Как найти неизвестную степень формула

Действия, обратные возведению в степень

7. В виду последней особенности действий возведения в степень для него можно составить 2 обратных задачи. Напр.:

1) Я задумал число, возвел его в третью степень (или: в куб), получилось 64; какое число я задумал?

Эту задачу можно записать в виде

2) Я взял число 3, возвел его в некоторую степень, – получилось 81. В какую степень было возведено число 3.

Эту задачу можно записать в виде:

Теперь уже, так как возведение в степень не обладает переместительным законом, эти две задачи следует считать совершенно различными.

Сначала решать их можно подбором: попробуем число 1, 1 3 = 1, а не 64, след., 1 не годится; 2 3 = 8, а не 64, след., 2 не годится, 3 3 = 27, а не 64, след., 3 не годится; 4 3 = 64, след., в 1 задаче было задумано число 4. Также выясним, что во второй задаче число 3 было возведено в 4-ую степень.

Так как таких задач можно составить очень много, то для их решения необходимо изобрести новые действия. Эти действия обратны возведению в степень. Итак, для возведения в степень существуют два обратных действия: первое из них называется извлечением корня и служит для решения вопросов, подобных первой из наших задач; второе называется нахождением логарифма и служит для решения вопросов, подобных второй задаче.

Если мы обратим внимание на то, что в первой задаче нам даны степень 64 и показатель степени 3, то мы установим определение:

Извлечением корня называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному показателю находят основание степени.

Также точно: во второй задаче даны степень (81) и основание степени (3), а надо найти показателя степени. Поэтому

нахождением логарифма называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному основанию находится показатель степени.

Источник

Как найти степень числа если известен результат

Самое разумное разложить число на простые множители, тогда можно найти и основание и показатель степени.
Если известно основание, то показатель можно найти логарифмированием, например,
2^x=8
Чтобы найти x нужно прологарифмировать обе части по основанию 2
x = log по основанию 2 от 8 = ln 8 / ln 2 (так можно на калькуляторе посчитать) = 3
Если известен показатель, то основание находится извлечением корня, например,
x^3=8
извлекаем корень кубический из обоих частей
x=корень кубический из 8 = 2

Если же неизвестно ни то ни другое разложи число на простые множители, это делается последовательным делением числа на простые множители
614656 / 2 = 307328
307328 / 2 = 153664
153664 / 2 = 76832
76832 / 2 = 38416
38416 / 2 = 19208
19208 / 2 = 9604
9604 / 2 = 4802
4802 / 2 = 2401
2401 не делится на 2, на 3, на 5 (последовательно перебираем простые числа)
2407 / 7 = 343
343 / 7 = 49
49 / 7 = 7
7 / 7 = 1
Итого мы делили на 2 восемь раз и на 7 четыре раза, следовательно
614656 = 2^8 * 7^4
Если мы хотим найти представление в виде a^b с натуральными a и b и b должно быть максимальным, то в качестве b нужно брать НОД степеней полученных в разложении на простые множители, то есть в данном случае b=НОД (8,4)=4
основанием степени a будет служить 2^(8/b) * 7^(4/b) = 2^2 * 7^1 = 4*7=28

Степень числа — это когда это число умножается само на себя, при этом столько раз, сколько в степени.
например:
2 в 5 степени — 2*2*2*2*2
если дано какое-нибудь число(допустим, 121) и нужно узнать, квадрат какого он числа, то нужно просто знать квадраты от 1 до 20(желательно). Например, 121 — квадрат 11

Источник

Как найти степень числа если известно

Степень — это краткая запись произведения одинаковых сомножителей. Основание степени — это число, которое нужно возвести в степень. А показатель степени — это число, в которое нужно возвести основание степени.

Основанием степени может быть любое целое число и десятичная дробь.

Возведению в степень обратны два действия:

  • извлечение корня,
  • нахождение логарифма.

Во-первых, сначала надо разобраться, что значит обратное действие. Так деление есть обратное действие умножению, а вычитание — сложению. Это вытекает из рассуждений, что произведение, получившееся от перемножения двух множителей, позволяет найти один из множителей, если известен другой. Например, 5 * 3 = 15. Если нам неизвестен второй множитель (5 * ? = 15), то его можно найти, выполнив деление: 15 : 5 = 3. Операция не меняется, если неизвестен первый множитель: ? * 3 = 15, 15 : 3 = 5. Это связано с тем, что умножение подчиняется переместительному закону (от перемены мест множителей произведение не меняется).

