение и вычисление с примерами решения (4)

запишем неравенство (1) для чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения:

Множества - определение и вычисление с примерами решения

Складывая почленно эти неравенства, получаем

Множества - определение и вычисление с примерами решения

Учитывая неравенство (2), имеем

Множества - определение и вычисление с примерами решения (5)

то есть модуль суммы не превышает суммы модулей слагаемых. Если в неравенстве (4) заменить Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получим неравенство

Множества - определение и вычисление с примерами решения

Если записать число Множества - определение и вычисление с примерами решения так: Множества - определение и вычисление с примерами решения и использовать неравенство (4), то получим неравенство Множества - определение и вычисление с примерами решения. Отсюда

Множества - определение и вычисление с примерами решения (6)

Если в неравенстве (6) заменить Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получим неравенство

Множества - определение и вычисление с примерами решения (7)

то есть модуль суммы двух чисел не меньше разности их модулей.

Меняя местами буквы Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения в неравенствах (6) и (7) и учитывая, что Множества - определение и вычисление с примерами решения, имеем также неравенства

Множества - определение и вычисление с примерами решения (8)

Полученные неравенства (4)-(8) можно коротко записать так:

Множества - определение и вычисление с примерами решения

Примеры решения задач:

Пример №402

Докажите, что сумма, разность, произведение, натуральная степень и частное (если делитель не равен нулю) двух рациональных чисел всегда является рациональным числом.

Решение:

► Пусть заданы два рациональных числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения где Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения – целые, а Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения – натуральные числа. Поскольку сумма, разность, произведение, натуральная степень и частное двух обыкновенных дробей всегда являются обыкновенными дробями, то полученный результат всегда будет рациональным числом. Например,

Множества - определение и вычисление с примерами решения

где Множества - определение и вычисление с примерами решения – целое число, а Множества - определение и вычисление с примерами решения – натуральное.

Комментарий:

Любое рациональное число может быть записано как дробь Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, Множества - определение и вычисление с примерами решения — натуральное число.

Чтобы доказать утверждение задачи, достаточно доказать, что сумма, разность, произведение и частное двух дробей вида Множества - определение и вычисление с примерами решения также будет дробью такого вида.

Пример №403

Докажите, что для любого натурального числа Множества - определение и вычисление с примерами решения число Множества - определение и вычисление с примерами решения или натуральное, или иррациональное.

Комментарий:

Для доказательства утверждения задачи можно использовать метод от противного: предположить, что заданное положительное число является рациональным ненатуральным (то есть дробью), и получить противоречие с условием или с каким-либо известным фактом.

Записывая Множества - определение и вычисление с примерами решения в виде несократимой дроби, следует учесть, что при натуральных значениях Множества - определение и вычисление с примерами решения это число всегда будет положительным.

Решение:

► Допустим, что Множества - определение и вычисление с примерами решения не является иррациональным числом (тогда это число рациональное) и не является натуральным числом. Следовательно, это число может быть только рациональной несократимой дробью Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — натуральные числа Множества - определение и вычисление с примерами решения. По определению квадратного корня имеем Множества - определение и вычисление с примерами решения то есть Множества - определение и вычисление с примерами решения. Учитывая, что Множества - определение и вычисление с примерами решения, получаем, что дробь Множества - определение и вычисление с примерами решения, равная натуральному числу Множества - определение и вычисление с примерами решения, должна быть сократимой.

Следовательно, у натуральных множителей, которые стоят в числителе и знаменателе этой дроби, должен быть общий натуральный делитель, отличный от 1. Но в числителе стоят только множители Множества - определение и вычисление с примерами решения, а в знаменателе — только множители Множества - определение и вычисление с примерами решения. Тогда числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения имеют натуральный делитель, отличный от 1, то есть дробь является сократимой дробью, что противоречит условию. Таким образом, наше предположение неверно, и для любого натурального числа Множества - определение и вычисление с примерами решения число Множества - определение и вычисление с примерами решения или натуральное, или иррациональное.

Например, поскольку числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения не являются натуральными числами Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — иррациональные числа.

Пример №404

Докажите, что Множества - определение и вычисление с примерами решения — число иррациональное.

Решение:

► Допустим, что число Множества - определение и вычисление с примерами решения рациональное. Тогда Множества - определение и вычисление с примерами решения Возведя обе части последнего равенства в квадрат, имеем Множества - определение и вычисление с примерами решения Отсюда Множества - определение и вычисление с примерами решения

Следовательно, Множества - определение и вычисление с примерами решения

Но правая часть этого равенства — рациональное число (поскольку по предположению Множества - определение и вычисление с примерами решения — рациональное число), а левая — иррациональное. Полученное противоречие означает, что наше предположение неверно и число Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения — иррациональное.

