Коллинеарность векторов, условия коллинеарности векторов.
Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).
рис. 1 |
Условия коллинеарности векторов
Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третего условия коллинеарности
Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение
Примеры задач на коллинеарность векторов
Примеры задач на коллинеарность векторов на плоскости
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
Вектора a и b коллинеарны т.к. | 1 | = | 2 | . |
4 | 8 |
Вектора a и с не коллинеарны т.к. | 1 | ≠ | 2 | . |
5 | 9 |
Вектора с и b не коллинеарны т.к. | 5 | ≠ | 9 | . |
4 | 8 |
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
Решим это уравнение:
Ответ: вектора a и b коллинеарны при n = 6.
Примеры задач на коллинеарность векторов в пространстве
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:
ax | = | ay | = | az | . |
bx | by | bz |
Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12
Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12
Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | = | az | . |
bx | by | bz |
3 | = | 2 | = | m |
9 | n | 12 |
Из этого соотношения получим два уравнения:
Решим эти уравнения:
Ответ: вектора a и b коллинеарны при n = 6 и m = 4.
Примеры решения задач с векторами
Вектора применяются во многих науках, таких как: математика, физика, геометрия и многих других прикладных науках. На практике, они позволяют не делать лишних операций и сократить время выполнения задач. Поэтому, будущим специалистам очень важно понять теорию векторов и научиться решать задачи с ними.
Перед изучением примеров решения задач советуем изучить теоретический материал по векторам, прочитать все определения и свойства. Список тем находится в правом меню.
Координаты вектора
Теоретический материал по теме – координаты вектора.
Векторы: третий уровень сложности
Знакомимся с коллинеарностью.
Для большинства людей искусственный интеллект — это нечто сложное и таинственное. А для математиков это синоним фразы «перемножение матриц». С точки зрения человека, который владеет линейной алгеброй, в искусственном интеллекте нет ничего загадочного.
Мы хотим, чтобы вы тоже смогли понять искусственный интеллект на уровне математики. Для этого у нас идёт цикл статей про линейную алгебру:
Сама тема несложная, но конкретно этот шаг вам ничего не даст в практическом смысле. Но если вам хватит терпения, на базе этих знаний мы уже перейдём к матрицам.
Что за коллинеарность
Представьте два вектора, которые находятся в одной плоскости и располагаются параллельно друг другу. При этом у них может быть разная длина. Такое расположение делает связку векторов коллинеарными, или, по-простому, линейно зависимыми.
И наоборот: если вектора находятся в одной плоскости и располагаются не параллельно друг относительно друга, то их считают линейно независимыми — неколлинеарными. Пока что ничего сложного.
Коллинеарные векторы Неколлинеарные векторы
Сложение коллинеарных и неколлинеарных векторов
Очевидно, что сложить два коллинеарных вектора очень легко: откладываем второй вектор от начала первого, получится новый вектор. Он будет коллинеарным своим слагаемым, они все будут лежать, грубо говоря, на одной линии.
Можно представить, что вы идёте прямо: каждый ваш шаг — это вектор. Каждый новый шаг — новый вектор. Но если все их сложить, получится один большой прямой вектор длиной как все ваши шаги.
Теперь попробуем сложить пару неколлинеарных векторов. Это как если бы мы сначала сделали шаг немного правее, а потом сделали бы шаг влево. Шага два, но если соединить начало и конец пути, он не будет совпадать с траекториями наших шагов. Появится какой-то новый вектор, с новым направлением, и он будет неколлинеарным по отношению к своим слагаемым.
Также пару неколлинеарных векторов из одной плоскости можно растянуть и развернуть в пространстве. Если их сложить, также появится новый вектор.
У математиков такой вектор называют базисом. Когда базис находится на плоскости или в пространстве, то он может единственным образом превращаться обратно в пару неколлинеарных векторов, которые его сформировали.
Правило работает, когда мы масштабируем и меняем расположение векторов в пространстве. Если мы изменим направление исходных векторов, то получим новый базис.
Базис — понятие из высшей математики, поэтому, если сейчас сложно, не отчаивайтесь. Студенты-математики когда-то тоже отчаивались.
Мы изменили пару неколлинеарных векторов и сформировали из них базис — получили новый фиолетовый вектор с собственной системой координат Теперь мы изменили исходные неколлинеарные векторы и получили новый базис — это оранжевый вектор
Как определять неколлинеарность
Когда мы работаем с короткими векторами, всё очевидно: нарисовали систему координат, отложили на ней векторы, они либо совпали, либо не совпали. Если совпали — коллинеарные, если нет — неколлинеарные.
А теперь представьте, что вектора настолько огромные, что мы физически не можем их нарисовать и сопоставить. Например,
Как такое нарисовать? Как проверить коллинеарность? Вот тут начинается магия алгебры.
Есть три способа проверки линейной зависимости векторов. Для простоты вычислений проверим эти три способа на вот этих всё ещё простых векторах:
По этим координатам ответим на два вопроса: являются ли предложенные вектора линейно зависимыми (то есть коллинеарными) и можно ли их раскладывать по базису.
Первый способ. Запишем простую систему уравнений: возьмём первую координату каждого вектора и приравняем её ко второй координате каждого вектора, умноженной на неизвестное число λ. Вычислим λ и сравним результаты.