Аналогично и для вычитания: ? + 10 = 33, 33 — 10 = 23 или ? + 23 = 33, 33 — 23 = 10. Неважно, какое слагаемое неизвесто, его всегда находят вычитанием.

Но не все так просто с возведением в степень. Здесь от перестановки основания степени и показателя степени результат изменяется, т.е. возведение в степень не подчиняется переместительному закону: 4 3 = 64, но 3 4 = 81. (Хотя есть исключения: 2 4 = 16 и 4 2 = 16.)

Поэтому, если нам известен результат операции возведения в степень и показатель степени, то, чтобы найти основание степени, надо извлечь корень известной по показателю степени из результа возведения в степень:

? 3 = 125, следовательно 3 √125 = 5.

Если же известны основание степени и результат возведения в степень, а надо найти показатель степени, то используется такая операция как нахождение логарифма:

Самое разумное разложить число на простые множители, тогда можно найти и основание и показатель степени.
Если известно основание, то показатель можно найти логарифмированием, например,
2^x=8
Чтобы найти x нужно прологарифмировать обе части по основанию 2
x = log по основанию 2 от 8 = ln 8 / ln 2 (так можно на калькуляторе посчитать) = 3
Если известен показатель, то основание находится извлечением корня, например,
x^3=8
извлекаем корень кубический из обоих частей
x=корень кубический из 8 = 2

Если же неизвестно ни то ни другое разложи число на простые множители, это делается последовательным делением числа на простые множители
614656 / 2 = 307328
307328 / 2 = 153664
153664 / 2 = 76832
76832 / 2 = 38416
38416 / 2 = 19208
19208 / 2 = 9604
9604 / 2 = 4802
4802 / 2 = 2401
2401 не делится на 2, на 3, на 5 (последовательно перебираем простые числа)
2407 / 7 = 343
343 / 7 = 49
49 / 7 = 7
7 / 7 = 1
Итого мы делили на 2 восемь раз и на 7 четыре раза, следовательно
614656 = 2^8 * 7^4
Если мы хотим найти представление в виде a^b с натуральными a и b и b должно быть максимальным, то в качестве b нужно брать НОД степеней полученных в разложении на простые множители, то есть в данном случае b=НОД (8,4)=4
основанием степени a будет служить 2^(8/b) * 7^(4/b) = 2^2 * 7^1 = 4*7=28

Степень числа — это когда это число умножается само на себя, при этом столько раз, сколько в степени.
например:
2 в 5 степени — 2*2*2*2*2
если дано какое-нибудь число(допустим, 121) и нужно узнать, квадрат какого он числа, то нужно просто знать квадраты от 1 до 20(желательно). Например, 121 — квадрат 11

Источник

Логарифм числа

Логарифмом называется математическое введение, которое предназначено для того чтобы найти степень числа в уравнении. Если рассматривать степень числа, то число, возводимое в степень, называется основанием степени, а сама степень – показателем степени. Так, в числе 2 3 , 2 является основанием, а 3 – показателем. Для того чтобы понять суть логарифма, рассмотрим показательное тождество (равенство с использованием степени). В выражении 2 3 =8 взаимосвязаны три числа, основание степени, показатель и значение степени – 8 . Соответственно, каждое из этих чисел может быть заменено на переменную с тем, чтобы получить уравнение.
x 3 =8
2 3 =x
2 x =8

Если первые два уравнения считаются довольно стандартными, то третье уравнение становится в отдельный ряд показательных уравнений, и при усложнении его другими алгебраическими действиями появляется необходимость ввести дополнительный элемент для его решения. Этим элементом становится логарифм.
2 x =8
log28=x

Таким образом, чтобы найти неизвестную x , нужно вычислить логарифм от 8 по 2 . Названия чисел сохраняются те же самые, что и в степени, 2 остается основанием, но теперь уже не степени, а логарифма, 8 становится телом логарифма. Если обратить внимание, то они сохраняют и свое положение, и визуально легко запомнить, что для вычисления логарифма нужно узнать в какую степень нужно возвести 2 (число внизу, слева), чтобы получить 8 (число справа, вверху).

Чтобы вычислить логарифмы с различными основаниями и телами, можно воспользоваться приведенным ниже он-лайн калькулятором логарифмов.

Источник

Как найти неизвестную степень?

Некто Никто



Знаток

(379),
закрыт



1 год назад

А вернее даже, как находить неизвестный показатель степени?
Например: 5^х=125. Как можно найти х, кроме метода тыка(подбора степени?)