Комментарий:

Для доказательства утверждения задачи можно использовать метод «от противного» — допустить, что заданное число является рациональным, и получить противоречие с каким-либо известным фактом, например с тем, что Множества - определение и вычисление с примерами решения — иррациональное число.

При анализе полученных выражений используем результат задачи 1: если число Множества - определение и вычисление с примерами решения — рациональное, то числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения и их частное тоже будут рациональными.

Заметим, что знаменатель полученной дроби Множества - определение и вычисление с примерами решения

Пример №405

Решите уравнениеМножества - определение и вычисление с примерами решения

Решение

I способ

Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

Заданное уравнение имеет вид Множества - определение и вычисление с примерами решения (в данном случае Множества - определение и вычисление с примерами решения). Его удобно решать, используя геометрический смысл модуля: Множества - определение и вычисление с примерами решения— это расстояние от точки 0 до точки Множества - определение и вычисление с примерами решения. Но расстояние 7 может быть отложено от 0 как вправо (получаем число 7), так и влево (получаем число -7). Следовательно, равенство Множества - определение и вычисление с примерами решения возможно тогда и только тогда, когда Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения.

II способ

Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

С геометрической точки зрения Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой. Запишем данное уравнение так: Множества - определение и вычисление с примерами решения. Тогда равенство Множества - определение и вычисление с примерами решения означает, что расстояние от точки Множества - определение и вычисление с примерами решения до точки -5 равно 7. На расстоянии 7 от точки -5 находятся точки 2 и -12 (рис. 14). Таким образом, данное равенство выполняется тогда и только тогда, когда Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения то есть данное уравнение равносильно указанной в решении совокупности уравнений.

Пример №406

Решите неравенство Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Решая эти неравенства (рис. 15), получаем

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Следовательно, Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

Заданное неравенство имеет вид Множества - определение и вычисление с примерами решения (в данном случае Множества - определение и вычисление с примерами решения), и его можно решать, используя геометрический смысл модуля. С геометрической точки зрения, Множества - определение и вычисление с примерами решения — это расстояние от точки 0 до точки Множества - определение и вычисление с примерами решения. На расстоянии 6 от 0 находятся числа 6 и -6.

Тогда неравенству Множества - определение и вычисление с примерами решения удовлетворяют все те и только те точки, которые находятся в промежутке Множества - определение и вычисление с примерами решения то есть Множества - определение и вычисление с примерами решения Для решения полученного двойного неравенства его удобно заменить соответствующей системой.

  • Рациональные уравнения
  • Рациональные неравенства и их системы
  • Геометрические задачи и методы их решения
  • Прямые и плоскости в пространстве
  • Функции, их свойства и графики
  • Параллельность в пространстве
  • Перпендикулярность в пространстве
  • Векторы и координаты в пространстве

Пусть U – произвольное множество, «универсум».  Мы будем рассматривать теоретико-множественные выражения, которые получаются из символов с помощью операций над множествами, например:

.

Определение

Теоретико-множественное выражение H = H(X1, …, Xm), полученное из подмножеств  (X1, …, Xm)ÍU,  определяется по индукции:

1) X1, …, Xm, U, Æ – теоретико-множественные выражения;

2) если H – теоретико-множественное выражение, то  – теоретико-множест­венное выражение;

3) если H1 и H2 – теоретико-множественные выражения, то (H1ÈH2), (H1ÇH2), (H1H2), (H1DH2) – теоретико-множественные выражения.

Наша цель – научиться решать уравнения

H(X, A1, …, An)= Æ,

где H(X, A1, …, An) – теоретико-множественное выражение, полученное из подмножеств X, A1, …, AnÍU.

Предложение

Для всякого теоретико-множественного выражения H(X, A1, …, An) существуют такие теоретико-множественные  выражения

R(A1, …, An), S(A1, …, An), T(A1, …, An),

что для любого XÍU следующие условия равносильны:

1) H(X, A1, …, An)= Æ;

2) R(A1, …, An)È(S(A1, …, An)ÇX)È(T(A1, …, An)Ç ) = Æ.

Доказательство

Поскольку PQ= PÇ   и PDQ = (P È Q)(P Ç Q), то можно считать, что H построена с помощью операций PÈ Q, PÇ Q и . Далее применяется индукция по количеству операций в H(X, A1, …, An).

Следствие

В условиях предыдущего предложения, уравнение H(X, A1, …, An)= Æ  будет иметь решения тогда и только тогда, когда будут выполнены соотношения: 

1.

