Как найти неизвестное под корнем


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Иррациональные уравнения (со знаком корня)

Иррациональное уравнение – уравнение, содержащее переменную (x) под знаком корня любой степени.

Стандартное иррациональное уравнение:

[{large{ sqrt[n]{f(x)}=g(x)}}, text{ где }n -text{ натуральное
число.}]

(blacktriangleright) Если (n) – четное, то данное уравнение имеет решения только при (g(x)geqslant 0) и (f(x)geqslant 0) ввиду определения корня четной степени. Значит:

[{large{sqrt[n]{f(x)}=g(x) quad Leftrightarrow quad
begin{cases}
f(x)=g^n(x)\
g(x)geqslant 0
end{cases}}}]

(условие (f(x)geqslant 0) автоматически выполняется в данной системе)

(blacktriangleright) Если (n) – нечетное, то данное уравнение имеет решения при любых (f(x)) и (g(x)). Значит:

[{large{ sqrt[n]{f(x)}=g(x)quad Leftrightarrow quad
f(x)=g^n(x)}}]


Задание
1

#365

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{x + 12} = 6).

ОДЗ: (x geq -12). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (x + 12 = 36), что равносильно (x = 24).

Подставим в исходное уравнение: (sqrt{24 + 12} = 6) – верное равенство, таким образом, ответ (x = 24).

Ответ: 24


Задание
2

#366

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{4x + 5} = 6).

ОДЗ: (4x + 5 geq 0), что равносильно (x geq -1,25). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (4x + 5 = 36), что равносильно (x = 7,75).

Подставим в исходное уравнение: (sqrt{4 cdot 7,75 + 5} = 6) – верное равенство, таким образом, ответ (x = 7,75).

Ответ: 7,75


Задание
3

#367

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{6 – x} = 3).

ОДЗ: (6 – x geq 0), что равносильно (x leq 6). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (6 – x = 9), что равносильно (x = -3).

Подставим в исходное уравнение: (sqrt{6 – (-3)} = 9) – верное равенство, таким образом, ответ (x = -3).

Ответ: -3


Задание
4

#369

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{dfrac{2x – 9}{5}} = dfrac{2}{5}).

ОДЗ: (dfrac{2x – 9}{5} geq 0), что равносильно (x geq 4,5). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{2x – 9}{5} = dfrac{4}{25}qquadLeftrightarrowqquad 2x – 9 = dfrac{4}{5}qquadLeftrightarrowqquad x = 4,9.] Подставим в исходное уравнение: [sqrt{dfrac{2cdot 4,9 – 9}{5}} = dfrac{2}{5}] – верное равенство, таким образом, ответ (x = 4,9).

Ответ: 4,9


Задание
5

#370

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{dfrac{13 – 2x}{10}} = dfrac{4}{25}).

ОДЗ: (dfrac{13 – 2x}{10} geq 0), что равносильно (x leq 6,5). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{13 – 2x}{10} = dfrac{16}{625}qquadLeftrightarrowqquad 13 – 2x = dfrac{256}{1000}qquadLeftrightarrowqquad x = 6,372.] Подставим в исходное уравнение: [sqrt{dfrac{13 – 2cdot 6,372}{10}} = dfrac{4}{25}] – верное равенство, таким образом, ответ (x = 6,372).

Ответ: 6,372


Задание
6

#3847

Уровень задания: Равен ЕГЭ

Найдите корень уравнения [sqrt{2x+31}=9]

ОДЗ уравнения: (2x+31geqslant 0). Так как правая часть уравнения неотрицательна, то данное уравнение имеет решения и преобразуется в: [2x+31=81quadRightarrowquad x=25] Данный корень подходит под ОДЗ.

Ответ: 25


Задание
7

#371

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{dfrac{x + 23}{6}} = dfrac{5}{sqrt{3}}).

ОДЗ: (dfrac{x + 23}{6} geq 0), что равносильно (x geq -23). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{x + 23}{6} = dfrac{25}{3}qquadLeftrightarrowqquad x + 23 = 50qquadLeftrightarrowqquad x = 27.] Подставим в исходное уравнение: [sqrt{dfrac{27 + 23}{6}} = dfrac{5}{sqrt{3}}] – верное равенство, таким образом, ответ (x = 27).

Ответ: 27

При подготовке к ЕГЭ по математике у многих выпускников вызывает трудности решение иррациональных уравнений и неравенств. Вывод переменных из-под знака корня и возведение в степени часто сопровождаются ошибками в вычислениях, поэтому стоит обратить внимание на подобные задания. Мы предлагаем школьникам изучить теоретические материалы, рассмотреть типовые примеры с решениями иррациональных уравнений. Также ученики могут попробовать свои силы в выполнении более сложных задач с неизвестными.

Подготовка к ЕГЭ по математике со «Школково» — залог успеха!

Чтобы легко решать иррациональные уравнения со знаком корня, советуем регулярно заниматься на нашем портале. С помощью «Школково» вы сможете получить всю необходимую теоретическую информацию по теме, а также попрактиковаться в решении типовых задач, которые обязательно будут включены в итоговое тестирование.

Наши преподаватели собрали все полезные материалы, систематизировали и изложили их таким образом, чтобы школьникам было проще вспомнить и усвоить информацию даже по сложным темам. База постоянно обновляется и дополняется новыми упражнениями, поэтому выпускники будут получать и решать задания без повторений.

Мы предлагаем начать с легких уравнений и постепенно переходить к более сложным. Так ученикам проще определить свои слабые стороны и сделать упор на те темы, которые даются сложнее всего.

Если простые примеры не вызывают трудностей, пропускайте несколько упражнений и переходите к уравнениям профильного уровня. При необходимости повторите правила и вернитесь к заданию.