Василий Дмитров

Мыслитель

(7838)


1 год назад

Через основное логарифмическое тождество. Логарифм, по определению, это степень, в которое нужно возвести одно число, чтобы получить другое.
Отсюда x = log(5)125 = 3

Некто НиктоЗнаток (379)

1 год назад

И? Чтобы посчитать логарифм – надо также методом тыком делать

Василий Дмитров
Мыслитель
(7838)
Некто Никто, Если хочешь узнать, как вычислить значение произвольной функции, то можешь почитать про разложение в ряд Тейлора или Маклорена — так калькуляторы и работают.

В школьных же заданиях обычно либо дают хорошие числа, которые можно легко разложить, либо ответ так и оставляется в виде log(3)23 к примеру

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:

Воспользуемся одним из свойств степеней ((a^n)^m=a^):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где (a,b) какие-то положительные числа. ((a>0, ; b>0).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что (16=2*2*2*2=2^4) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^<-x>=125 Rightarrow 5^<-x>=5*5*5 Rightarrow 5^<-x>=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 Rightarrow (3*3)^<4x>=3*3*3*3 Rightarrow(3^2)^<4x>=3^4 Rightarrow 3^<8x>=3^4 Rightarrow 8x=4 Rightarrow x=frac<1><2>.$$

Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^<2x>=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:

Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию – (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение (t):

Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac<7><3>)^x):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны – отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой ((a*b)^n=a^n*b^n):

И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:

Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Рациональные уравнения с примерами решения

    Содержание:

    Рациональные уравнения. Равносильные уравнения

    два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

    Так, например, равносильными будут уравнения

    Уравнения – не равносильны, так как корнем первого уравнения является число 10, а корнем второго – число 9.

    Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

    1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

    2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

    3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

    Левая и правая части каждого из них являются рациональными выражениями.

    Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

    В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения – дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

    Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

    Применение условия равенства дроби нулю

    Напомним, что когда

    Пример №202

    Решите уравнение

    Решение:

    С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и – целые рациональные выражения. Имеем:

    Окончательно получим уравнение:

    Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.

    Тогда откуда При знаменатель Следовательно, – единственный корень уравнения.

    Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

    Значит, решая дробное рациональное уравнение, можно:

    1) с помощью тождественных преобразований привести уравнение к виду

    2) приравнять числитель к нулю и решить полученное целое уравнение;

    3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.

    Использование основного свойства пропорции

    Если то где

    Пример №203

    Решите уравнение

    Решение:

    Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.

    Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:

    По основному свойству пропорции имеем:

    Решим это уравнение:

    откуда

    Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

    Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

    Таким образом, для решения дробного рационального уравнения можно:

    1) найти область допустимых значений (ОДЗ) переменной в уравнении;

    2) привести уравнение к виду

    3) записать целое уравнение и решить его;

    4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

    Метод умножения обеих частей уравнения на общий знаменатель дробей

    Пример №204

    Решите уравнение

    Решение:

    Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

    Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение

    Умножим обе части уравнения на это выражение:

    Получим: а после упрощения: то есть откуда или

    Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

    Следовательно, число 12 – единственный корень уравнения. Ответ. 12.

    Решая дробное рациональное уравнение, можно:

    3) умножить обе части уравнения на этот общий знаменатель;

    4) решить полученное целое уравнение;

    5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

    Пример №205

    Являются ли равносильными уравнения

    Решение:

    Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

    Первое уравнение имеет единственный корень а второе – два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

    Степень с целым показателем

    Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

    где – натуральное число,

    В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи

    Рассмотрим степени числа 3 с показателями – это соответственно

    В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:

    Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что

    Нулевая степень отличного от нуля числа а равна единице, то есть при

    Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.

    Приходим к следующему определению степени с целым отрицательным показателем:

    если натуральное число, то

    [spoiler title=”источники:”]

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    http://www.evkova.org/ratsionalnyie-uravneniya

    [/spoiler]

    На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

    Готовьтесь к экзаменационному тестированию вместе со «Школково»!

    При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

    Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

    Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

    Основные определения и формулы представлены в разделе «Теоретическая справка».

    Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или иррациональным уравнениям со знаком корня. База упражнений на нашем сайте постоянно дополняется и обновляется.

    Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

    Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!

    Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием a и натуральным показателем b обозначается как

    {displaystyle a^{b}=underbrace {acdot acdot ldots cdot a} _{b},}

    где b — количество множителей (умножаемых чисел)[1][К 1].