S(A1, …, An)ÇX = Æ,

2. T(A1, …, An)Ç = Æ,

3. R(A1, …, An) = Æ.

Метод решения уравнения

H1(X, A1, …, An)= H2(X, B1, …, Bm).

Здесь A1, …, An и  B1, …, Bm – некоторые заданные множества. Обозначим символом 0 пустое множество.

Это уравнение сначала приводят к уравнению  

H(X, A1, …, An)= 0,

где

H(X,A1,…, An)= (H1(X, A1, …, An) H2(X, B1, …, Bm)) È ( H2(X, B1, …, Bm) H1(X, A1, …, An)).

Потом для полученного уравнения находим формулы для R, S, T из предыдущего предложения. И, наконец,  применим предыдущее следствие. Разберем этот метод решение на следующем примере.

Пример

Рассмотрим, например, уравнение:

AÇX = BÇ.

Оно равносильно уравнению вида:

= 0.

Следующим шагом решения будет преобразование левой части к объединению пересечений множеств. Это достигается с помощью формул:

PQ = PÇ .

После применения этих формул  получим:

= 0.

А после применения формул де Моргана приходим к уравнению:

= 0.

С помощью закона дистрибутивности получаем  уравнение:

= 0.

Поскольку

   и         ,

то это уравнение примет вид:

=0.

Последнее равенство выполняется тогда и только тогда, когда X удовлетворяет системе уравнений:

Первое уравнение равносильно включению , а второе – . Отсюда вытекает следующий ответ:

.

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5.

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x, значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

осоу рис 1

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.


Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

8 + 2

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

8 + 2 = 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

2 = 10 − 8

Мы выразили число 2 из равенства 8 + 2 = 10. Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8. Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

или

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

8 + 2 = 10

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

8 = 10 − 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

8 + 2 = 10

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

10 = 8 + 2


Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

8 = 6 + 2

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

8 − 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

2 = 8 − 6


Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

три равно шесть вторых

Вернем получившееся равенство три равно шесть вторых в первоначальное состояние:

3 × 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

2 равно шесть третьих


Пример 4. Рассмотрим равенство пятнадцать пятых равно три

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

15 = 3 × 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

пятнадцать пятых равно три

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

пять равно пятнадцать третьих


Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

рисунок 8 плюс 2 равно 10

Чтобы выразить число 2, мы поступили следующим образом:

2 = 10 − 8

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

8 + x = 10

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + = 10, а переменная x берет на себя роль так называемого неизвестного слагаемого

рисунок неизвестное слагаемое

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + = 10. Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10. Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

2 = 10 − 8

А сейчас, чтобы найти неизвестное слагаемое x, мы должны из суммы 10 вычесть известное слагаемое 8:

x = 10 − 8

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

x = 2

Мы решили уравнение. Значение переменной x равно 2. Для проверки значение переменной x отправляют в исходное уравнение 8 + = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

рисунок уравнение 8 плюс икс равно десять подставление значения

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

x + 2 = 10

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x, нужно из суммы 10 вычесть известное слагаемое 2

x = 10 − 2

x = 8

рисунок уравнение икс плюс 2 равно 10


Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

рисунок уменьшаемое вычитаемое и разность

Чтобы выразить число 8, мы поступили следующим образом:

8 = 6 + 2

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

x − 2 = 6

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

неизвестное уменьшаемое вычитаемое и разность

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6. Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x, мы должны к разности 6 прибавить вычитаемое 2

x = 6 + 2

Если вычислить правую часть, то можно узнать чему равна переменная x

x = 8


Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

8 − x = 6

В этом случае переменная x берет на себя роль неизвестного вычитаемого

рисунок уменьшаемое неизвестное вычитаемое и разность

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

x = 8 − 6

Вычисляем правую часть и находим значение x

x = 2


Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

рисунок множимое множитель произведение

Чтобы выразить число 3 мы поступили следующим образом:

три равно шесть вторых

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

x × 2 = 6

В этом случае переменная x берет на себя роль неизвестного множимого.

рисунок неивестеное множимое множитель и произведение

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6. Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x, нужно произведение 6 разделить на множитель 2.

икс равно шесть вторых

Вычисление правой части позволяет нам найти значение переменной x

x = 3

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x.

рисунок множимое неизвестный множитель и произведение

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

x равно шесть третьих

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6. Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства x равно шесть третьих позволяет узнать чему равно x

x = 2

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

x ravno 18 na 9

Отсюда x ravno 2.

Решим уравнение × 3 = 27. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

x ravno 27 na 3

Отсюда x ravno 9.