Обратите внимание, что занятия на нашем портале доступны не только старшеклассникам из Москвы, но и учащимся из других городов России.

УСТАЛ? Просто отдохни

Занятие 9 Как решать иррациональное уравнение
Занятие 9 Как решать иррациональное уравнение

Всем привет! 🖐🖐🖐

🎯 В этой статье мы разберемся как отличить и как решать иррациональное уравнение!
🎯 Задания из
ЕГЭ, ОГЭ, ВПР, иногда из учебников

✅ Решения подробные, будет понятно 😎
✅ В конце задания
для тренировки 💪
✅ В комментах
отвечу на ваши вопросы 😊
✅ И
без лишней воды ☔☔☔

Вот какие уравнения мы разберем сегодня:

Занятие 9 Как решать иррациональное уравнение
Занятие 9 Как решать иррациональное уравнение

📝 Как отличить и как решать иррациональное уравнение

Стандартный способ решения: чтобы избавиться от корня, нужно уравнение возвести в степень.
И не забываем про
ОДЗ!

Видео добавлю потом

Скрины:

Как отличить и как решать иррациональное уравнение
Как отличить и как решать иррациональное уравнение

📝 Уравнение 1

Здесь корень уже выражен, возводим в квадрат

Видео добавлю потом

Скрины:

№1 Простое иррациональное уравнение
№1 Простое иррациональное уравнение

📝 Уравнение 2

Здесь корень уже выражен – значит, возводим в квадрат

Видео добавлю потом

Скрины:

№2 Простое иррациональное уравнение
№2 Простое иррациональное уравнение

📝 Уравнение 3

Здесь кубический корень выражен, значит возводим в куб

Видео добавлю потом

Скрины:

№3 Простое иррациональное уравнение
№3 Простое иррациональное уравнение

📝 Уравнение 4

Квадратный корень уже выражен, так что возводим в квадрат

Видео добавлю потом

Скрины:

№4 Простое иррациональное уравнение
№4 Простое иррациональное уравнение

📝 Уравнение 5

Квадратный корень НЕ выражен, значит сначала выражаем, потом возводим в квадрат

Видео добавлю потом

Скрины:

№5 Иррациональное уравнение
№5 Иррациональное уравнение

📝 Уравнение 6

Что делать, если в уравнении сразу 2 корня? Конечно же, возводить в квадрат

Видео добавлю потом

Скрины:

№6 Иррациональное уравнение с 2 корнями
№6 Иррациональное уравнение с 2 корнями
№6 Иррациональное уравнение с 2 корнями
№6 Иррациональное уравнение с 2 корнями

📝 Уравнение 7

Сначала выражаем корень, потом возводим в квадрат

Видео добавлю потом

Скрины:

№7 Иррациональное уравнение
№7 Иррациональное уравнение

📝 Уравнение 8

Когда корни и слева, и справа, сразу возводим в квадрат, и они пропадают

Видео добавлю потом

Скрины:

№8 Иррациональное уравнение с 2 корнями
№8 Иррациональное уравнение с 2 корнями

📝 Уравнение 9

Что делать, когда под корнем еще корень?
Придется возводить
2 раза в квадрат

Видео добавлю потом

Скрины:

№9 Иррациональное уравнение Корень под корнем
№9 Иррациональное уравнение Корень под корнем

📝 Уравнение 10

Данное уравнение из ЕГЭ часть 2.
Делаем
по стандарту, без всяких неочевидных и бестолковых замен.
И не забываем
про ОДЗ

Видео добавлю потом

Скрины:

№10 Иррациональное уравнение ЕГЭ часть 2
№10 Иррациональное уравнение ЕГЭ часть 2
№10 Иррациональное уравнение ЕГЭ часть 2
№10 Иррациональное уравнение ЕГЭ часть 2
№10 Иррациональное уравнение ЕГЭ часть 2
№10 Иррациональное уравнение ЕГЭ часть 2
№10 Иррациональное уравнение ЕГЭ часть 2
№10 Иррациональное уравнение ЕГЭ часть 2

📝 Задания для тренировки

Реши сам по аналогии и напиши свои ответы в комментариях! 😋😋😋

Реши сам Иррациональное уравнение
Реши сам Иррациональное уравнение

⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜⚜

✅ Оглавление:

👉 Как решать любое уравнение (цикл занятий) здесь

✍ Занятие 0 Виды уравнений здесь
Занятие 1 Линейное уравнение здесь
Занятие 2 Часть 1 Полные квадратные уравнения здесь
Занятие 2 Часть 2 Неполные квадратные уравнения здесь
Занятие 2 Часть 3 Квадратные уравнения со скобками здесь
Занятие 3 Часть 1 Стандартные кубические уравнения здесь
Занятие 3 Часть 2 Кубические уравнения со скобками здесь
Занятие 4 Уравнение 4 степени здесь
Занятие 5 Уравнение со скобками (вида Произведение = 0) здесь
Занятие 6 Уравнение со скобками (вида Произведение = выр) здесь
Занятие 7 Дробное уравнение (вида Дробь = 0) здесь
Занятие 8 Дробное уравнение (вида Дробь = выражению) здесь
Занятие 9 Иррациональное уравнение (с корнями) здесь
Занятие 10 Уравнение с модулем здесь
Занятие 11 Часть 1 Простые показательные уравнения здесь
Занятие 11 Часть 2 Сложные показательные уравнения здесь
Занятие 12 Часть 1 Простые логарифмические уравнения здесь
Занятие 12 Часть 2 Сложные логарифмические уравнения здесь
Занятие 13 Тригонометрическое уравнение здесь
Занятие 14 Уравнение смешанного типа здесь

🧭 Путеводитель по каналу Подслушано по Математике

здесь

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Как решать иррациональные уравнения. Примеры.

Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель корня – четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

2) если показатель корня – нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

Пример 1. Решить уравнение

Возведем обе части уравнения в квадрат.
x 2 – 3 = 1;
Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
x 2 = 4;
Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
Проверка.
При x1 = -2 – истинно:
При x2 = -2- истинно.
Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Пример 2. Решить уравнение .

Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

а) x – 90;

x9;

б) 1 – x0;

-x-1 ;

x1.

ОДЗ данного уранения: x.

Ответ: корней нет.

Пример 3. Решить уравнение=+ 2.

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
x 3 + 4x – 1 – 8= x 3 – 1 + 4+ 4x;
=0;
x1=1; x2=0.
Произведя проверку устанавливаем, что x2=0 лишний корень.
Ответ: x1=1.

Пример 4. Решить уравнение x =.

В этом примере ОДЗ найти легко. ОДЗ этого уравнения: x[-1;).

Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

x1 =

x2 =

Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

x + 10 и x0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

Ответ:

Пример 5 . Решить уравнение+= 7.

Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
= 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 – х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 – 15x + 44 =0.

Это уравнение (также являющееся следствием исходного) имеет корни x1 = 4, х2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Замечание. При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравнения•= 12, пишут уравнение = 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

Пример 6. Решить уравнение-= 3.

Уединив первый радикал, получаем уравнение
=+ 3, равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

x 2 + 5x + 2 = x 2 – 3x + 3 + 6, равносильное уравнению

4x – 5 = 3(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
16x 2 – 40x + 25 = 9(x 2 – Зх + 3), или

7x 2 – 13x – 2 = 0.

Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x1 = 2 удовлетворяет исходному уравнению, а второй x2 =- не удовлетворяет.

Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

Пример 7. Решить уравнение 2x 2 – 6x ++ 2 = 0.

Введем вспомогательную переменную. Пусть y =, где y0, тогда получим уравнение 2y 2 + y – 10 = 0;
y1 = 2; y2 = -. Второй корень не удовлетворяет условию y0.
Возвращаемся к x:
= 2;
x 2 – 3x + 6 = 4;
x 2 -3x + 2 = 0;
x1 = 1; x2 = 2. Проверкой устанавливаем, что оба корня являются корнями иисходного уравнения.
Ответ: x1 = 1; x2 = 2.

Пример 8. Решить уравнение+=

Положим= t, Тогда уравнение примет вид t +=откуда получаем следствие: 2t 2 – 5t + 2 = 0 Решая это квадратное уравнение, находим два корня: t1 = 2 t2 =. Задача сводится теперь к решению следующих двух уравнений:
= 2,(*)=(**)

Возводя обе части уравнения (*) в куб, получаем 12 – 2x = 8x – 8; x1 = 2.

Аналогично, решив (**), находим x2 =.

Оба найденных корня удовлетворяют исходному уравнению, так как в процессе решения мы использовали (кроме замены неизвестного) только преобразование вида [f(x) = g(x)][f n (x) = g n (x)], а при таком преобразовании, как было отмечено выше, получается равносильное уравнение.

Ответ: х1 = 2, x2 =.

Иррациональные уравнения

Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.

Чтобы решить иррациональное уравнение, необходимо:

  1. Преобразовать заданное иррациональное уравнение к виду: $√=g(x)$ или $√=√$
  2. Обе части уравнение возвести в квадрат: $√^2=(g(x))^2$ или $√^2=√^2$
  3. Решить полученное рациональное уравнение.
  4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Решите уравнение $√<4х-3>=х$. Если уравнение имеет более одного корня, укажите наименьший из них.

Обе части уравнение возведем в квадрат:

Получаем квадратное уравнение:

Перенесем все слагаемые в левую часть уравнения:

Решим данное квадратное уравнение устным способом, так как

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.

$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит

$х_1=1$ наименьший корень.

Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:

  1. Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
  2. Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$

Решить уравнение: $х-6=√<8-х>$

Возведем обе части уравнения в квадрат

В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение

Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.

Приводим подобные слагаемые:

Найдем корни уравнения через дискриминант:

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$1=1$, получили верное равенство, следовательно, корень нам подходит.

$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.

[spoiler title=”источники:”]

http://viripit.ru/Pag5_3.htm

http://examer.ru/ege_po_matematike/teoriya/irracionalnye_uravneniya

[/spoiler]

Иррациональное уравнение — это уравнение, содержащее неизвестное под знаком корня {displaystyle surd } или возведённое в степень, которую нельзя свести к целому числу. Простейшим примером иррационального уравнения является уравнение{displaystyle {sqrt {x}}=2} или {displaystyle {sqrt[{3}]{x}}=-3}. Иногда корни могут обозначать в виде рациональных степеней неизвестной, то есть вместо {sqrt[{n}]{x}} пишут {displaystyle x^{frac {1}{n}}}.

Примеры и классификация[править | править код]

Короче сформулировать правило отнесения уравнений к той или иной категории можно так:

Образцами более сложных иррациональных уравнений могут послужить такие примеры:

{displaystyle {sqrt {x+4}}+{sqrt {x+9}}=5},
{displaystyle 7{sqrt[{3}]{2x^{2}+6}}-3{sqrt[{3}]{x^{2}}}=11},
{displaystyle x^{2}+{sqrt {x-1}}=10x+{sqrt[{11}]{x-2}}+1}

Связь с алгебраическими уравнениями[править | править код]

Всякое иррациональное уравнение с помощью элементарных алгебраических операций (умножение, деление, возведение в целую степень обеих частей уравнения) может быть сведено к рациональному алгебраическому уравнению. Например, уравнение {displaystyle {sqrt {x^{2}+x}}=2} возведением во вторую степень можно преобразовать к виду {displaystyle x^{2}+x=4}, что уже не иррациональное уравнение, но алгебраическое.