    Например, {displaystyle 3^{2}=3cdot 3=9;quad 2^{4}=2cdot 2cdot 2cdot 2=16}

    В языках программирования, где написание a^{b} невозможно, применяются альтернативные обозначения[⇨].

    Возведение в степень может быть определено также для отрицательных[⇨], рациональных[⇨], вещественных[⇨] и комплексных[⇨] степеней[1].

    Извлечение корня — одна из операций, обратных возведению в степень, она по известным значениям степени {displaystyle c=a^{b}} и показателя b находит неизвестное основание {displaystyle a={sqrt[{b}]{c}}}. Вторая обратная операция — логарифмирование, она по известным значениям степени {displaystyle c=a^{b}} и основания a находит неизвестный показатель {displaystyle b=log _{a}c}. Задача нахождения числа по известному его логарифму (потенцирование, антилогарифм) решается с помощью операции возведения в степень.

    Существует алгоритм быстрого возведения в степень, выполняющий возведение в степень за меньшее, чем в определении, число умножений.

    Употребление в устной речи[править | править код]

    Запись {displaystyle a^{n}} обычно читается как «a в n-й степени» или «a в степени n». Например, 10^{4} читается как «десять в четвёртой степени», {displaystyle 10^{3/2}} читается как «десять в степени три вторых (или: полтора)».

    Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, 10^{2} читается как «десять в квадрате», 10^{3} читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры. В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо a^2, {displaystyle a^{3}} древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[2].

    Число, являющееся результатом возведения натурального числа в n-ую степень, называется точной n-ой степенью. В частности, число, являющееся результатом возведения натурального числа в квадрат (куб), называется точным квадратом (кубом). Точный квадрат также называется полным квадратом.

    Свойства[править | править код]

    Основные свойства[править | править код]

    Все приведенные ниже основные свойства возведения в степень выполняются для натуральных, целых, рациональных и вещественных чисел[3]. Для комплексных чисел, в силу многозначности комплексной операции, они выполняются только в случае натурального показателя степени[⇨].

    • {displaystyle a^{1}=a}
    • left(abright)^{n}=a^{n}b^{n}
    • left({a over b}right)^{n}={{a^{n}} over {b^{n}}}
    • {displaystyle a^{n}a^{m}=a^{n+m}}
    • left.{a^{n} over {a^{m}}}right.=a^{n-m}
    • left(a^{n}right)^{m}=a^{nm}.

    Запись a^{n^{m}} не обладает свойством ассоциативности (сочетательности), то есть, в общем случае,(a^{n})^{m}neq a^{left({n^{m}}right)} Например, {displaystyle (2^{2})^{3}=4^{3}=64}, а 2^{left({2^{3}}right)}=2^{8}=256. В математике принято считать запись a^{n^{m}} равнозначной a^{left({n^{m}}right)}, а вместо (a^{n})^{m} можно писать просто a^{nm}, пользуясь предыдущим свойством. Впрочем, некоторые языки программирования не придерживаются этого соглашения[какой?].

    Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, a^{b}neq b^{a}, например, 2^{5}=32, но {displaystyle 5^{2}=25.}

    Таблица натуральных степеней небольших чисел[править | править код]

    n n2 n3 n4 n5 n6 n7 n8 n9 n10
    2 4 8 16 32 64 128 256 512 1024
    3 9 27 81 243 729 2187 6561 19 683 59 049
    4 16 64 256 1024 4096 16 384 65 536 262 144 1 048 576
    5 25 125 625 3125 15 625 78 125 390 625 1 953 125 9 765 625
    6 36 216 1296 7776 46 656 279 936 1 679 616 10 077 696 60 466 176
    7 49 343 2401 16 807 117 649 823 543 5 764 801 40 353 607 282 475 249
    8 64 512 4096 32 768 262 144 2 097 152 16 777 216 134 217 728 1 073 741 824
    9 81 729 6561 59 049 531 441 4 782 969 43 046 721 387 420 489 3 486 784 401
    10 100 1000 10 000 100 000 1 000 000 10 000 000 100 000 000 1 000 000 000 10 000 000 000

    Расширения[править | править код]

    Целая степень[править | править код]

    Операция обобщается на произвольные целые числа, включая отрицательные и ноль[4]::

    {displaystyle a^{z}={begin{cases}a^{z},&z>0\1,&z=0,aneq ;0\{dfrac {1}{a^{|z|}}},&z<0,aneq ;0end{cases}}}

    Результат не определён при a=0 и {displaystyle zleqslant 0}.