Вернемся к четвертому примеру из предыдущей темы, где в равенстве пятнадцать пятых равно три требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

рисунок делимое делитель частное

Чтобы выразить число 15 мы поступили следующим образом:

15 = 3 × 5

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве пятнадцать пятых равно три вместо числа 15 располагается переменная x

икс третьих равно 3

В этом случае переменная x берет на себя роль неизвестного делимого.

рисунок неизвестное делитель частное

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства пятнадцать пятых равно три. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x, нужно частное 3 умножить на делитель 5

x = 3 × 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 15


Теперь представим, что в равенстве пятнадцать пятых равно три вместо числа 5 располагается переменная x.

пятнадцать на x равно три

В этом случае переменная x берет на себя роль неизвестного делителя.

рисунок делимое неизвестный делитель частное

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства пятнадцать пятых равно три. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x, нужно делимое 15 разделить на частное 3

икс равно пятнадцать третьих

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 5

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

компоненты сложения рисунок 1


Компонентами вычитания являются уменьшаемое, вычитаемое и разность

компоненты вычитания рисунок 1


Компонентами умножения являются множимое, множитель и произведение

компоненты произведения рисунок 1


Компонентами деления являются делимое, делитель и частное

компоненты деления рисунок 1

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

x = 60 − 45

Вычислим правую часть, получим значение x равное 15

x = 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение 2x plus 4 ravno 8

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

2x + 4 = 8 решить уравнение

При этом слагаемое 2x содержит переменную x. После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

2x + 4 = 8 решить уравнение рисунок 2

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

2x plus 4 ravno 8 step 2

Вычислим правую часть получившегося уравнения:

2x plus 4 ravno 8 step 3

Мы получили новое уравнение 2x plus 4 ravno 8 step 3. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, — множитель, 4 — произведение

2 множимое x множитель 8 произведение рисунок 1

При этом переменная x является не просто множителем, а неизвестным множителем

2 множимое x неизвестный множитель 8 произведение рисунок 1

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

x равно четыре вторых

Вычислим правую часть, получим значение переменной x

2x plus 4 ravno 8 step 4

Для проверки найденный корень отправим в исходное уравнение 2x plus 4 ravno 8 и подставим вместо x

уравнение 2x + 4 = 4 проверка

Получили верное числовое равенство. Значит уравнение решено правильно.


Пример 3. Решить уравнение 3+ 9+ 16= 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

3x 9x 16x ravno 56 step 2

Имеем дело с компонентами умножения. 28 — множимое, — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

x равно 56 к 28

Отсюда x равен 2

2x plus 4 ravno 8 step 4


Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56, мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56. Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3+ 9+ 16= 56 мы нашли корень равный 2. Подставим этот корень сначала в уравнение 3+ 9+ 16= 56, а затем в уравнение 28= 56, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

3x 9x 16x ravno 56 check 1

Согласно порядку действий, в первую очередь выполняется умножение:

3x 9x 16x ravno 56 check 2

Подставим корень 2 во второе уравнение 28= 56

28x ravno 56 check 1

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3+ 9+ 16= 56 и 28= 56 действительно являются равносильными.

Для решения уравнения 3+ 9+ 16= 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28= 56, которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.


Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

и аналогично:

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение 5x plus 10 ravno 20

Вычтем из обеих частей уравнения число 10

5x plus 10 ravno 20 step 1

Приведем подобные слагаемые в обеих частях:

5x plus 10 ravno 20 step 2

Получили уравнение 5= 10. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 10 разделить на известный сомножитель 5.

x ravno 10 na 5

Отсюда x ravno 2.

Вернемся к исходному уравнению 5x plus 10 ravno 20 и подставим вместо x найденное значение 2

5x plus 10 ravno 20 step 5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 5x plus 10 ravno 20 мы вычли из обеих частей уравнения число 10. В результате получили равносильное уравнение 5x ravno 10.png. Корень этого уравнения, как и уравнения 5x plus 10 ravno 20 так же равен 2

5x ravno 10 step 2


Пример 2. Решить уравнение 4(+ 3) = 16

Раскроем скобки в левой части равенства:

4x plus 12 ravno 16

Вычтем из обеих частей уравнения число 12

4x plus 12 ravno 16 step 3

Приведем подобные слагаемые в обеих частях уравнения:

4x plus 12 ravno 16 step 4В левой части останется 4x, а в правой части число 4

4x ravno 4

Получили уравнение 4= 4. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 4 разделить на известный сомножитель 4

x ravno 4 na 4

Отсюда x ravno 1

Вернемся к исходному уравнению 4(+ 3) = 16 и подставим вместо x найденное значение 1