👉 Знак λ здесь по традиции и для удобства. На самом деле это просто некое неизвестное число. Вместо этой буквы могли быть X, Y, Z или N, но так как у нас вектора уже называются X и Y, а N в математике используется для других целей, возьмём λ — это греческая буква «лямбда», давний предок нашей русской буквы «Л».
Составляем систему уравнений:
Вычисляем значение λ:
Сравниваем результат и делаем вывод:
Мы получили разное значение для неизвестного числа λ и поэтому наши векторы будут считаться линейно независимыми. Из них можно получить базис.
Если бы значение λ совпало, то мы бы имели дело с линейно зависимыми векторами.
Второй способ. Проверяем координаты векторов на пропорциональность: берём первую координату первого вектора, делим её на первую координату второго вектора. Повторяем это же действие со вторыми координатами: берём вторую координату первого вектора и делим её на вторую координату второго вектора.
Получаем такую пропорцию:
Считаем значение и сравниваем результат:
Равенство не выполняется, и поэтому между векторами нет зависимости.
Третий способ. Используем четыре элемента наших координат для поиска определителя — скалярной величины, с которой мы подробно познакомимся в следующих статьях во время решения матричных уравнений. Сейчас нам не нужны подробности, и для проверки линейной зависимости достаточно формулы.
Записываем в две строки координаты наших векторов:
Переводим координаты векторов в определитель — добавляем с двух сторон вертикальную черту и получаем простую квадратную матрицу размером 2 на 2:
В полученной матрице две диагонали. Числа −6 и −1 образуют главную диагональ; числа −4 и 5 — вторую диагональ. Чтобы найти определитель, нам нужно умножить числа главной и второй диагонали, а затем вычесть их разницу.
Если из координат вектора мы получили определитель и он не равен нулю, то векторы считаются линейно независимыми и подходят для разложения по базису.
И наоборот: нулевой определитель указывает на линейную зависимость векторов.
Что из этого нужно запомнить
- С точки зрения векторов важно, они сонаправленные или нет. По-другому — они коллинеарны или нет.
- Коллинеарность влияет на то, что можно делать с этими векторами. Например, неколлинеарные векторы можно разложить по базису.
- Базис — это вектор, который можно разложить на те самые неколлинеарные векторы.
- Коллинеарность легко проверяется через уравнения. Строить векторы на координатной плоскости необязательно.
Что дальше
Следующий шаг — матрицы. Это те самые, которые лежат в основе всех нейронок и искусственного интеллекта. Матрица — это таблица чисел, с которыми можно проводить различные вычисления.
[spoiler title=”источники:”]
http://www.webmath.ru/poleznoe/formules_4_14.php
http://thecode.media/lineynaya-zavisimost-vektorov/
[/spoiler]
Содержание:
- Формула
- Примеры нахождения коллинеарного вектора
Формула
Для того чтобы вектор
$bar{a}=left(a_{x} ; a_{y}right)$ был коллинеарным вектору $bar{b}=left(b_{x} ; b_{y}right)$ необходимо, чтобы их соответствующие
координаты были пропорциональны, то есть их координаты удовлетворяли условию
$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}$$
Если векторы заданны в пространстве своими координатами:
$bar{a}=left(a_{x} ; a_{y} ; a_{z}right), bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$, тогда условие коллинеарности имеет вид:
$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}=frac{a_{z}}{b_{z}}$$
Примеры нахождения коллинеарного вектора
Пример
Задание. Даны два вектора
$bar{a}=(2 ;-3)$ и $bar{b}=(-1 ; m)$. При каком значении
$m$ эти векторы будут коллинеарными?
Решение. Для того чтобы векторы
$bar{a}$ и
$bar{b}$ были коллинеарными необходимо,
чтобы их координаты были пропорциональными, то есть удовлетворяли условию:
$$frac{a_{x}}{b_{x}}=frac{a_{y}}{b_{y}}$$
Подставим координаты заданных векторов в это равенство и найдем значение
$m$:
$$frac{2}{-1}=frac{-3}{m}$$
По пропорции имеем:
$$2 cdot m=(-1) cdot(-3) Rightarrow 2 cdot m=3 Rightarrow m=frac{3}{2}=1,5$$
Ответ. Векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными при
$m=1,5$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Заданы два вектора
$bar{a}=(4 ;-m ; 1)$ и $bar{b}=(2 ;-3 ; n)$. При каких значениях
$m$ и
$n$ векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными?
Решение. Для того чтобы векторы
$bar{a}$ и
$bar{b}$ были коллинеарными необходимо, чтобы их координаты
были пропорциональными, то есть чтобы выполнялись следующие равенства:
$$frac{4}{2}=frac{-m}{-3}=frac{1}{n}$$
А тогда значения неизвестных параметров
$m$ и
$n$ находим из равенств
$$frac{m}{3}=2 Rightarrow m=6$$
$$frac{1}{n}=2 Rightarrow n=frac{1}{2}=0,5$$
Ответ. Векторы
$bar{a}$ и
$bar{b}$ будут коллинеарными при
$m=6$ и $n=0,5$
Читать дальше: как найти вектор перпендикулярный вектору.
Условия коллинеарности векторов
Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
a = n · b
Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третего условия коллинеарности
Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение
a × b =
ijk
axayaz
bxbybz
= i (aybz – azby) – j (axbz – azbx) + k (axby – aybx) =
= i (aynaz – aznay) – j (axnaz – aznax) + k (axnay – aynax) = 0i + 0j + 0k = 0
Примеры задач на коллинеарность векторов
Примеры задач на коллинеарность векторов на плоскости
Пример 1. Какие из векторов a = {1; 2}, b = {4; 8}, c = {5; 9} коллинеарны?