    Рациональная степень[править | править код]

    Возведение в рациональную степень {displaystyle m/n,} где m — целое число, а n — натуральное, положительного числа определяется следующим образом[4]:

    {displaystyle a^{m over n}=({sqrt[{n}]{a}})^{m};quad forall a>0,ain mathbb {R} ,min mathbb {Z} ,nin mathbb {N} .}.

    Степень с основанием, равным нулю, определяют только для положительного рационального показателя.

    {displaystyle 0^{m over n}=0;quad min mathbb {N} ,nin mathbb {N} .}

    Для отрицательных a степень с дробным показателем не рассматривается.

    Следствие: {displaystyle {sqrt[{n}]{a}}=a^{1/n};quad a>0,ain mathbb {R} .} Таким образом, понятие рациональной степени объединяет возведение в целочисленную степень и извлечение корня в единую операцию.

    Вещественная степень[править | править код]

    Множество вещественных чисел — непрерывное упорядоченное поле, обозначается mathbb {R} . Множество вещественных чисел не является счётным, его мощность называется мощностью континуума. Арифметические операции над вещественными числами представимых бесконечными десятичными дробями определяются как непрерывное продолжение[5] соответствующих операций над рациональными числами.

    Если даны два вещественных числа, представимые бесконечными десятичными дробями (где alpha  — положительное):

    {displaystyle alpha =a_{0},a_{1}a_{2}ldots a_{n}ldots ={a_{n}},~~alpha >0,}
    {displaystyle beta =pm b_{0},b_{1}b_{2}ldots b_{n}ldots ={b_{n}},}

    определённые соответственно фундаментальными последовательностями рациональных чисел (удовлетворяющие условию Коши), обозначенные как: alpha =[a_{n}] и beta =[b_{n}], то их степенью называют число {displaystyle gamma =[c_{n}]}, определённое степенью последовательностей {a_{n}} и {b_{n}}:

    {displaystyle gamma =alpha ^{beta }{=}[a_{n}]^{[b_{n}]}=[a_{n}{widehat {}}b_{n}]},

    вещественное число {displaystyle gamma =alpha ^{beta }}, удовлетворяет следующему условию:

    {displaystyle (a'leqslant alpha leqslant a'')land (b'leqslant beta leqslant b'')Rightarrow ({(a')}^{b'}leqslant alpha ^{beta }leqslant {(a'')}^{b''})Rightarrow ({(a')}^{b'}leqslant gamma leqslant {(a'')}^{b''}),~~~forall ~a',a'',b',b''in mathbb {Q} ,~forall alpha >0,~alpha ,beta ,gamma in mathbb {R} .}

    Таким образом степенью вещественного числа {displaystyle alpha ^{beta }} является такое вещественное число gamma  которое содержится между всеми степенями вида {displaystyle {(a')}^{b'}} с одной стороны и всеми степенями вида {displaystyle {(a'')}^{b''}}с другой стороны.

    Степень с основанием, равным нулю, определяют только для положительного вещественного показателя.

    {displaystyle 0^{beta }=0;quad beta in mathbb {R} ,beta >0.}

    Для отрицательных alpha степень с вещественным показателем не рассматривается.

    На практике для того, чтобы возвести число alpha в степень beta , необходимо заменить их с требуемой точностью приближёнными рациональными числами a и b. За приближенное значение степени {displaystyle alpha ^{beta }} берут степень указанных рациональных чисел {displaystyle a^{b}}. При этом не важно, с какой стороны (по недостатку или по избытку) взятые рациональные числа приближают alpha и beta .

    Пример возведения в степень {displaystyle gamma =pi ^{e}}, с точностью до 3-го знака после запятой:

    Полезные формулы:

    {displaystyle x^{y}=a^{ylog _{a}x}}
    x^{y}=e^{yln x}
    x^{y}=10^{ylg x}

    Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции x^{y}, и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.

    Комплексная степень[править | править код]

    Возведение комплексного числа в натуральную степень выполняется обычным умножением в тригонометрической форме. Результат однозначен:

    {displaystyle z^{n}=r^{n}(cos varphi +isin varphi )^{n}=r^{n}(cos nvarphi +isin nvarphi );quad forall nin mathbb {N} ,zin mathbb {C} ,rin mathbb {R} } , (формула Муавра)[6].