При этом следует иметь в виду, что полученное рациональное алгебраическое уравнение может оказаться неэквивалентным исходному иррациональному уравнению, а именно может содержать «лишние» корни, которые не будут корнями исходного иррационального уравнения. Поэтому, найдя корни полученного рационального алгебраического уравнения, необходимо проверить, а будут ли все корни рационального уравнения корнями иррационального уравнения.

Подходы к решению[править | править код]

В общем случае трудно указать какой-либо универсальный метод решения любого иррационального уравнения, так как желательно, чтобы в результате преобразований исходного иррационального уравнения получилось не просто какое-то рациональное алгебраическое уравнение, среди корней которого будут и корни данного иррационального уравнения, а рациональное алгебраическое уравнение образованное из многочленов как можно меньшей степени. Желание получить рациональное алгебраическое уравнение, образованное из многочленов как можно меньшей степени, вполне естественно, так как нахождение всех корней рационального алгебраического уравнения само по себе может оказаться довольно трудной задачей, решить которую полностью мы можем лишь в весьма ограниченном числе случаев.

Однако при решении самых разных уравнений применяются, в сущности, всего четыре метода[1]: разложение на множители; замена переменной; переход от равенства функций к равенству аргументов; функционально-графический.

1. Метод перехода.[править | править код]

Суть метода: переход от равенства, связывающего функции, к равенству, связывающему аргументы.

Способы реализации:

2. Метод введения новой переменной[править | править код]

Суть метода: выделение в исходном уравнении повторяющегося выражения с переменной и решение более простого уравнения относительно введённой «новой» переменной.

Способы реализации:

3. Метод разложения на множители[править | править код]

Суть метода: воспользоваться тем, что произведение множителей равно нулю тогда и только тогда, когда хотя бы один множитель равен нулю, а другие при этом имеют смысл.

Способ реализации:

  • Использование различных приёмов разложения на множители и равносильных преобразований иррациональных выражений.

4. Функционально-графический метод[править | править код]

Суть метода: использование свойств входящих в уравнение функций.

Способы реализации:

  • Использование области определения функций.
  • Использование области определения и области значений функций.
  • Использование монотонности функций.

Возведение в степень[править | править код]

Если обе части иррационального уравнения возвести в одну и ту же нечетную степень и освободиться от радикалов, то получится уравнение, равносильное исходному уравнению.

При возведении уравнения в чётную степень получают уравнение, являющееся следствием исходного. Поэтому возможно появление посторонних решений уравнения. Причина приобретения корней состоит в том, что при возведении в четную степень чисел, равных по абсолютной величине, но разных по знаку, получается один и тот же результат.

Заметим, что потеря корней при возведении уравнения в четную степень невозможна, но могут появиться посторонние корни. Рассмотрим пример:

Решим уравнение {displaystyle {sqrt {x^{2}+4x-5}}=4x-8}

Возведём обе части уравнения во вторую степень

{displaystyle ({sqrt {x^{2}+4x-5}})^{2}=(4x-8)^{2}}

так как мы возводим в чётную степень, то возможно появление посторонних корней, ибо самим процессом возведения мы расширяем область допустимых значений (ОДЗ) для подкоренных выражений.

Так, когда {displaystyle 4x-8} был приравнен к заведомо положительному числу (так как {displaystyle {sqrt {x^{2}+4x-5}}geqslant 0} в силу определения арифметического корня), переменная x не могла принимать значения, которые бы обратили {displaystyle 4x-8} в отрицательные числа, значит {displaystyle 4x-8geqslant 0} или {displaystyle xgeqslant 2}.

Другими словами в месте с постановкой задачи нам дали ещё и ограничения на значения переменной (ОДЗ) в виде {displaystyle xgeqslant 2}. Но, после возведения обеих частей в квадрат, мы получаем уравнение

{displaystyle x^{2}+4x-5=16x^{2}-64x+64},

уже в котором область допустимых значений (ОДЗ) переменой x совершенна другая (теперь x может принимать совершенно любые значения, то есть ОДЗ расширилось относительно первоначального уравнения).

Очевидно, что вероятность появления посторонних корней резко выросла просто по факту того, что теперь корнем может стать гораздо больше чисел, а не только те, что {displaystyle xgeqslant 2}.

Продолжая решать и упрощать {displaystyle x^{2}+4x-5=16x^{2}-64x+64} мы получим квадратное уравнение:

{displaystyle 15x^{2}-68x+69=0}, корнями которого являются

x=3 и {displaystyle x={frac {23}{15}}}

Следует заметить, что x=3 и {displaystyle x={frac {23}{15}}} точно являются корнями уравнения {displaystyle 15x^{2}-68x+69=0}, но ещё не известно являются ли они корнями первоначального {displaystyle {sqrt {x^{2}+4x-5}}=4x-8} уравнения.

Так мы знаем, что корни первоначального уравнения не могут быть меньше 2, а меж тем корень {displaystyle x={frac {23}{15}}approx 1.533333...} меньше двух, значит он не может быть корнем первоначального уравнения.

Ответ: {displaystyle xin {3}}

Замена системой условий[править | править код]

Использование свойств корней[править | править код]

Введение новых переменных[править | править код]

Введение вспомогательной переменной в ряде случаев приводит к упрощению уравнения. Чаще всего в качестве новой переменной используют входящий в уравнение корень (радикал). При этом уравнение становится рациональным относительно новой переменной.

Пример 1[2]: Решить уравнение {displaystyle 2x^{2}+3x+{sqrt {2x^{2}+3x+9}}=33,xin mathbb {R} }

Сделаем замену {displaystyle y={sqrt {2x^{2}+3x+9}}}, ясно что при этом мы наложили ограничения на новую переменную в виде {displaystyle ygeqslant {0}}, так как арифметический корень не может быть отрицательным числом.