4naxplus3 ravno 16 решение

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(+ 3) = 16 мы вычли из обеих частей уравнения число 12. В результате получили равносильное уравнение 4= 4. Корень этого уравнения, как и уравнения 4(+ 3) = 16 так же равен 1

4x ravno 4 проверка


Пример 3. Решить уравнение 2x minus 8 ravno 1 step 1

Раскроем скобки в левой части равенства:

2x minus 8 ravno 1 step 2

Прибавим к обеим частям уравнения число 8

2x minus 8 ravno 1 step 3

Приведем подобные слагаемые в обеих частях уравнения:

2x minus 8 ravno 1 step 4

В левой части останется 2x, а в правой части число 9

2x minus 8 ravno 1 step 5

В получившемся уравнении 2= 9 выразим неизвестное слагаемое x

x ravno 9 na 2

Отсюда 2x na 2 ravno 9 na 2 step 2

Вернемся к исходному уравнению 2x minus 8 ravno 1 step 1 и подставим вместо x найденное значение 4,5

2x minus 8 ravno 1 check 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 2x minus 8 ravno 1 step 1 мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение 2x minus 8 ravno 1 step 5. Корень этого уравнения, как и уравнения 2x minus 8 ravno 1 step 1 так же равен 4,5

2x ravno 9 check 1


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

12 plus 3x ravno 9x

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

12 plus 3x ravno 9x step 2

Получается верное равенство. Значит число 2 действительно является корнем уравнения 12 plus 3x ravno 9x.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

equation 12+3x=9x перенос 3x вправо

Получилось уравнение 12 = 9x − 3x. Приведем подобные слагаемые в правой части данного уравнения:

12 ravno plus minus 3 na x

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

equation 12+3x=9x шаг 2

Отсюда = 2. Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

12 plus 3x ravno 9 step 1

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3= 9x и 3x − 9= −12. В этот раз в уравнении 12 + 3= 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

equation 12+3x=9x шаг 3


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение x+8 на 8 равно 12 на 8 решить уравнение

При решении уравнений, содержащих дробные выражения, сначала  принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

x+8 на 8 равно 12 на 8 решить уравнение шаг 1

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

x+8 на 8 равно 12 на 8 решить уравнение шаг 2

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

x+8 на 8 равно 12 на 8 решить уравнение шаг 3

В результате останется простейшее уравнение

x plus 8 ravno 12

Ну и нетрудно догадаться, что корень этого уравнения равен 4

x plus 8 ravno 12 решение

Вернемся к исходному уравнению x+8 на 8 равно 12 на 8 решить уравнение  и подставим вместо x найденное значение 4

x+8 на 8 равно 12 на 8 решить уравнение шаг 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение x plus 8 ravno 12. Корень этого уравнения, как и уравнения x+8 на 8 равно 12 на 8 решить уравнение равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение x+8 на 8 равно 12 на 8 решить уравнение, мы умножили обе части на множитель 8 и получили следующую запись:

x+8 на 8 равно 12 на 8 решить уравнение шаг 1

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения x+8 на 8 равно 12 на 8 решить уравнение на множитель 8 желательно переписать следующим образом:

8 umn x plus 8 na 8 ravno 8 umn 12 na 8 решение 2


Пример 2. Решить уравнение x+25 na 15 ravno x+5 na 5 equation

Умнóжим обе части уравнения на 15

x+25 na 15 ravno x+5 na 5 equation step 2

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

x+25 na 15 ravno x+5 na 5 equation step 3

Перепишем то, что у нас осталось:

x+25 na 15 ravno x+5 na 5 equation step 4

Раскроем скобки в правой части уравнения:

x+25 na 15 ravno x+5 na 5 equation step 5

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

x+25 na 15 ravno x+5 na 5 equation step 7

Приведем подобные слагаемые в обеих частях, получим

x+25 na 15 ravno x+5 na 5 equation step 8

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

x+25 na 15 ravno x+5 na 5 equation step 9

Отсюда x ravno 5

Вернемся к исходному уравнению x+25 na 15 ravno x+5 na 5 equation  и подставим вместо найденное значение 5

x+25 na 15 ravno x+5 na 5 equation step 10

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15. Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x. Корень этого уравнения, как и уравнения x+25 na 15 ravno x+5 na 5 equation равен 5. Значит эти уравнения равносильны.