    Для нахождения степени произвольного комплексного числа в алгебраической форме a + bi можно воспользоваться формулой бинома Ньютона (справедливой и для комплексных чисел):

    {displaystyle (a+bi)^{n}=a^{n}+C_{n}^{1}a^{n-1}bi+C_{2}^{n}a^{n-2}b^{2}i^{2}+...+C_{n}^{n-1}ab^{n-1}i^{n-1}+b^{n}i^{n},quad forall nin mathbb {N} } .

    Заменяя степени {displaystyle i^{k}} в правой части формулы их значениями в соответствии с равенствами: {displaystyle i^{4k}=1,i^{4k+1}=i,i^{4k+2}=-1,i^{4k+3}=-i,kin mathbb {N} }, получим:

    {displaystyle (a+bi)^{n}=sum _{k=0}^{[n/2]}(-1)^{k}C_{n}^{2k}a^{n-2k}b^{2k}+isum _{k=0}^{[(n-1)/2]}(-1)^{k}C_{n}^{2k+1}a^{n-2k-1}b^{2k+1}.}[7]

    Основой для более общего определения комплексной степени служит экспонента e^{z}, где e — число Эйлера, z=x+iy — произвольное комплексное число[8].

    Определим комплексную экспоненту с помощью такого же ряда, как и вещественную:

    {displaystyle e^{z}=1+z+{frac {z^{2}}{2!}}+{frac {z^{3}}{3!}}+{frac {z^{4}}{4!}}+cdots .}

    Этот ряд абсолютно сходится для любого комплексного {displaystyle z,} поэтому его члены можно как угодно перегруппировывать. В частности, отделим от него часть для {displaystyle e^{iy}}:

    {displaystyle e^{iy}=1+iy+{frac {(iy)^{2}}{2!}}+{frac {(iy)^{3}}{3!}}+{frac {(iy)^{4}}{4!}}+cdots =left(1-{frac {y^{2}}{2!}}+{frac {y^{4}}{4!}}-{frac {y^{6}}{6!}}+cdots right)+ileft(y-{frac {y^{3}}{3!}}+{frac {y^{5}}{5!}}-cdots right).}

    В скобках получились известные из вещественного анализа ряды для косинуса и синуса, и мы получили формулу Эйлера:

    {displaystyle e^{z}=e^{x}e^{yi}=e^{x}(cos y+isin y)}

    Общий случай a^{b}, где a,b — комплексные числа, определяется через представление a в показательной форме: {displaystyle a=re^{i(theta +2pi k)}} согласно определяющей формуле[8]:

    {displaystyle a^{b}=(e^{operatorname {Ln} (a)})^{b}=(e^{operatorname {ln} (r)+i(theta +2pi k)})^{b}=e^{b(operatorname {ln} (r)+i(theta +2pi k))}.}

    Здесь {displaystyle operatorname {Ln} } — комплексный логарифм, ln  — его главное значение.

    При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно[8]. Неучёт этого обстоятельства может привести к ошибкам. Пример: возведём известное тождество {displaystyle e^{2pi i}=1} в степень i. Слева получится {displaystyle e^{-2pi },} справа, очевидно, 1. В итоге: {displaystyle e^{-2pi }=1,} что, как легко проверить, неверно. Причина ошибки: возведение в степень i даёт и слева, и справа бесконечное множество значений (при разных k), поэтому правило {displaystyle left(a^{b}right)^{c}=a^{bc}} здесь неприменимо. Аккуратное применение формул определения комплексной степени даёт слева и справа {displaystyle e^{-2pi k};} отсюда видно, что корень ошибки — путаница значений этого выражения при k=0 и при {displaystyle k=1.}

    Степень как функция[править | править код]

    Разновидности[править | править код]

    Поскольку в выражении x^{y} используются два символа (x и y), то его можно рассматривать как одну из трёх функций.

    Ноль в степени ноль[править | править код]

    Выражение 0^{0} (ноль в нулевой степени) многие учебники считают неопределённым и лишённым смысла, поскольку, как указано выше, функция {displaystyle f(x,y)=x^{y}} в точке (0, 0) разрывна. Некоторые авторы предлагают принять соглашение о том, что это выражение равно 1. В частности, тогда разложение в ряд экспоненты:

    {displaystyle e^{x}=1+sum _{n=1}^{infty }{x^{n} over n!}}

    можно записать короче:

    {displaystyle e^{x}=sum _{n=0}^{infty }{x^{n} over n!}.}

    Следует предостеречь, что соглашение 0^0=1 чисто символическое, и оно не может использоваться ни в алгебраических, ни в аналитических преобразованиях из-за разрывности функции в этой точке.