После возведения y во вторую степень мы избавимся от знака корня и получим выражение {displaystyle y^{2}=2x^{2}+3x+9}. Далее, после подстановки y в исходное уравнение, мы получим такое уравнение:

{displaystyle y^{2}+y-42=0},

корни которого {displaystyle y=6} и {displaystyle y=-7}. Но y не может быть отрицательным числом ввиду того как мы определили y через нашу подстановку, поэтому корнем будем считать лишь {displaystyle y=6}. Далее, решая уравнение {displaystyle {sqrt {2x^{2}+3x+9}}=6}, мы получаем корни x=3 и {displaystyle x=-4.5}.

Ответ: {displaystyle xin {3;-4.5}}

Пример 2[3]: Решить уравнение {displaystyle {sqrt[{3}]{x+28}}-{sqrt[{3}]{x-9}}=1}

Сделаем две замены: {displaystyle u={sqrt[{3}]{x+28}}} и {displaystyle v={sqrt[{3}]{x-9}}}, после их возведения в третью степень получим {displaystyle u^{3}=x+28} и {displaystyle v^{3}=x-9}. Далее, решив каждое новое уравнение относительно x

{displaystyle x=u^{3}-28} и {displaystyle x=v^{3}+9}, и после уравнивания этих уравнений, мы получаем уравнение {displaystyle u^{3}-28=v^{3}+9}, но ввиду того, как мы вводили u и v, мы так же имеем уравнение {displaystyle u-v=1}, значит у нас появилась система из уравнений:

{displaystyle {begin{cases}u-v=1\u^{3}-v^{3}=37end{cases}}}

Решив систему, мы получаем значения {displaystyle v_{1}=3} и {displaystyle v_{2}=-4}, это значит нам надо решить ещё два уравнения:

{displaystyle {sqrt[{3}]{x-9}}=3} и {displaystyle {sqrt[{3}]{x-9}}=-4}, решения которых {displaystyle x=36} и {displaystyle x=-55}.

Ответ: {displaystyle xin {36;-55}}

Использование области определения[править | править код]

Использование области значений[править | править код]

Тождественное преобразования[править | править код]

Использование производной[править | править код]

Использование мажоранты[править | править код]

Термин «мажоранта» происходит от французского слова «majorante», от «majorer» — объявлять большим.

Мажорантой данной функции f(x) на заданном промежутке называется такое число A, что либо {displaystyle f(x)leqslant {A}} для всех x из данного промежутка, либо {displaystyle f(x)geqslant {A}} для всех x из данного промежутка. Основная идея метода состоит в использовании следующих теорем для решения иррациональных уравнений:

Теорема № 1.

Пусть f(x) и g(x) — некоторые функции, определённые на множестве D. Пусть f(x) ограничена на этом множестве числом А сверху, а g(x) ограничена на этом множестве тем же числом А, но снизу.

Тогда уравнение f(x)=g(x) равносильно системе:

{displaystyle {begin{cases}f(x)=A\g(x)=Aend{cases}}}

Теорема № 2.

Пусть f(x) и g(x) — некоторые функции, определённые на множестве D. Пусть f(x) и g(x) ограничены на этом множестве снизу (сверху) числами А и В соответственно. Тогда уравнение {displaystyle f(x)+g(x)=A+B} равносильно системе уравнений:

{displaystyle {begin{cases}f(x)=A\g(x)=Bend{cases}}}

Теорема № 3.

Пусть f(x) и g(x) — некоторые неотрицательные функции, определённые на множестве D. Пусть f(x) ограничена сверху (или снизу) числами А и В соответственно. Тогда уравнение {displaystyle f(x)g(x)=AB} равносильно системе уравнений (при условии, что A>0 и {displaystyle B>0}):

{displaystyle {begin{cases}f(x)=A\g(x)=Bend{cases}}}

В этом утверждении особенно важно условие неотрицательности функций f(x) и g(x), а также условие положительности А и В.

Пример:

Решить уравнение {displaystyle {sqrt {(x-2y+1)^{2}+1}}+{sqrt {(3x-y-2)^{2}+25}}=6}

Введём более короткие обозначения: {displaystyle f(x,y)={sqrt {(x-2y+1)^{2}+1}}} и {displaystyle g(x,y)={sqrt {(3x-y-2)^{2}+25}}}.

Значения f(x,y) больше или равны 1, так как подкоренное выражение {displaystyle (x-2y+1)^{2}+1} очевидно {displaystyle geqslant {1}}. Причём {displaystyle f(x,y)=1}, только если {displaystyle (x-2y+1)^{2}=0}. Аналогично, значения {displaystyle g(x,y)} не меньше 5. Значит можно записать {displaystyle f(x,y)+g(x,y)=1+5}. Следовательно, используя Теорему № 2:

{displaystyle {begin{cases}f(x,y)=1\g(x,y)=5end{cases}}} или {displaystyle {begin{cases}{sqrt {(x-2y+1)^{2}+1}}=1\{sqrt {(3x-y-2)^{2}+25}}=5end{cases}}}

Возведя оба уравнения в квадрат, получим

{displaystyle {begin{cases}(x-2y+1)^{2}=0\(3x-y-2)^{2}=0end{cases}}}, упрощая далее {displaystyle {begin{cases}x-2y+1=0\3x-y-2=0end{cases}}}

Единственное решение этой системы {displaystyle (1;1)}

Ответ: {displaystyle (1;1)}

Графический подход[править | править код]

В некоторых случаях построение графика функции позволяет оценить возможные пути решения уравнения, количество корней или их приблизительное значение.