Пример 3. Решить уравнение  2 na 3x ravno 6

Умнóжим обе части уравнения на 3

3 umn 2 na 3x ravno 3 na 6

В левой части можно сократить две тройки, а правая часть будет равна 18

3 umn 2 na 3x ravno 3 na 6 step 2

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

3 umn 2 na 3x ravno 3 na 6 step 3

Отсюда x ravno 9

Вернемся к исходному уравнению  2 na 3x ravno 6  и подставим вместо найденное значение 9

2 na 3 umn 9 ravno 6 check

Получается верное числовое равенство. Значит уравнение решено правильно.


Пример 4. Решить уравнение x plus 11 minus x na 3 ravno 20 minus na 2 step 1

Умнóжим обе части уравнения на 6

x plus 11 minus x na 3 ravno 20 minus na 2 step 2

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

x plus 11 minus x na 3 ravno 20 minus na 2 step 3

Сократим в обеих частях уравнениях то, что можно сократить:

x plus 11 minus x na 3 ravno 20 minus na 2 step 4

Перепишем то, что у нас осталось:

x plus 11 minus x na 3 ravno 20 minus na 2 step 5

Раскроем скобки в обеих частях уравнения:

x plus 11 minus x na 3 ravno 20 minus na 2 step 6

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x, сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

x plus 11 minus x na 3 ravno 20 minus na 2 step 7

Приведем подобные слагаемые в обеих частях:

x plus 11 minus x na 3 ravno 20 minus na 2 step 8

Теперь найдем значение переменной x. Для этого разделим произведение 28 на известный сомножитель 7

x ravno 28 na 7

Отсюда = 4.

Вернемся к исходному уравнению x plus 11 minus x na 3 ravno 20 minus na 2 step 1 и подставим вместо x найденное значение 4

x plus 11 minus x na 3 ravno 20 minus na 2 step 10

Получилось верное числовое равенство. Значит уравнение решено правильно.


Пример 5. Решить уравнение 3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3

Раскроем скобки в обеих частях уравнения там, где это можно:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 2

Умнóжим обе части уравнения на 15

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 3

Раскроем скобки в обеих частях уравнения:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 4

Сократим в обеих частях уравнения, то что можно сократить:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 5

Перепишем то, что у нас осталось:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 6

Раскроем скобки там, где это можно:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 7

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 8

Приведем подобные слагаемые в обеих частях уравнения:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 9

Найдём значение x

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 10

В получившемся ответе можно выделить целую часть:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 11

Вернемся к исходному уравнению и подставим вместо x найденное значение 7 целых 1 на 13

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 1

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A, а правую часть равенства в переменную B

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 2

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 3

Значение переменной А равно 6 plus 82 na 195. Теперь найдем значение переменной B. То есть значение правой части нашего равенства. Если и оно равно 6 plus 82 na 195, то уравнение будет решено верно

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 4

Видим, что значение переменной B, как и значение переменной A равно 6 plus 82 na 195. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30+ 14+ 14 = 70− 40+ 42. Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

30x plus 14x plus 14 ravno 70x minus 40x plus 42 решение 1

Подставим найденное значение 2 вместо x в исходное уравнение:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 проверка 1

Теперь попробуем разделить все слагаемые уравнения 30+ 14+ 14 = 70− 40+ 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2

Выполним сокращение в каждом слагаемом:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 2

Перепишем то, что у нас осталось:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 3

Решим это уравнение, пользуясь известными тождественными преобразованиями:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 4

Получили корень 2. Значит уравнения 15+ 7+ 7 = 35x − 20+ 21 и 30+ 14+ 14 = 70− 40+ 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7= 14, нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 5

Этим методом мы тоже будем пользоваться часто.


Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1.

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение minus x minus 5 ravno minus 10. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

minus x minus 5 ranmo minus 10 step 1

Приведем подобные слагаемые:

minus x minus 5 ranmo minus 10 step 2

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения minus x ravno minus 5. Это есть произведение минус единицы и переменной x

minus x ravno minus 1 na x

То есть минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент принято не записывать. Это означает, что уравнение minus x ravno minus 5 на самом деле выглядит следующим образом:

minus na x ravnio minus 5

Имеем дело с компонентами умножения. Чтобы найти х, нужно произведение −5 разделить на известный сомножитель −1.

x ravno minus 5 na minus 1

или разделить обе части уравнения на −1, что еще проще

minus 1 na x na minus 1 ravno minus 5 na minus 1

Итак, корень уравнения minus x minus 5 ravno minus 10 равен 5. Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

-x-5-ranmo-minus-10-step-3

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения minus x minus 5 ravno minus 10 на минус единицу:

minus x minus 5 ravno minus 10 umnojenit na minus 1

После раскрытия скобок в левой части образуется выражение x plus 5, а правая часть будет равна 10

x plus 5 ravno 10

Корень этого уравнения, как и уравнения minus x minus 5 ravno minus 10 равен 5

x plus 5 ravno 10 check

Значит уравнения minus x minus 5 ravno minus 10 и x plus 5 ravno 10 130px равносильны.