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
Значит:
Вектора a и b коллинеарны т.к. | 1 | = | 2 | . |
4 | 8 |
Вектора a и с не коллинеарны т.к. | 1 | ≠ | 2 | . |
5 | 9 |
Вектора с и b не коллинеарны т.к. | 5 | ≠ | 9 | . |
4 | 8 |
Пример 2. Доказать что вектора a = {0; 3} и b = {0; 6} коллинеарны.
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
b = na.
Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение na:
na = {2 · 0; 2 · 3} = {0; 6}
Так как b = na, то вектора a и b коллинеарны.
Пример 3. найти значение параметра n при котором вектора a = {3; 2} и b = {9; n} коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
Значит:
Решим это уравнение:
Ответ: вектора a и b коллинеарны при n = 6.
Примеры задач на коллинеарность векторов в пространстве
Пример 4. Какие из векторов a = {1; 2; 3}, b = {4; 8; 12}, c = {5; 10; 12} коллинеарны?
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:
ax | = | ay | = | az | . |
bx | by | bz |
Значит:
Вектора a и b коллинеарны т.к.
14 = 28 = 312
Вектора a и с не коллинеарны т.к.
15 = 210 ≠ 312
Вектора с и b не коллинеарны т.к.
54 = 108 ≠ 1212
Пример 5. Доказать что вектора a = {0; 3; 1} и b = {0; 6; 2} коллинеарны.
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
b = na.
Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение na:
na = {2 · 0; 2 · 3; 2 · 1} = {0; 6; 2}
Так как b = na, то вектора a и b коллинеарны.
Пример 6. найти значение параметров n и m при которых вектора a = {3; 2; m} и b = {9; n; 12} коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | = | az | . |
bx | by | bz |
Значит:
3 | = | 2 | = | m |
9 | n | 12 |
Из этого соотношения получим два уравнения:
Решим эти уравнения:
Ответ: вектора a и b коллинеарны при n = 6 и m = 4.
Чтобы найти координаты вектора по двум точкам нужно найти разность между координатами конца и начала вектора. Пусть даны две точки $ A(x_1;y_1) $ и $ B(x_2;y_2) $Вектор $ overline $ для плоской задачи можно найти по формуле: $$ overline = (x_2-x_1; y_2-y_1) $$
Формула
В случае, если точки расположены в пространстве $ A(x_1;y_1;z_1) $ и $ B(x_2;y_2;z_2) $, то координаты вектора $ overline $ расчитываются по формуле: $$ overline = (x_2-x_1; y_2-y_1; z_2-z_1) $$
Следует обратить внимание, что координаты вычисляются именно с помощью вычитания начальной точки из конечной, но не наоборот. То есть векторы $ overline $ и $ overline $ имеют разные координаты: $$ overline
eq overline $$
Примеры решений
Как найти координаты вектора по двум точкам? Согласну правилу нужно из конечной точки вычесть начальную. Так как вектор $ overline $ имеет начало в точке $ A $, а конец в $ B $, то получаем:
Теперь посмотрим на вектор $ overline $, в котором начало в точке $ B $, а конец в $ A $. Поэтому имеем:
Как видим, векторые разные, и координаты их тоже отличаются.
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .
Векторы i → и j → называют координатными векторами.
Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.
Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; — 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .
Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .
Таким образом, координаты равных векторов соответственно равны.
Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.
Изобразим координатную ось.
Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → — O A → .
O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .
По правилу операций над векторами найдем A B → = O B → — O A → = x b — x a , y b — y a .
Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.
Для нахождения координат вектора, необходимо найти разность его точек конца и начала.
Найти координаты O A → и A B → при значении координат точек A ( 2 , — 3 ) , B ( — 4 , — 1 ) .
Для начала определяется радиус-вектор точки A . O A → = ( 2 , — 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.
Получаем: A B → = ( — 4 — 2 , — 1 — ( — 3 ) ) = ( — 6 , 2 ) .
Ответ: O A → = ( 2 , — 3 ) , A B → = ( — 6 , — 2 ) .
Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , — 2 ) . Найти координаты конца A B → .
Подставляем координаты точки A : A B → = ( x b — 3 , y b — 5 , z b — 7 ) .
По условию известно, что A B → = ( 2 , 0 , — 2 ) .
Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b — 3 = 2 y b — 5 = 0 z b — 7 = — 2
Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5
Ответ: B ( 5 , 5 , 5 ) .
Если даны две точки плоскости и , то вектор имеет следующие координаты:
Если даны две точки пространства и , то вектор имеет следующие координаты:
То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора.
Задание : Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.
Даны две точки плоскости и . Найти координаты вектора
Решение: по соответствующей формуле:
Как вариант, можно было использовать следующую запись:
Эстеты решат и так:
Лично я привык к первой версии записи.
Ответ:
По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:
Обязательно нужно понимать различие между координатами точек и координатами векторов:
Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.
Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .
Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.
Дамы и господа, набиваем руку:
а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .
Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится ;-). Чертежи делать не нужно. Решения и ответы в конце урока.
Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)
Не нашли то, что искали? Воспользуйтесь поиском:
Пример 1 |
Даны точки $ A(2;1;-3) $ и $ B(1;0;2) $. Найти координаты векторов $ overline $ и $ overline $ |
Решение |
Содержание:
Векторная алгебра
Векторная алгебра – это раздел векторного исчисления, изучающий линейные операции с векторами и их геометрические свойства; часть линейной алгебры, занимающаяся векторными пространствами; различные векторные алгебры XIX века (например, кватернионов, бикватернионов, сплит-кватернионов).
Векторы и линейные операции над ними
Займемся теперь таким важным как в самой математике, так и в ее многочисленных приложениях, понятием вектора.
Определение: Вектором, на плоскости или в пространстве называется отрезок прямой с заданным на нем направлением, т. е. одна из его граничных точек считается начальной, а вторая – конечной.
Обозначать векторы мы будем строчными латинскими буквами
Длина отрезка, изображающего вектор называется его длиной и обозначается через Вектор с совпадающими начальной и конечной точками называется нуль-вектором. Для него используется обозначение
По определению, два вектора считаются равными, если один из них можно преобразовать в другой с помощью параллельного переноса.
Учитывая приведенное определение, всюду в дальнейшем мы без специальных оговорок будем перемещать вектор параллельным переносом в любую удобную для нас точку.
Два вектора называются коллинеарными (обозначение ), если отрезки их изображающие параллельны.
Аналогично, векторы а и b называются ортогональными (обозначение ), если соответствующие отрезки перпендикулярны.
Три вектора называются компланарными, если после приведения их общему началу, они будут расположены в одной плоскости.
Углом между векторами приведенными к общему началу, называется меньший из двух углов между соответствующими отрезками. Обозначать угол мы будем строчными греческими буквами … или через
Два ненулевых вектора мы будем считать одинаково направленными, если и противоположно направленными, если
Введем теперь линейные операции над векторами.
а) Умножение числа на вектор.
Произведением действительного числа на векторназывается вектор длина которого равна а направление его совпадает с направлением вектора если и имеет противоположное с ним направление, если Если или
В частности, вектор обозначается через и называется вектором, противоположным вектору
Если то произведение мы будем иногда записывать в виде
Из приведенного определения сразу же следует, что коллинеарные векторы линейно связаны, т. е. существует константа такая,что В качестве такой константы следует
взять число Если то В частности, если то вектором единичной длины с направлением данного вектора является вектор
b) Сложение векторов.
Суммой двух векторов называется вектор который находится по правилу треугольника
или по равносильному ему правилу параллелограмма
Вектор называется разностью векторов
Свойства линейных операций над векторами аналогичны соответствующим свойствам действительных чисел.
Проекцией вектора на вектор называется число
Геометрически очевидны следующие свойства проекции:
Пример №1
Пусть Е и F – середины сторон AD и ВС соответственно выпуклого четырехугольника ABCD. Доказать, что
Доказательство. Из четырехугольников EDCF и EABF по правил}’ сложения векторов получим:
Сложив данные равенства и учитывая, что будем иметь:
что и требовалось.
Базис и декартова система координат
Определение: Базисом на плоскости называется упорядоченная пара неколлинеарных векторов. Базисом в пространстве называется упорядоченная тройка некомпланарных векторов.
Обозначение: — базис на плоскости, — базис в пространстве. Всюду в дальнейшем, не оговаривая это особо, будем рассматривать только положительно ориентированные базисы, т. е. базисы, у которых кратчайший поворот от вектора к вектору совершается против часовой стрелки, если наблюдение ведется со стороны вектораСформулируем теперь фундаментальное свойство базиса.
Теорема. Любой вектор единственным образом разлагается по базису, т. е. представляется в виде где действительные числа – координаты вектора в базисе
Приведем геометрическое доказательство этого утверждения.
Вектор можно единственным образом представить как большую диагональ параллелепипеда, ребра которого, параллельны базисным векторам. Тогда по правилу сложения векторов В виду коллинеарности векторов соответствующим базисным векторам, мы можем записать, что — некоторые действительные числа. Отсюда и следует искомое разложение.
Если базис зафиксирован, то факт, что вектор а в этом базисе имеет координаты коротко записывается как
Из доказанной теоремы следует, что при выполнении линейных операций над векторами точно также преобразуются и их координаты, т. е. если если Отсюда, в частности, следует, что два вектора коллинеарны тогда и только тогда, когда их координаты пропорциональны, т. е.
Рассмотрим теперь ортонормированный базис т.е. базис, в котором все векторы имеют единичную длин}’ и попарно ортогональны. Векторы этого базиса мы будем называть ортами. Пусть в этом базисе
Как видно из чертежа, координаты вектора в ортонормированном базисе представляют собой проекции этого вектора на соответствующие орты. т. е.
Величины т. е. косинусы углов, которые образует данный вектор с ортами к соответственно, называются направляющими косинусами вектора Единичный вектор имеет координаты
Очевидно также, что
Свяжем теперь с ортонормированным базисом декартову (прямоугольную) систему координат. Для этого поместим начала ортов в некоторую точку О, ось Ох (абсцисс) направим вдоль орта ось (ординат) — вдоль орта наконец, ось (аппликат) направим вдоль орта
В выбранной системе координат координаты радиуса-вектора мы будем называть координатами точки М и записывать
Если известны координаты начальной и конечной точек вектора, то из равенства слезет, что его координаты равны
и, значит, расстояние между точками вычисляется по формуле
Найдем теперь координаты точки М, делящей отрезок с концами в точках в данном
отношении Так как Отсюда, переходя к координатам получим:
Следовательно, координаты искомой точки вычисляются по формулам:
Найдем, в частности, координаты середины отрезка. Здесь А = 1, поэтому
Пример №2
Треугольник задан координатами своих вершин Найти координаты точки пересечения его медиан. Решение.