Примечания[править | править код]

  1. Фирстова Н. И. Иррациональные уравнения: основные методы и приёмы решения // Математика в школе : статья в журнале – научная статья / Н. И. Фирстова. — М., 2020. — № 2. — С. 62-68. — ISSN 0130-9358.
  2. Акаткина Елена Михайловна. Методы решения иррациональных уравнений. Открытый урок.рф.
  3. Ерёменко Елена Васильевна. Иррациональные уравнения. Открытый урок.рф. Дата обращения: 24 октября 2020. Архивировано 21 сентября 2020 года.

Ссылки[править | править код]

  • [Иррациональные уравнения. Примеры с решениями]


Загрузить PDF


Загрузить PDF

Хотя пугающий вид символа квадратного корня и может заставить съежиться человека, не сильного в математике, задачи с квадратным корнем не такие уж и трудные, как это может вначале показаться. Простые задачи с квадратным корнем довольно часто можно решить так же легко, как обычные задачи с умножением или делением. С другой стороны, более сложные задачи могут потребовать некоторых усилий, но с правильным подходом даже они не составят вам труда. Начните решать задачи с корнем уже сегодня, чтобы научиться этому радикально новому математическому умению!

  1. Изображение с названием Solve Square Root Problems Step 1

    1

    Возведите число в квадрат, умножив его само на себя. Для того чтобы понять квадратные корни, лучше начать с квадратов чисел. Квадраты чисел довольно просты: возведение числа в квадрат означает умножение его само на себя. Например, 3 в квадрате это то же самое, что и 3 × 3 = 9, а 9 в квадрате это то же самое, что и 9 × 9 = 81. Квадраты помечаются написанием небольшой цифры «2» справа над возводящим в квадрат числом. Пример: 32, 92, 1002 и так далее.

    • Попробуйте сами возвести в квадрат еще несколько чисел, чтобы опробовать эту концепцию. Помните, возведение числа в квадрат означает, что это число следует умножить само на себя. Это можно сделать даже для отрицательных чисел. В таком случае результат всегда будет положительным. Например: -82 = -8 × -8 = 64.
  2. Изображение с названием Solve Square Root Problems Step 2

    2

    Когда речь идет о квадратных корнях, то здесь идет обратный процесс возведению в квадрат. Символ корня (√, его также называют радикалом) по существу означает противоположность символа 2. Когда вы видите радикал, вы должны спросить себя: «Какое число может умножиться само на себя, чтобы получилось число под корнем?». Например, если вы видите √(9), тогда вы должны найти число, которое при возведении в квадрат давало бы число девять. В нашем случае этим числом будет три, потому что 32 = 9.

    • Рассмотрим еще один пример и найдем корень из 25 (√(25)). Это означает, что нам необходимо найти число, которое бы в квадрате давало нам 25. Так как 52 = 5 × 5 = 25, можно сказать, что √(25) = 5.
    • Вы также может думать об этом, как об «аннулировании» возведения в квадрат. Например, если нам необходимо найти √(64), квадратный корень 64, то давайте думать об этом числе, как о 82. Так как символ корня «отменяет» возведение в квадрат, то мы можем сказать, что √(64) = √(82) = 8.
  3. Изображение с названием Solve Square Root Problems Step 3

    3

    Знайте разницу между идеальным и не идеальным возведением в квадрат. До этих пор ответами на наши задачи с корнем были хорошие и круглые числа, но это не всегда так. Ответами задач с квадратным корнем могут быть очень длинные и неудобные числа с десятичной дробью. Числа, корень которых представляет собой целые числа (другими словами, числа которые не являются дробью) называются полными квадратами. Все вышеупомянутые примеры (9, 25 и 64) являются полными квадратами, потому что их корнем будет целое число (3,5 и 8).

    • С другой стороны, числа, которые при возведении под корень не дают целого числа, называются неполными квадратами. Если поставить одно из этих чисел под корень, то вы получите число с десятичной дробью. Иногда такое число может оказаться весьма длинным. Например, √(13) = 3,605551275464…
  4. Изображение с названием Solve Square Root Problems Step 4

    4

    Запомните первые 1-12 полных квадратов. Как вы, вероятно, уже заметили, найти корень полного квадрата довольно легко! Из-за того, что эти задачи такие простые, стоит запомнить корни первой дюжины полных квадратов. Вы не раз столкнетесь с этими числами, так что потратьте немного времени, чтобы запомнить их пораньше и сэкономить время в будущем.

    • 12 = 1 × 1 = 1
    • 22 = 2 × 2 = 4
    • 32 = 3 × 3 = 9
    • 42 = 4 × 4 = 16
    • 52 = 5 × 5 = 25
    • 62 = 6 × 6 = 36
    • 72 = 7 × 7 = 49
    • 82 = 8 × 8 = 64
    • 92 = 9 × 9 = 81
    • 102 = 10 × 10 = 100
    • 112 = 11 × 11 = 121
    • 122 = 12 × 12 = 144
  5. Изображение с названием Solve Square Root Problems Step 5

    5

    Упростите корни, убрав из него полные квадраты, если это возможно. Найти корень неполного квадрата иногда может оказаться нелегко, особенно если вы не используете калькулятор (в разделе ниже вы найдете несколько трюков, как сделать этот процесс легче). Однако зачастую можно упростить число под корнем, чтобы с ним было легче работать. Чтобы сделать это, вам просто необходимо разделить число под корнем на множители, а затем найти корень множителя, который является полным квадратом, и записать его снаружи корня. Это проще, чем кажется. Читайте далее, чтобы получить больше информации.[1]