    История[править | править код]

    Обозначение[править | править код]

    В Европе сначала степень величины записывали словесными сокращениями (q или Q обозначало квадрат, c или C — куб, bq или qq — биквадрат, то есть 4-я степень и т. д.) или как произведение — например, x^{4} изображалось как {displaystyle xxxx.} Отред записывал {displaystyle x^{5}-15x^{4}} следующим образом: {displaystyle 1qc-15qq} (если неизвестная всего одна, ей часто не присваивался буквенный значок)[9]. Немецкая школа коссистов для каждой степени неизвестной предлагала особый готический значок.

    В XVII веке постепенно стала преобладать идея явно указывать показатель степени. Жирар (1629 год) для возведения в степень числа ставил показатель в круглых скобках перед этим числом, а если числа правее показателя не было, то это значило, что подразумевается наличие неизвестного в указанной степени[10]; например, {displaystyle (2)2+1(2)} у него означало {displaystyle 2^{2}+x^{2}}. Варианты размещения показателя степени предлагали Пьер Эригон и шотландский математик Джеймс Юм, они записывали x^{4} в виде {displaystyle x4} и {displaystyle x^{IV}} соответственно[11].

    Современная запись показателя степени — правее и выше основания — введена Декартом в его «Геометрии» (1637), правда, только для натуральных степеней, больших 2 (возведение в квадрат ещё долгое время обозначалось по-старому, произведением). Позднее Валлис и Ньютон (1676) распространили декартову форму записи степени на отрицательные и дробные показатели, трактовка которых к этому времени уже была известна из трудов Орема, Шюке, Стевина, Жирара и самого Валлиса. К началу XVIII столетия альтернативы для записи степеней «по Декарту», как выразился Ньютон в «Универсальной арифметике», «вышли из моды» (out of fashion). Показательная функция, то есть возведение в переменную степень, появилась сначала в письмах, а потом и в трудах Лейбница (1679). Возведение в мнимую степень обосновал Эйлер (1743)[11][12].

    Запись возведения в степень в языках программирования[править | править код]

    С появлением компьютеров и компьютерных программ возникла проблема, состоящая в том, что в тексте компьютерных программ невозможно записать степень в «двухэтажном» виде. В связи с этим изобрели особые значки для обозначения операции возведения в степень. Первым таким значком были две звёздочки: «**», используемые в языке Фортран. В появившемся несколько позже языке Алгол использовался значок стрелки: «» (стрелки Кну́та). В языке Бейсик предложен символ «^» («циркумфлекс», он же «карет»), который приобрёл наибольшую популярность; его часто используют при написании формул и математических выражений не только в языках программирования и компьютерных системах, но и в простом тексте. Примеры:

    3^2 = 9; 5^2 = 25; 2^3 = 8; 5^3 = 125.


    Иногда в компьютерных системах и языках программирования значок возведения в степень имеет левую ассоциативность, в отличие от принятого в математике соглашения о правой ассоциативности возведения в степень.
    То есть некоторые языки программирования (например, программа Excel) могут воспринимать запись a^b^c, как (a^b)^c, тогда как другие системы и языки (например, Haskell, Perl, Wolfram|Alpha и многие другие) обработают эту запись справа налево: a^(b^c), как это принято в математике: {displaystyle a^{b^{c}}=a^{left(b^{c}right)}}.

    Некоторые знаки возведения в степень в языках программирования и компьютерных системах:

    • x ↑ y: Алгол, некоторые диалекты Бейсика;
    • x ^ y: Бейсик, J, MATLAB, R, Microsoft Excel, TeX, bc[К 2], Haskell[К 3], Lua, MathML и большинство систем компьютерной алгебры;
    • x ^^ y: Haskell[К 4], D;
    • x ** y: Ада, Bash, Кобол, Фортран, FoxPro, Gnuplot, OCaml, Perl, PL/I, PHP[К 5], Python, REXX, Ruby, SAS, Seed7, Tcl, ABAP, Haskell[К 6], Turing[en], VHDL, ECMAScript[К 7][К 8], AutoHotkey[К 8], JavaScript;
    • x⋆y: APL.

    Во многих языках программирования (например, в Java, Си и Паскале) отсутствует операция возведения в степень, и для этой цели используют стандартные функции.