Пусть – середина отрезка – точка пересечения медиан. Тогда
По известному свойству точки пересечения медиан и потому
Подставив сюда найденные координаты точки ползучим:
Таким образом, координаты точки пересечения медиан треугольника равны средним арифметическим соответствующих координат его вершин.
Замечание. Базисом n-мерного пространства называется упорядоченная совокупность n векторов
обладающая тем свойством, что любой вектор единственным образом представляется в виде линейной комбинации базисных векторов (1), т.е. существуют действительные числа (координаты векторав базисе (1)) такие, что
В качестве базиса в мы можем взять, например, векторы
так как, очевидно, любой вектор однозначно представляется в виде (2).
Скалярное произведение векторов
Определение: Скалярным произведением векторов называется число
Из этого определения сразу же следует, что
и таким образом, если один из векторов имеет единичную длину, то их скалярное произведение равно проекции второго вектора на единичный.
Отметим основные свойства скалярного произведения.
Первые два и последнее свойства немедленно следуют из определения скалярного произведения, а третье и четвертое – из сформулированных в §1 свойств проекции.
Найдем теперь представление скалярного произведения в координатах. Пусть в орто-нормированном базисе векторы имеют координаты Заметив, что по свойствам 1) и 5) скалярного произведения
перемножим векторыскалярно, используя свойства 2) – 4):
Таким образом, скалярное произведение в ортонормированном базисе равно сумме произведений соответствующих координат векторов.
Пример №3
Разложить вектор на две ортогональные составляющие, одна из которых коллинеарна вектору
Решение.
Из чертежа следует, что – искомое разложение. Найдем векторы Составляющая коллинеарная вектору равна, очевидно, вектору проекции и, следовательно,
Тогда вторая ортогональная составляющая вектора равна
В заключение параграфа рассмотрим одно простое приложение скалярного произведения в механике. Пусть под действием постоянной силы материальная тотп<а переместилась по прямой из положения В в положение С.
Найдем работу этой силы. Для этого разложим вектор силы на две ортогональные составляющие. одна из которых коллинеарна вектору перемещения Тогда
Составляющая работы не совершает, следовательно, работа силы равна работе составляющей и, таким образом,
Окончательно, работа силы, под действием которой материальная точка перемещается по отрезку прямой из положения В в положение С, вычисляется по формуле:
Замечание. Скалярным произведением векторов n-мерного пространстваназывается число равное произведению первого вектора, записанного строкой, на второй вектор, записанный столбцом. Таким образом, если
то
Несложной проверкой мы можем убедиться в том, что таким образом определенное скалярное произведение в обладает свойствами 2) — 4) скалярного произведения векторов на плоскости или в пространстве.
Длиной вектора называется число
Векторы называются ортогональными, если Векторы
составляют ортонормированный базис пространства , так как каждый из этих векторов имеет единичную длину и все они попарно ортогональны.
Любой вектор мы можем рассматривать как точку
n-мерного пространства с координатами
Взяв еще одну точку соответствующую вектору мы под расстоянием между точками М и N будем понимать длину вектора т. е. число
Таким образом переопределенное пространство с расстоянием (2) между точками мы будем называть евклидовым пространством, сохранив для него то же обозначение.
Совокупность точки О(0.0,…, 0) и ортонормированного базиса (1) называется декартовой системой координат евклидова пространства R”. Точка 0(0,0,… ,0) называется, естественно, началом координат.
Векторное произведение векторов
Определение: Векторным произведением некоялинеарных векторов называется вектор такой, что
Из этого определения следует, что площадь параллелограмма, построенного на векторах и равна длине векторного произведения , т. е.
Сформулируем основные свойства векторного произведения.
Первые два свойства очевидным образом следуют из определения векторного произведения. Доказательство третьего ввиду его громоздкости мы приводить не будем.
Найдем формулу для вычисления векторного произведения в координатах. Пусть векторы и в ортонормированном базисе имеют координаты Учитывая, tito по определению векторного произведения
раскроем скобки в векторном произведении принимая во внимание свойства 1) – 3):
Полученный вектор мы можем записать в виде следующего символического определителя.
вычислять который удобно разложением по первой строке.
Пример №4
Найти составляющую вектора , ортогональную плоскости векторов .
Решение.
Из чертежа видно, что искомая составляющая представляет собой вектор проекции данного вектора на векторное произведение и, следовательно.
Переходим к вычислениям:
Тогда
Среди многочисленных приложений векторного произведения отметим его применение в механике при вычислении момента силы.
Итак, пусть сила приложена к материальной точке В. Моментом этой силы относительно неподвижной точки С называется вектор
Смешанное произведение векторов
Определение: Смешанным произведением трех векторов называется число
Выясним геометрический смысл смешанного произведения для тройки некомпланарных векторов.
По определению смешанного произведения
Поскольку – площадь параллелограмма, построенного на векторах (§4)
-высота параллелепипеда построенного на векторах то
– объем параллелепипеда. Таким образом, абсолютная величина смешанного произведения трех векторов равна объему параллелепипеда, построенного на этих векторах.