    • Давайте предположим, что нам необходимо найти квадратный корень 900. На первый взгляд это кажется довольно тяжелой задачей! Однако это не будет так тяжело, если мы разделим число 900 на множители. Множители – это числа, которые умножаются друг на друга для того, чтобы дать новое число. Например, число 6 можно получить, умножив 1 × 6 и 2 × 3, его множителями будут числа 1, 2, 3 и 6.
    • Вместо того чтобы искать корень числа 900, что немного затруднительно, давайте запишем 900, как умножение 9 × 100. Теперь, когда число 9, которое является полным квадратом, отделено от 100, мы можем найти его корень. √(9 × 100) = √(9) × √(100) = 3 × √(100). Другими словами, √(900) = 3√(100).
    • Мы даже можем пойти еще дальше, разделив 100 на два множителя, 25 и 4. √(100) = √(25 × 4) = √(25) × √(4) = 5 × 2 = 10. Поэтому мы можем сказать, что √(900) = 3(10) = 30
  6. Изображение с названием Solve Square Root Problems Step 6

    6

    Используйте мнимые числа, чтобы найти корень отрицательного числа. Спросите себя, какое число при умножении само на себя даст -16? Это не 4 и не -4, так как возведение этих чисел в квадрат даст нам положительное число 16. Сдались? На самом деле не существует способа записать корень -16 или любого другого отрицательного числа обычными числами. В таком случае мы должны подставить мнимые числа (обычно в форме букв или символов), чтобы они оказались вместо корня отрицательного числа. Например, переменная «i» обычно используется для возведения под корень числа -1. Как правило, корнем отрицательного числа всегда будет мнимое число (или включенное в него).

    • Знайте, что хотя мнимые числа и не могут быть представлены обычными цифрами, к ним все равно можно относиться, как к таковым. Например, квадратный корень отрицательного числа можно возвести в квадрат, чтобы придать этим отрицательным числам, как и любым другим, квадратный корень. Например, i2 = -1

    Реклама

  1. Изображение с названием Solve Square Root Problems Step 7

    1

    Запишите задачу с корнем, как задачу деления столбиком. Хотя это может отнять довольно много времени, таким образом, вы сможете решить задачу с корнем неполных квадратов, не прибегая к помощи калькулятора. Для этого мы воспользуемся методом решения (или алгоритмом), который похож (но не точно такой же) на обычное деление столбиком. [2]

    • Для начала запишите задачу с корнем в такую же форму, что и при делении столбиком. Предположим, что мы хотим найти квадратный корень числа 6,45, которое точно не является полным квадратом. Сперва мы напишем обычный символ квадрата, а затем под ним мы напишем число. Далее над числом мы нарисуем линию, чтобы оно оказалось в небольшой «коробочке», так же как и при делении столбиком. После этого у нас получится корень с длинным хвостом и числом 6,45 под ним.
    • Над корнем мы будем писать числа, так что обязательно оставьте там место.
  2. Изображение с названием Solve Square Root Problems Step 8

    2

    Сгруппируйте цифры по парам. Для того чтобы начать решать задачу, необходимо сгруппировать цифры числа под радикалом по парам, начав с точки в десятичной дроби. Если хотите, можете делать небольшие отметки (вроде точек, косой линии, запятых и прочего) между парами, чтобы не запутаться.

    • В нашем примере, мы должны разделить на пары число 6,45 следующим образом: 6-,45-00. Обратите внимание, что слева присутствует «оставшаяся» цифра – это нормально.
  3. Изображение с названием Solve Square Root Problems Step 9

    3

    Найдите наибольшее число, квадрат которого меньше или равен первой «группе». Начните с первого числа или пары слева. Выберите наибольшее число, квадрат которого меньше или равен оставшейся «группе». Например, если бы группа была равна 37, вы бы выбрали число 6, потому что 62 = 36 < 37, а 72 = 49 > 37. Запишите это число над первой группой. Это будет первой цифрой вашего ответа.

    • В нашем примере, первой группой в 6-,45-00 будет цифра 6. Наибольшее число, которое в квадрате будет меньше или равно 6 это 22 = 4. Напишите цифру 2 над цифрой 6, которая стоит под корнем.
  4. Изображение с названием Solve Square Root Problems Step 10

    4

    Удвойте только что написанное число, затем опустите его под корень и отнимите. Возьмите первую цифру вашего ответа (число, которое вы только что нашли) и удвойте ее. Запишите результат под первой своей группой и отнимите, чтобы найти разницу. Опустите следующую пару чисел рядом с ответом. И наконец, напишите слева последнюю цифру удвоения первой цифры своего ответа, а рядом оставьте пробел.

    • В нашем примере, мы начнем с удвоения цифры 2, которая является первой цифрой нашего ответа. 2 × 2 = 4. Затем мы отнимем 4 от 6 (нашей первой «группы»), получив при этом 2. Далее мы опустим следующую группу (45), чтобы получить 245. И наконец, слева мы еще раз напишем цифру 4, оставив в конце небольшой пробел, вот так: 4_
  5. Изображение с названием Solve Square Root Problems Step 11

    5

    Заполните пробел. Затем вы должны прибавить цифру к правой части записанного числа, которое находится слева. Выберите цифру, перемножив которую с вашим новым числом, вы получили бы максимально большой результат, но который бы был меньше или равен «опущенному «числу». Например, если ваше «опущенное» число равно 1700, а ваше число слева это 40_, в пробел необходимо написать цифру 4, так как 404 × 4 = 1616 < 1700, в то время как 405 × 5 = 2025. Найденная в этом шаге цифра и будет второй цифрой вашего ответа, так вы можете записать ее над знаком корня.

    • В нашем примере, мы должны найти число и записать его в пробелы 4_ × _, что сделает ответ как можно большим, но все же меньшим или равным 245. В нашем случае это цифра 5. 45 × 5 = 225, в то время как 46 × 6 = 276
  6. Изображение с названием Solve Square Root Problems Step 12

    6

    Продолжайте использовать «пустые» числа, чтобы найти ответ. Продолжайте решать это измененное деление столбиком, пока не начнете получать нули при вычитании «опущенного» числа или пока не получите желаемый уровень точности ответа. Когда вы закончите, числа, которые вы использовали, чтобы заполнить пробелы в каждом шаге (плюс самое первое число) будут составлять число вашего ответа.