Пример 2. Решить уравнение minus 19 ravno minus 4 minus 3 y

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение minus 19 ravno minus 4 minus 3 y. Для этого умнóжим обе части данного уравнения на −1.

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения  minus 19 ravno minus 4 minus 3 y на −1 можно записать подробно следующим образом:

minus 19 ravno minus 4 minus 3 y step 1

либо можно просто поменять знаки всех компонентов:

19 ravno 4 plus 3y

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения minus 19 ravno minus 4 minus 3 y на −1, мы получили уравнение 19 ravno 4 plus 3y. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

19 ravno 4 plus 3y решение уравнения

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.


Пример 3. Решить уравнение minus 2x minus 3 ravno minus 3 x plus 1

Умнóжим обе части уравнения на −1. Тогда все компоненты поменяют свои знаки на противоположные:

minus 2x minus 3 ravno minus 3 x plus 1 step 1

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

minus 2x minus 3 ravno minus 3 x plus 1 step 2

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: minus 2x minus 3 ravno minus 3 x plus 1 step 3


Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение 2x plus 3 ravno 80 minus 4x minus x. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

2x plus 3 ravno 80 minus 4x minus x step 2

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

2x plus 3 ravno 80 minus 4x minus x step 3

Приведем подобные слагаемые в левой части:

2x plus 3 ravno 80 minus 4x minus x step 4

Прибавим к обеим частям 77, и разделим обе части на 7

9x minus 77 plus 77 ravno 0 plus 77 step 5


Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении 2x ravno 10 мы произведение 10 делили на известный сомножитель 2

x ravno 10 na 2 ravno 5

Но если в уравнении 2x ravno 10 обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет  равна 5

x ravno 10 na 2 ravno 5 alter method

Уравнения вида 2x plus 4 ravno 8 мы решали выражая неизвестное слагаемое:

2x plus 4 ravno 8 step 2

2x plus 4 ravno 8 step 3

2x plus 4 ravno 8 step 4

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении 2x plus 4 ravno 8 слагаемое 4 можно перенести в правую часть, изменив знак:

2x plus 4 ravno 8 step 2

2x plus 4 ravno 8 step 3

Далее разделить обе части на 2

2x na 2 ravno 4 na 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда x ravno 2.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

2x plus 4 ravno 8 method 3

В случае с уравнениями вида 2x ravno 10 удобнее делить произведение на известный сомножитель. Сравним оба решения:

x ravno 10 na 2 ravno 5 alter оба решения

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.


Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9.

chech equation x na x plus 9

В уравнении x(x + 9) = 0 нужно было найти такое значение при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9), которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

x = 0 или x + 9 = 0

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0. Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение + 9 = 0. Несложно догадаться, что корень этого уравнения равен −9. Проверка показывает, что корень верный:

−9 + 9 = 0


Пример 2. Решить уравнение x minus 1 na x minus 2 ravno 0

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2). А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2)).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

1 na 2 minus 1 na 2 ravno 0 step 2

Подставляем по-очереди найденные значения в исходное уравнение x minus 1 na x minus 2 ravno 0 и убеждаемся, что при этих значениях левая часть равняется нулю:

1 na 2 minus 1 na 2 ravno 0 step 3


Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение 6x minus 2 na x minus 7 ravno 14

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14. Это равенство будет получаться при любом x

6x minus 2 na x minus 7 ravno 14 решение


Пример 2. Решить уравнение 2 na 5x plus 6 ravno 10x plus 12

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x


Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение x plus 2 ravno x не имеет корней, поскольку при любом значении x, левая часть уравнения не будет равна правой части. Например, пусть 2x plus 4 ravno 8 step 4. Тогда уравнение примет следующий вид

2 plus 2 ravno 2 step 1

Пусть x ravno minus 4


Пример 2. Решить уравнение 2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0

Раскроем скобки в левой части равенства:

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 2

Приведем подобные слагаемые:

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 3

Видим, что левая часть не равна правой части. И так будет при любом значении y. Например, пусть y = 3.

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 4


Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

формула нахождения скорости

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения формула нахождения скорости определить расстояние, нужно выразить переменную s.

Умнóжим обе части уравнения формула нахождения скорости на t

выразить s из v ravno s na t step 1

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

выразить s из v ravno s na t step 2

В получившемся уравнении левую и правую часть поменяем местами:

выразить s из v ravno s na t step 3

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения формула нахождения скорости определить время. Для этого нужно выразить переменную t.