Если векторы заданы своими координатами в ортонормированном базисе , т.е. то учитывая формулы для вычисления скалярного и векторного произведений (§3, §4), получим:
Следовательно (глава I. §2, пункт 3, свойство 7)), в координатах смешанное произведение вычисляется по формуле:
Докажем, пользуясь этой формулой, некоторые свойства смешанного произведения.
что следует из свойства 4) определителя (глава I. §2, пункт 3). Таким образом, в смешанном произведении можно менять местами знаки скалярного и векторного произведения, и поэтому для него используется более короткое обозначение . которым мы и будем пользоваться в дальнейшем.
Эти свойства смешанного произведения также являются прямыми следствиями соответствующих свойств определителя.
Докажем еще одно, геометрическое свойство смешанного произведения.
Теорема. Три вектора компланарны тогда и только тогда, когда их смешанное произведение равно нулю.
Доказательство. Докажем необходимость условия теоремы. Пусть векторы компланарны. Очевидно, что, если хотя бы один из них равен нулю, то и их смешанное произведение равно нулю. Если же все они ненулевые, то, ввиду их компланарности, векторное произведение ортогонально вектору с и, следовательно, . Аналогично проверяется достаточность условия теоремы.
Следствие. Три вектора образуют базис в том и только в том случае, когда их смешанное произведение отлично от нуля.
Заметим, кроме того, что, если , то угол между векторами -острый (тупой) и, следовательно, базис является положительно (отрицательно) ориентированным.
Пример №5
Доказать, что пять точек
расположены в одной плоскости.
Решение. Рассмотрим векторы Так как
то по доказанной выше теореме эти векторы компланарны и, стало быть. точки находятся в одной плоскости Аналогично покажем, что и точки также принадлежат одной плоскости . Действительно,
так как первая и третья строки в определителе пропорциональны. Плоскости имеют три общие точки , следовательно, они совпадают и, таким образом, все пять точек расположены в одной плоскости.
Векторы и линейные операции над ними
Определение: Вектором называется направленный отрезок (рис. 1).
А – начало, В – конец вектора
Рис. 1
Так как вектор определяется его началом и концом, то можно сформулировать эквивалентное данному определение.
Определение: Вектором называется упорядоченная пара точек.
Определение: Длина вектора – расстояние между его началом и концом.
Определение: Два вектора называются равными, если они имеют равные длины и одинаково направлены. При этом одинаково направленными называются векторы, лежащие на параллельных прямых и имеющие одинаковые направления.
Из этого определения следует, что точка приложения вектора значения не имеет, то есть вектор не изменяется, если его перемещать параллельно самому себе, сохраняя длину. Такие векторы называются свободными.
Если начало и конец вектора совпадают, он называется нулевым:
– нулевой вектор: его направление не определено, а длина .
Определение: Векторы называются коллинеарными, если они лежат на параллельных прямых:
Так как направление нулевого вектора не определено, то он коллинеарен любому другому.
Определение: Векторы называются компланарными, если они параллельны одной плоскости.
Нулевой вектор компланарен любой системе компланарных векторов.
Линейные операции над векторами
Линейными называются операции сложения векторов и умножения на число.
Сложение
а) Правило параллелограмма (рис.2): начала совмещаются в одной точке, и – диагональ параллелограмма, построенного на .
б) Правило треугольника (рис. 3): начало совмещается с концом направлен от начала к концу .
в) Правило сложения нескольких векторов (рис. 4).
Вектор замыкает ломаную линию, построенную таким образом: конец предыдущего вектора совмещается с началом последующего и направлен от начала к концу .
Умножение на число
Определение: Произведением вектора на число называется вектор , aудовлетворяющий условиям:
а)
б)
в) , если ,a если , если .
Произведение называется вектором, противоположным вектору . Очевидно, .
Определение: Разностью называется сумма вектора и вектора, противоположного (рис. 5).
Начала совмещаются в одной точке, и направлен от конца к концу .
Свойства линейных операций
Определение: Результат конечного числа линейных операций над векторами называется их линейной комбинацией: – линейная комбинация векторов с коэффициентами
Пример №6
Пусть М – точка пересечения медиан треугольника АВС, а О – произвольная точка пространства. Представить как линейную комбинацию
(рис. 6).
. Так как точка пересечения медиан треугольника делит их в отношении 2:1, считая от вершины, то из правила параллелограмма следует, что
По правилу треугольника , то есть – линейная комбинация с коэффициентами
Теорема: Пусть – неколлинеарные векторы. Тогда любой компланарный с ними вектор c может быть представлен в виде
где коэффициенты (2.1) определяются единственным образом.
Представление вектора в виде (2.1) называется разложением его по двум неколлинеарным векторам.
Доказательство:
- Пусть среди есть два коллинеарных, например:
- Пусть среди коллинеарных нет, тогда совместим начала всех трех векторов в одной точке. Построим параллелограмм, диагональ которого совпадает с , а стороны параллельны прямым, на которых лежат (рис. 7).
Тогда c но Поэтому
Докажем единственность разложения. Предположим, что и Тогда, вычитая одно равенство из другого, получим:
Если , что противоречит условию. Теорема доказана.
Теорема: Пусть – некомпланарные векторы. Тогда любой вектор может быть представлен в виде
причем единственным образом.