    • Продолжая наш пример, мы отнимем 225 от 245, чтобы получить 20. Затем, мы опустим следующую пару чисел, 00, чтобы получить 2000. Удвоим число над знаком корня. Мы получим 25 × 2 = 50. Решив пример с пробелами, 50_ × _ =/< 2,000, мы получим 3. На этом этапе над радикалом у нас будет написано 253, а повторив этот процесс снова, следующим нашим числом будет цифра 9.
  7. Изображение с названием Solve Square Root Problems Step 13

    7

    Передвиньте точку десятичной дроби вперед от изначального «делимого» числа. Чтобы завершить свой ответ, вы должны поставить точку десятичной дроби в правильное место. К счастью, сделать это довольно легко. Все, что вам необходимо сделать, это выровнять ее относительно точки изначального числа. Например, если под корнем будет стоять число 49,8, вы должны будете поставить точку между двумя цифрами над девяткой и восьмеркой.

    • В нашем примере под радикалом стоит число 6,45, так что мы просто переместим точку и поставим ее между цифрами 2 и 5 в нашем ответе, получив при этом ответ равный 2,539.

    Реклама

  1. Изображение с названием Solve Square Root Problems Step 14

    1

    Найдите неполные квадраты, подсчитав их. Когда вы запомните полные квадраты, поиск корня неполных квадратов станет намного проще. Так как вы уже знаете дюжину полных квадратов, любое число, которое попадает в область между этими двумя полными квадратами можно найти, сведя все к приблизительному подсчету между этих значений. Начните с поиска двух полных квадратов, между которыми находится ваше число. Затем определите, к которому из этих чисел ваше число находится ближе.

    • Например, предположим, что нам необходимо найти квадратный корень числа 40. Так как мы запомнили полные квадраты, мы можем сказать, что число 40 находится между 62 и 72или числам 36 и 49. Так как 40 больше 62, его корень будет больше 6, а так как оно меньше 72, его корень также будет и меньше 7. 40 немного ближе к 36, чем к 49, так что ответ, скорее всего, будет немного ближе к 6. В следующих нескольких шагах мы сузим наш ответ.
  2. Изображение с названием Solve Square Root Problems Step 15

    2

    Подсчитайте квадратный корень до первого знака после десятичной точки. После того как вы выберите два полных квадрата, между которых находится ваше число, все сводится к вашему подсчету, пока вы не получите желаемый ответ. Чем больше вы подсчитаете, тем более точным будет ваш ответ. Начните с того, что выберите, куда поставить точку десятичной дроби в свой ответ. Она не должна обязательно быть верной, но зато вы сэкономите время, если воспользуетесь логикой и поставите точку как можно ближе к правильному ответу.

    • В нашем примере, разумной оценкой квадратного корня числа 40 может быть 6,4, так как, исходя из вышеупомянутой информации, мы знаем, что ответ ближе к 6, чем к 7.
  3. Изображение с названием Solve Square Root Problems Step 16

    3

    Умножьте приблизительное число само на себя. Следующее, что вы должны сделать, это возвести приблизительное число в квадрат. Вам, скорее всего, не повезет и вы не получите изначальное число. Оно будет или немного большим, или немного меньшим. Если ваш результат слишком большой, тогда попробуйте снова, но с немного меньшим приблизительным числом (и наоборот, если результат слишком низкий).

    • Умножьте 6,4 само на себя, и вы получите 6,4 × 6,4 = 40,96, что немного больше за изначальное число.
    • Так как наш ответ оказался больше, мы должны умножит число на одну десятую меньше за приблизительное и получить следующее: 6,3 × 6,3 = 39,69. Это немного меньше за изначальное число. Это значит, что квадратный корень 40 находится между 6,3 и 6,4. И снова, так как 39,69 ближе к 40, чем 40,96, мы знаем, что квадратный корень будет ближе к 6,3, чем к 6,4.
  4. Изображение с названием Solve Square Root Problems Step 17

    4

    Продолжайте расчет. На этом этапе, если вы довольны своим ответом, вы можете просто взять первое угаданное приблизительное значение. Однако если вы хотите получить более точный ответ, все что вам необходимо сделать, это выбрать приблизительное значение с двумя знаками десятичной дроби, которое ставит это приблизительное значение между первыми двумя числами. Продолжив этот подсчет, вы сможете получить для своего ответа три, четыре и больше знаков после запятой. Все зависит от того, насколько далеко вы захотите зайти.

    • В нашем примере давайте выберем 6,33 в качестве приблизительного значения с двумя знаками после запятой. Умножьте 6,33 само на себя, чтобы получить 6,33 × 6,33 = 40,0689. так как это немного больше нашего числа, мы возьмем число поменьше, например, 6,32. 6,32 × 6,32 = 39.9424. Этот ответ немного меньше нашего числа, так что мы знаем, что точный квадратный корень находится между 6,32 и 6,33. Если бы мы захотели продолжить, мы бы продолжали использовать тот же подход, чтобы получить ответ, который становился бы все точнее и точнее.

    Реклама

Советы

  • Для быстрого поиска решения, воспользуйтесь калькулятором. Большинство современных калькуляторов могут мгновенно найти квадратный корень числа. Все что вам необходимо сделать, это ввести свое число, а затем нажать на кнопку со знаком корня. Например, для того чтобы найти корень 841, вы должны будет нажать 8, 4, 1 и (√). В результате чего вы получите ответ 39.

Реклама

Источники

Об этой статье

Эту страницу просматривали 71 036 раз.

Была ли эта статья полезной?

Добавить комментарий