Как найти неизвестную площадь или сторону квадрата

Формула нахождения площади квадрата

Квадрат — это фигура, которая является частным случаем прямоугольника, из-за чего можно заметить схожесть некоторых алгоритмов. Способ вычисления всегда зависит от исходных данных. Чтобы узнать площадь квадрата, необходимо знать специальные формулы, рассмотрим пять из них.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Узнай, какие профессии будущего тебе подойдут

Если известна длина стороны

Умножаем ее на то же число или возводим в квадрат.

S = a × a = a2, где S — площадь, a — сторона.

квадрат

Эту формулу проходят в 3 классе. Остальные формулы третьеклассникам знать пока не нужно, но они пригодятся ученикам 8 класса.

Если нам дана диагональ

Возводим ее в квадрат и делим на два.

S = d2 : 2, где d — диагональ.

диагональ квадрата

Если известен радиус вписанной окружности

Умножаем его квадрат на четыре.

S = 4 × r2, где r — это радиус вписанной окружности.

Радиус вписанной окружности

Если у нас есть радиус описанной окружности

Возведем его в квадрат и умножим на два.

S = 2 × R2, где R — это радиус описанной окружности.

Радиус описанной окружности

Если есть периметр

Мы должны возвести его в квадрат и разделить на 16.

S = Р2 : 16, где Р — это периметр.

Периметр любого четырехугольника равен сумме длин всех его сторон.

Важно!

Задачку не решить, если длина и ширина даны в разных единицах. Для правильного решения переведите все данные к одной единице измерения, и все получится.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм2);
  • квадратный сантиметр (см2);
  • квадратный дециметр (дм2);
  • квадратный метр (м2);
  • квадратный километр (км2);
  • гектар (га).

S квадрата. Решение задач

Мы разобрали пять формул для вычисления площади квадрата. А теперь давайте потренируемся!

Задание 1. Как найти площадь квадрата, диагональ которого равна 90 мм.

Как решаем:

  1. Воспользуемся формулой: S = d2 : 2.

  2. Подставим в формулу значение диагонали: S = 902 : 2 = 4050 мм2.

Ответ: 4050 мм2.

Задание 2. Окружность вписана в квадрат. Найдите площадь квадрата, если радиус окружности равен 24 см.

Как решаем:

  1. Если окружность вписана в квадрат, то сторона квадрата равна диаметру:
    a = d

  2. Диаметр окружности равен двум радиусам:
    d = 2r

  3. Получается, что сторона равна двум радиусам:
    a = 2r

  4. Используем формулу нахождения площади квадрата через сторону:
    S = a2

  5. Так как из пункта 3 мы получили, что сторона равна двум радиусам, то формула площади квадрата примет вид:
    S = (2r)2
    S = 4r2

  6. Теперь подставим значение радиуса в формулу площади:
    S = 4 × 242 = 2304 см2

Ответ: 2304 см2.

Площадь квадрата можно найти с помощью двух основных формул:

1) Через сторону.

2) Через диагональ.


Как найти площадь квадрата, если известна его сторона.

Как известно, квадрат – это частный случай прямоугольника, у которого все стороны равны.

Площадь прямоугольника равна произведению 2 его сторон:

Sпр = a * b, a и b – стороны прямоугольника.

В случае с квадратом a = b.

Таким образом, площадь квадрата будет находиться по формуле:

Sкв = a².

Например, если сторона квадрата равна 10 см., то его площадь = 10 * 10 = 100 см².


Как найти площадь квадрата, если известна его диагональ.

Диагональ делит квадрат на 2 прямоугольных треугольника. При этом диагональ является гипотенузой, а стороны квадрата – катетами.

Нам нужно выразить квадрат стороны через теорему Пифагора. Согласно данной теореме:

a*a + b*b = c*c.

a и b – катеты, c – гипотенуза.

В нашем случае a = b, а гипотенуза – это диагональ d.

Перепишем формулу в виде:

2a² = d².

a² = d² / 2.

Таким образом, если известна диагональ квадрата, то его площадь равна половине квадрата этой диагонали.

Например, если диагональ равна 10 см., то площадь квадрата = 10 * 10 / 2 = 50 см².

как найти площадь квадрата

Информация по назначению калькулятора

В плоской (евклидовой) геометрии квадрат – это правильный многоугольник с четырьмя сторонами. Его также можно рассматривать как частный случай прямоугольника, поскольку он имеет четыре прямых угла и параллельные стороны. Аналогично, это также частный случай ромба, параллелограмма и трапеции.

Квадратом называют правильный прямоугольник, все стороны и углы которого равны между собой.

В неевклидовой геометрии квадраты, как правило, представляют собой многоугольники с четырьмя равными сторонами и равными углами.