Представление вектора в виде (2.2) называется разложением его по трем некомпланарным.
Доказать самостоятельно.
Проекция вектора на ось
Проекция вектора на ось — это скалярная величина (число), равная длине геометрической проекции вектора, если направление оси и геометрической проекции совпадают; или число, противоположное длине геометрической проекции вектора, если направления геометрической проекции и оси — противоположные.
Координаты вектора
Осью называется направленная прямая.
Определение: Ортом оси называется единичный вектор
направление которого совпадает с направлением оси.
Определение: Ортогональной проекцией точки М на ось называется основание перпендикуляра, опущенного из М на .
Определение: Ортогональной проекцией вектора на ось называется длина отрезка этой оси, заключенного между ортогональными проекциями его начала и конца, взятая со знаком «+», если направление вектора совпадает с направлением оси, и со знаком «–», если эти направления противоположны (рис. 8).
Определение: Углом между вектором и осью называется угол, на который нужно повернуть в положительном направлении ось до совпадения ее направления с направлением вектора (положительным считается поворот против часовой стрелки).
Очевидно, проекцию вектора на ось можно найти по формуле
Можно показать, что проекция линейной комбинации векторов равна та-
кой же линейной комбинации их проекций:
В частности, проекция суммы векторов равна сумме их проекций:
Рассмотрим прямоугольную декартову систему координат ХОY. Обозначим – орт оси ОХ, – орт оси OY. Выберем точку A , и пусть x, y – проекции ее на ОХ и OY,то есть координаты этой точки (рис. 9).
Аналогично в пространственной системе OXYZ – орты координатных осей) (рис. 10):
– разложение по ортам координатных осей (единственно по теореме 2).
Таким образом, если задана прямоугольная декартова система координат (пдск), то со всяким пространственным вектором можно связать три числа x,y,z (или два числа x, y, если вектор плоский), которые являются коэффициентами разложения этого вектора по ортам координатных осей, а также являются проекциями этого вектора на координатные оси.
Определение: Координатами вектора в любой пдск называются коэффициенты в разложении этого вектора по ортам координатных осей.
Таким образом, можно дать еще одно определение вектора.
Определение: Вектором называется упорядоченная тройка чисел (упорядоченная пара, если вектор плоский).
Пример №7
Если и наоборот, если
Так как, с одной стороны, вектор – объект, имеющий длину и направление, а с другой, – упорядоченная тройка чисел, то, зная длину и направление, можно определить его координаты и наоборот. Направление вектора в заданной системе координат характеризуется его направляющими косинусами (рис. 11):
Из этих формул очевидно следует основное свойство направляющих косинусов:
Если известны длина и направляющие косинусы вектора, то его координаты вычисляются по формулам:
Пусть AB – произвольный вектор в системе OXYZ, OA,OB – радиус-векторы его начала и конца,
Тогда
(см. свойства линейных операций над векторами). Таким образом,, то есть для определения координат вектора надо из координат его конца вычесть координаты начала.
Определение: Базисом в пространстве называется любая упорядоченная тройка некомпланарных векторов (рис. 13).
Если – базис, то – другой базис, так как изменился порядок следования векторов.
Определение: Базис называется прямоугольным декартовым, если базисные векторы взаимно перпендикулярны и длина каждого равна 1.
Такой базис принято обозначать
Из теоремы 2 следует, что всякий вектор может быть разложен по базису , то есть представлен в виде: . Числа x,y,z называются координатами в базисе .
Определение: Базисом на плоскости называется любая упорядоченная пара неколлинеарных векторов.
Если – базис, то представление вектора в виде называется разложением по базису и x, y – координаты в этом базисе.
Определение: Базисом на прямой называется любой ненулевой вектор этой прямой.
Деление отрезка в данном отношении
Рассмотрим задачу: дан отрезок AB . Найти точку D , которая делит AB в заданном отношении (рис. 14).
Введем прямоугольную декартову систему координат (пдск) OXYZ, тогда
Обозначим
Так как (лежат на одной прямой) и то
Переходя от этого векторного равенства к равенству соответствующих координат, получим:
ЗАМЕЧАНИЕ 1. Если D – середина отрезка AB , то k 1, поэтому
ЗАМЕЧАНИЕ 2. Если k < 0, , то точка D лежит за пределами AB : так как , то при
В этом случае
Скалярное произведение векторов
Определение: Скалярным произведением векторов называется скаляр (число), равный
Скалярное произведение обозначается так: или
Так как (рис. 16) или то
Свойства скалярного произведения
1. – очевидно из определения.
2.
Доказательство:
3.
Доказательство:
а) – очевидно.
б)
в) В этом случае
4.
Отсюда следует, что
Необходимым и достаточным условием перпендикулярности векторов является равенство нулю их скалярного произведения:
5.
Доказательство:
а) пусть
б) пусть
В первом и втором случаях один из сомножителей – нулевой вектор. Его направление не определено, поэтому можно считать, что . В третьем случае
Используя свойства 4 и 5, составим таблицу вычисления скалярного произведения базисных векторов
Пусть в некоторой пдск . Найдем скалярное произведение этих векторов:
Таким образом,
Пример №8
Найти, при каком значении x векторы перпендикулярны.