    Вариации и обобщения[править | править код]

    Возведение в степень с натуральным показателем можно определить не только для чисел, но и для нечисловых объектов, для которых определено умножение — например, к матрицам, линейным операторам, множествам (относительно декартова произведения, см. декартова степень).

    Обычно эта операция рассматривается в некотором мультипликативном моноиде M (полугруппе с единицей) и определяется индуктивно[13] для любого xin M:

    Особенную ценность представляет применение возведения в степень к группам и полям, где возникает прямой аналог отрицательных степеней.

    Гипероператор возведения в степень — тетрация.

    Примечания[править | править код]

    1. 1 2 Степень // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5. — С. 221.
    2. Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции / Пер. с голл. И. Н. Веселовского. — М., 1959. — С. 165—167. — 456 с.
    3. Справочник по элементарной математике, 1978, с. 140—141.
    4. 1 2 Справочник по элементарной математике, 1978, с. 182—184.
    5. Поскольку на множестве вещественных чисел уже введено отношение линейного порядка, то мы можем определить топологию числовой прямой: в качестве открытых множеств возьмём всевозможные объединения интервалов вида {x:alpha <x<beta }
    6. Пискунов Н. С. § 3. Возведение комплексного числа в степень и извлечение корня из комплексного числа. scask.ru. Дата обращения: 27 марта 2022.
    7. Близняков Н.М. КОМПЛЕКСНЫЕ ЧИСЛА. Учебно-методическое пособие для вузов 23. Дата обращения: 27 марта 2022. Архивировано 1 апреля 2022 года.
    8. 1 2 3 Выгодский М. Я. Справочник по высшей математике. — 12-е изд.. — М.: Наука, 1977. — С. 597 (подстрочное примечание 3). — 872 с.
    9. History of Mathematical Notations, vol. 1, 2007, §290—297.
    10. History of Mathematical Notations, vol. 1, 2007, §164.
    11. 1 2 Александрова Н. В., 2008, с. 130—131.
    12. History of Mathematical Notations, vol. 1, 2007, §298—301, 307—309.
    13. David M. Bloom. Linear Algebra and Geometry (англ.). — 1979. — P. 45. — ISBN 978-0-521-29324-2.
    Комментарии
    1. В разговорной речи иногда говорят, например, что {displaystyle a^{3}} — «a умноженное само на себя три раза», имея в виду, что берётся три множителя a. Это не совсем точно и может привести к двусмысленности, так как количество операций умножения будет на одну меньше: {displaystyle a^{3}=acdot acdot a} (три множителя, но две операции умножения). Часто, когда говорят «a умноженное само на себя три раза», имеют в виду количество умножений, а не множителей, то есть {displaystyle a^{4}.} См. Август Давидов. Начальная алгебра. — Типографія Э. Лисслер и Ю. Роман, 1883-01-01. — С. 6. — 534 с. Архивная копия от 31 мая 2016 на Wayback Machine. Чтобы избежать двусмысленности, можно говорить, к примеру: третья степень — это когда «число три раза входит в умножение».
    2. Для целой степени.
    3. Для неотрицательной целой степени.
    4. Поддерживает отрицательные степени, в отличие от ^, реализованной только как последовательное умножение.
    5. Начиная с версии 5.6 (см. Руководство по PHP › Appendices › Миграция с PHP 5.5.x на PHP 5.6.x › Новые возможности Архивная копия от 18 апреля 2018 на Wayback Machine).
    6. Для степени, представленной числом с плавающей запятой — реализовано через логарифм.
    7. Описан в стандарте EcmaScript 7 (ECMA-262, 7th edition), принятом в июне 2016 года.
    8. 1 2 В JavaScript изначально присутствует метод Math.pow(x, y).

    Литература[править | править код]

    • Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник. — 3-е изд. — СПб.: ЛКИ, 2008. — 248 с. — ISBN 978-5-382-00839-4.
    • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978. — 509 с.
      • Переиздание: М.: АСТ, 2006, ISBN 5-17-009554-6, 509 стр.
    • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
    • Степенная функция // Большая советская энциклопедия. — М.: Советская энциклопедия, 1969—1978.
    • Cajori F. A History of Mathematical Notations. Vol. 1 (1929 reprint). — NY: Cosimo, Inc., 2007. — xvi + 456 p. — ISBN 978-1-60206-684-7.

    Ссылки[править | править код]

    • Возведение в степень: правила, примеры. Дата обращения: 2 февраля 2020.

    Добавить комментарий