В сферической геометрии квадрат – это многоугольник, края которого представляют собой большие дуги окружности на равном расстоянии, которые пересекаются под равными углами. В отличие от квадрата плоской геометрии, углы такого квадрата больше прямого угла.

В гиперболической геометрии квадратов с прямыми углами не существует. Скорее всего, квадраты в гиперболической геометрии имеют углы меньше прямых углов.

Онлайн калькулятор предназначен для нахождения параметров квадрата, таких как:

  • Длины сторон
  • – равны между собой

    (AB=BC=CD=DA)

  • Периметр
  • – равен сумме всех сторон, или стороне квадрата умноженной на 4

    (P=AB+BC+CD+DA=AB*4)

  • Площадь
  • – равна произведению двух сторон, или сторона в квадрате

    (S=AB*BC=AB^2)

  • Диагональ
  • – является гипотенузой прямоугольного равнобедренного треугольника внутри квадрата с катетом AB и равна стороне квадрата умноженной на квадратный корень из 2

    (AC=AB*sqrt{2})

  • Углы
  • – всегда равны 90 градусов

  • Радиус Вписанной и Описанной окружностей
  • Диаметр Вписанной и Описанной окружностей
  • Длина Вписанной и Описанной окружностей
  • Площадь Вписанной и Описанной окружностей

Диаметр описанной окружности равен длине диагонали квадрата, а диаметр вписанной окружности равен длине стороны квадрата

Квадрат – это четырёхугольная плоская геометрическая фигура с равными сторонами. Квадрат считается
прямоугольником, так как все его внутренние углы по 90°. Диагонали правильного четырёхугольника
равны между собой, пересекаются под прямым углом и делятся точкой пересечения пополам. А также они
являются биссектрисами внутренних углов (отрезок делит прямой угол на два одинаковых угла по 45°).

Знание и применение этих свойств позволяют быстро решать задачи по геометрии. Ромб с равными
диагоналями, ромб с двумя соседними прямыми углами, параллелограмм с одинаковыми диагоналями,
пересекающимися под прямым углом, все эти фигуры являются правильными четырёхугольниками.

  • Сторона квадрата через радиус вписанной окружности
  • Сторона квадрата через радиус описанной окружности
  • Сторона квадрата через площадь квадрата
  • Сторона квадрата через диагональ

Через радиус вписанной окружности

Рис 1

Длина стороны равна двум радиусам (диаметру) вписанной окружности:

a=2*R

где R — радиус.

Цифр после
запятой:

Результат в:

Радиус – это расстояние от центра окружности до любой ее точки. Диаметр — отрезок, соединяющий
две любые точки окружности и проходящий через центр. Радиус составляет 1/2 диаметра. Все стороны
правильного четырёхугольника являются касательными прямыми к вписанной окружности. Радиус всегда
перпендикулярен касательной. Вписанная окружность делит точкой касания стороны квадрата на две
равные части. Зная величину диагонали, одинаковую длину стороны и диаметра легко можно объяснить
благодаря теореме Пифагора: «в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов
катетов». В данном случае если построить отрезки, соединяющие противоположные вершины правильного
четырёхугольника, образуется равнобедренный прямоугольный треугольник, где половина стороны квадрата
и радиус являются катетами, а половина диагонали — гипотенузой.

Формула вычисления через площадь

Рис 3

Для того чтобы определить длину стороны, зная только площадь, нужно извлечь квадратный корень из
известного значения:

a=√S

где S — площадь.

Цифр после
запятой:

Результат в:

Это самый простой способ. Площадь плоской четырёхугольной геометрической фигуры – это числовое
значение, которое характеризует размер плоскости, ограниченной четырьмя сторонами. Для нахождения
площади прямоугольника необходимо умножить длину на ширину, для площади прямоугольника с равными
сторонами – возвести длину в квадрат.

Также есть и другие способы для нахождения площади правильной
четырёхугольной фигуры: через радиус вписанной или описанной окружности, периметр, через длину
отрезка, проведенного из вершины к середине противоположной стороны. Если площадь неизвестна, но
есть данные о диагонали, можно легко найти воспользоваться доступной величиной — возвести
длину отрезка в квадрат и разделить на два S=d²/2.

Этот метод также
опирается на теорему Пифагора. Поделив сумму квадратов катетов на два, можно найти площадь. Однако в
этом случае значение не понадобится для нахождения стороны, можно быстро вычислить длину катета при
помощи следующей формулы.

Вычисление через диагональ

Рис 4

Если в задаче изначально известна длина диагонали, можно значительно сократить маршрут поиска нужной
величины. На основе этого правила сторона вычисляется по формуле:

a=d/√2

где d — диагональ.