Два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю (свойство 5), поэтому найдем скалярное произведение по формуле (2.5):
Пример №9
Найти угол между биссектрисой AD и медианой если
Так как
то
Найдем координаты векторов . Точка M – середина BC , поэтому по формулам (2.4)
По теореме о биссектрисе внутреннего угла треугольника
Чтобы найти k , вычислим длины AC и AB :
Разделим отрезок CB в данном отношении по формулам (2.3):
отсюда
Заметим, что . Это замечание позволит нам не иметь дело с дробями, так как
Пример №10
Найти
Воспользуемся свойствами 1–4 скалярного произведения:
Отсюда
ЗАМЕЧАНИЕ. Так как работа силы по перемещению материальной точки вдоль вектора вычисляется по формуле
Определение векторного произведения векторов
Определение: Тройка некомпланарных векторов , имеющих общее начало, называется правой (левой), если конца третьего вектора c вращение первого вектора ко второму вектору по кратчайшему пути наблюдается против (по) часовой стрелки (рис. 17).
Определение: Векторным произведением вектора на вектор называется вектор, удовлетворяющий условиям:
- ( перпендикулярен плоскости векторов и ).
- Направление таково, что тройка– правая.
Векторное произведение обозначается так:
ЗАМЕЧАНИЕ 1. Геометрический смысл векторного произведения: длина векторного произведения численно равна площади параллелограмма, построенного на этих векторах.
Это следует из того, что площадь параллелограмма равна произведению длин смежных сторон на синус угла между ними.
Заметим, что
Таким образом, длину вектора векторного произведения можно вычислить с помощью скалярного произведения по формуле
Пример №11
Найти площадь параллелограмма, построенного на векторах
По формуле (2.7):
ЗАМЕЧАНИЕ 2. Направление вектора можно также (кроме п.2) определить по правилу винта: направление вектора совпадает с направлением поступательного движения винта в правой резьбой при вращении его в сторону поворота первого вектора ко второму вектору по кратчайшему пути (рис. 19).
Свойства векторного произведения
1.
Доказательство:
а)пусть или . В первом и втором случаях один из сомножителей – нулевой вектор.
Его направление не определено, поэтому можно считать, что . Если
б)пусть
2.
Доказательство: По определению направления векторов и противоположны, а модули равны, значит, векторы отличаются лишь знаком.
3. – свойство линейности векторного произведения по первому сомножителю (без доказательства).
Векторное произведение также линейно и по второму сомножителю.
Используя определение и свойства 1 и 2, составим таблицу вычисления векторного произведения базисных векторов : векторы, стоящие в левом столбце, умножаются на соответствующие векторы верхней строки (рис. 20).
Пусть в некоторой пдск . Найдем векторное произведение этих векторов:
Заметим, что это выражение можно получить, вычислив символический определитель (сделать это можно по-разному, но лучше разложить по первой строке):
Таким образом,
Пример №12
Вычислить векторное произведение векторов
По формуле (2.8):
Заметим, что площадь треугольника, построенного на векторах , можно вычислить двумя способами: как половину длины найденного вектора или используя формулу (2.7). Заметим, что
или
Пример №13
Вычислить площадь параллелограмма, построенного на векторах
Так как , то вычислим векторное произведение, используя его свойства:
Отсюда
Определение смешанного произведения векторов
Определение: Смешанным произведением векторов называется число – скалярное произведение a на векторное произведение
Смешанное произведение обозначается так:
Пусть в некоторой пдск
Обозначим
Тогда
по 7 свойству определителей.
Таким образом,
По определению скалярного произведения
Совместим начала всех трех векторов в одной точке. Тогда (рис. 21)
– площадь параллелограмма,
– высота параллелепипеда,
– объем параллелепипеда.
Геометрический смысл смешанного произведения: модуль смешанного произведения численно равен объему параллелепипеда, построенного на векторах-сомножителях, при этом – правая тройка, и – левая тройка.
Свойства смешанного произведения
1. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения: компланарны
Доказательство: а) компланарны
Если компланарны, то на них нельзя построить параллелепипед, а потому
б)компланарны.
Во всех трех случаях компланарны: в частности, если параллелен плоскости векторов , что означает их компланарность.
2. Круговая перестановка сомножителей в смешанном произведении не изменяет его величины. Перестановка соседних сомножителей изменяет его знак, не изменяя абсолютной величины:
Доказательство следует из формулы (2.9) и свойства 3 определителей, при этом круговая перестановка сомножителей соответствует двойной перемене строк в определителе, а потому оставляет его неизменным.
3. В смешанном произведении векторное и скалярное произведения можно менять местами:
Доказательство: из свойства 2 смешанного произведения и свойства 1 скалярного получим:
4. Смешанное произведение линейно по каждому из трех сомножителей.
– линейность по первому сомножителю.
Доказательство следует из формулы (2.9) и свойств определителей.
Пример №14
Найти объем тетраэдра, построенного на векторах
, и его высоту, перпендикулярную плоскости векторов .
Объем тетраэдра в 6 раз меньше объема параллелепипеда, построенного на этих векторах, поэтому
Отсюда (заметим, что – левая тройка, так как смешанное произведение отрицательно).
Чтобы найти высоту, воспользуемся формулой
По формуле (2.7)
Лекции по предметам:
- Математика
- Алгебра
- Линейная алгебра
- Геометрия
- Аналитическая геометрия
- Высшая математика
- Дискретная математика
- Математический анализ
- Теория вероятностей
- Математическая статистика
- Математическая логика