Умнóжим обе части уравнения на t

выразить t из v ravno s na t step 1

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

выразить t из v ravno s na t step 2

В получившемся уравнении v × t = s обе части разделим на v

выразить t из v ravno s na t step 3

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

выразить t из v ravno s na t step 4

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

v = 50 км/ч

А расстояние равно 100 км

s = 100 км

Тогда буквенное уравнение формула нахождения скорости примет следующий вид

50 равно 100 разделить на t

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t. Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

t равно 100 на 50

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

50 на t равно 100 на t на t

Затем разделить обе части на 50

50 на t на 50 равно 100 на 50


Пример 2. Дано буквенное уравнение a plus bx ravno c. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

a plus bx ravno c step 2

Разделим обе части уравнения на b

a plus bx ravno c step 3

Теперь, если нам попадется уравнение вида a + bx = c, то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10. Оно похоже на буквенное уравнение a + bx = c.  Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

2x plus 4x ravno 10 два решения

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0), поскольку деление на ноль на допускается.


Пример 3. Дано буквенное уравнение a x minus c ravno b x plus d. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

a x minus c ravno b x plus d step 1

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x, сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

a x minus c ravno b x plus d step 2

В левой части вынесем за скобки множитель x

a x minus c ravno b x plus d step 3

Разделим обе части на выражение a − b

a x minus c ravno b x plus d step 4

В левой части числитель и знаменатель можно сократить на a − b. Так окончательно выразится переменная x

a x minus c ravno b x plus d step 5

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d), то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(+ 4). Оно похоже на уравнение a(x − c) = b(x + d). Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(+ 4) значения параметров a, b, c, d. Это позволит нам не ошибиться при подстановке:

abcd значения параметров

4 na x minus 3 ravno 2 na x plus 4 два решения

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0). Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d). В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

2 na x minus 3 ravno 2 na x plus 4 корней нет


Пример 4. Дано буквенное уравнение x na a minus x ravno b. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

x na a minus x ravno b step 2

Умнóжим обе части на a

x na a minus x ravno b step 3

В левой части x вынесем за скобки

x na a minus x ravno b step 4

Разделим обе части на выражение (1 − a)

x na a minus x ravno b step 5


Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2(x + 3) = 16. Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2+ 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2= 16 − 6. Вычислим правую часть, получим 2= 10. Чтобы найти x, разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2(x + 3) = 16 является линейным. Оно свелось к уравнению 2= 10для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2= 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x. Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0, то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax b примет вид 0= 0. При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0, то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0= 5. Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0, и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

x ravno b na a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3, и b равно какому-нибудь числу, скажем числу 6, то уравнение x ravno b na a str примет вид x ravno 6 na 3.
Отсюда x ravno 2.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0. Это то же самое уравнение, что и ax = b, но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7− 77 = 0. Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Задания для самостоятельного решения

Задание 1. Используя метод переноса слагаемого, решите следующее уравнение:

Задание 2. Используя метод прибавления (или вычитания) числа к обеим частям, решите следующее уравнение:

Задание 3. Решите уравнение:

Задание 4. Решите уравнение:

Задание 5. Решите уравнение:

Задание 6. Решите уравнение:

Задание 7. Решите уравнение:

Задание 8. Решите уравнение:

Задание 9. Решите уравнение:

Задание 10. Решите уравнение:

Задание 11. Решите уравнение:

Задание 12. Решите уравнение:

Задание 13. Решите уравнение:

Задание 14. Решите уравнение:

Задание 15. Решите уравнение:

Задание 16. Решите уравнение:

Задание 17. Решите уравнение:

Задание 18. Решите уравнение:

Задание 19. Решите уравнение:

Задание 20. Решите уравнение:

Задание 21. Решите уравнение:

Задание 22. Решите уравнение:

Задание 23. Решите уравнение:

Задание 24. Решите уравнение:

Задание 25. Решите уравнение:

Задание 26. Решите уравнение:

Задание 27. Решите уравнение:

Задание 28. Решите уравнение:

Задание 29. Решите уравнение:

Задание 30. Решите уравнение:

Задание 31. Решите уравнение:

Задание 32. В следующем буквенном уравнении выразите переменную x:

Задание 33. В следующем буквенном уравнении выразите переменную x:

Задание 34. В следующем буквенном уравнении выразите переменную x:

Задание 35. В следующем буквенном уравнении выразите переменную x:

Задание 36. В следующем буквенном уравнении выразите переменную y:

Задание 37. В следующем буквенном уравнении выразите переменную z:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Добавить комментарий