Цифр после
запятой:

Результат в:

Через радиус описанной окружности

Рис 2

Известно, что диаметр описанной окружности равен диагонали, так как он совпадает с отрезком,
соединяющим вершины двух противоположных углов, а эти вершины являются точками окружности. Формула
для вычисления:

a = √2 * R

где R — радиус.

Цифр после
запятой:

Результат в:

Благодаря радиусу можно найти длину диагонали, которая делит фигуру на 2 прямоугольных равнобедренных
треугольника и при помощи теоремы Пифагора найти нужную величину.

Диагональ представляет собой линию, которая соединяет две вершины противоположных углов, тем самым
разделяя правильный четырёхугольник на два равнобедренных прямоугольных треугольника. Найти значение
таким способом не сложнее, чем через площадь. Главное, знать теорему Пифагора и уметь ею
пользоваться, это самый быстрый вариант. В задачах с прямоугольными фигурами теорема часто служит
выходом из сложной ситуации.

Все вычислительные способы связаны между собой. Запомнить нужные формулы несложно. Достаточно
применять их на практике каждый день, частое использование одних и тех же алгоритмов приведет к
автоматическому запоминаю правил. Не стоит заучивать формулы, необходимо больше рассуждать
логически. Такой подход позволит решать задачи более сложного уровня и легче воспринимать любую
информацию. Самым действенным методом для запоминания является практика. Отработка нескольких
идентичных задач на определенное правило поможет закрепить результат на долгий срок.

Площадь квадрата через сторону

{S = a ^2}

На этой странице вы найдете удобный калькулятор для расчета площади квадрата и формулы, которые помогут найти площадь квадрата через его сторону, диагональ, периметр, а также радиусы вписанной и описанной окружности.

Квадрат – четырёхугольник, у которого все углы прямые (90 градусов) и все стороны равны между собой. Из-за своих свойств квадрат часто называют правильным четырехугольником.

Содержание:
  1. калькулятор площади квадрата
  2. формула площади квадрата через сторону
  3. формула площади квадрата через диагональ
  4. формула площади квадрата через радиус вписанной окружности
  5. формула площади квадрата через радиус описанной окружности
  6. формула площади квадрата через периметр
  7. примеры задач

Формула площади квадрата через сторону

Площадь квадрата через сторону

S = a ^2

a – сторона квадрата

Формула площади квадрата через диагональ

Площадь квадрата через диагональ

S=dfrac{d^2}{2}

d – диагональ квадрата

Формула площади квадрата через радиус вписанной окружности

Площадь квадрата через радиус вписанной окружности

S = 4r^2

r – радиус вписанной окружности

Формула площади квадрата через радиус описанной окружности

Площадь квадрата через радиус описанной окружности

S = 2R^2

R – радиус описанной окружности

Формула площади квадрата через периметр

Площадь квадрата через периметр

S = dfrac{P^2}{16}

P – периметр квадрата

Примеры задач на нахождение площади квадрата

Задача 1

Найдите площадь квадрата если его диагональ равна 1.

Решение

Для решения задачи воспользуемся формулой.

S = dfrac{d^2}{2} = dfrac{1^2}{2} = dfrac{1}{2} = 0.5 : см^2

Ответ: 0.5 см²

Проверим ответ на калькуляторе .

Задача 2

Найдите площадь квадрата, описанного вокруг окружности радиуса 83.

Решение

Для решения этой задачи используем формулу площади квадрата через радиус описанной окружности.

S = 2R^2 = 2 cdot 83^2 = 2 cdot 6889 = 13778 : см^2

Ответ: 13778 см²

Проверим ответ с помощью калькулятора .

Задача 3

Найдите площадь квадрата если его сторона равна 8 см.

Решение

Используем первую формулу.

S = a ^2 = 8 ^2 = 64 : см^2

Ответ: 64 см²

Проверим результат на калькуляторе .

Задача 4

Найдите площадь квадрата периметр которого равен 456 см.

Решение

Используем формулу для площади квадрата через периметр.

S = dfrac{P^2}{16} = dfrac{456^2}{16} = dfrac{456 cdot cancel{456}^{ : 57}}{cancel{16}^{ : 2}} = dfrac{57 cdot cancel{456}^{ : 228}}{cancel{2}^{ : 1}} = 57 cdot 228 = 12996 : см^2

Ответ: 12996 см²

Проверка .

Задача 5

Найдите площадь квадрата со стороной 15 см.

Решение

Воспользуемся формулой площади квадрата через сторону.

S = a ^2 = 15 ^2 = 225 : см^2

Ответ: 225 см²

Проверка .

Добавить комментарий