Как найти неизвестные углы геометрия 7 класс

Исторический термин «решение треугольников» (лат. solutio triangulorum) обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным[1]. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площадь и т. д.), а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере (сферический треугольник), на гиперболической плоскости (гиперболический треугольник) и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.

Решение плоских треугольников[править | править код]

Стандартные обозначения в треугольнике

У треугольника[2] общего вида имеется 6 основных элементов: 3 линейные (длины сторон a,b,c) и 3 угловые (alpha ,beta ,gamma ). Сторону, противолежащую углу при вершине, традиционно обозначают той же буквой, что и эта вершина, но не заглавной, а строчной (см. рисунок). В классической задаче плоской тригонометрии заданы 3 из этих 6 характеристик, и нужно определить 3 остальные. Очевидно, если известны только 2 или 3 угла, однозначного решения не получится, так как любой треугольник, подобный данному, тоже будет решением, поэтому далее предполагается, что хотя бы одна из известных величин — линейная[3].

Алгоритм решения задачи зависит от того, какие именно характеристики треугольника считаются известными. Поскольку вариант «заданы три угла» исключён из рассмотрения, остаются 5 различных вариантов[4]:

  • три стороны;
  • две стороны и угол между ними;
  • две стороны и угол напротив одной из них;
  • сторона и два прилежащих угла;
  • сторона, противолежащий угол и один из прилежащих.

Основные теоремы[править | править код]

Стандартным методом решения задачи является использование нескольких фундаментальных соотношений, выполняющихся для всех плоских треугольников[5]:

Теорема косинусов
{displaystyle a^{2}=b^{2}+c^{2}-2bccdot cos alpha }
{displaystyle b^{2}=a^{2}+c^{2}-2accdot cos beta }
{displaystyle c^{2}=a^{2}+b^{2}-2abcdot cos gamma }
Теорема синусов
{frac {a}{sin alpha }}={frac {b}{sin beta }}={frac {c}{sin gamma }}
Сумма углов треугольника
alpha +beta +gamma =180^{circ }

Из других иногда полезных на практике универсальных соотношений следует упомянуть теорему тангенсов, теорему котангенсов, теорему о проекциях и формулы Мольвейде.

Замечания[править | править код]

  1. Для нахождения неизвестного угла надёжнее использовать теорему косинусов, а не синусов, потому что значение синуса угла при вершине треугольника не определяет однозначно самого угла, поскольку смежные углы имеют один и тот же синус[6]. Например, если sin beta =0{,}5, то угол beta может быть как 30^{circ }, так и 150^{circ }, потому что синусы этих углов совпадают. Исключением является случай, когда заранее известно, что в данном треугольнике тупых углов быть не может — например, если треугольник прямоугольный. С косинусом такие проблемы не возникают: в интервале от 0^{circ } до 180^{circ } значение косинуса определяет угол однозначно.
  2. При построении треугольников важно помнить, что зеркальное отражение построенного треугольника тоже будет решением задачи. Например, три стороны однозначно определяют треугольник с точностью до отражения.
  3. Все треугольники подразумеваются невырожденными, то есть длина стороны не может быть нулевой, а величина угла — положительное число, меньшее, чем 180^{circ }.

Три стороны[править | править код]

Пусть заданы длины всех трёх сторон a,b,c. Условие разрешимости задачи — выполнение неравенства треугольника, то есть каждая длина должна быть меньше, чем сумма двух других длин:

{displaystyle a<b+c,quad b<a+c,quad c<a+b.}

Чтобы найти углы alpha ,beta , надо воспользоваться теоремой косинусов[7]:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}},quad beta =arccos {frac {a^{2}+c^{2}-b^{2}}{2ac}}.}

Третий угол сразу находится из правила, что сумма всех трёх углов должна быть равна {displaystyle 180^{circ }colon }

{displaystyle gamma =180^{circ }-(alpha +beta ).}

Не рекомендуется второй угол находить по теореме синусов, потому что, как указано в замечании 1, существует опасность спутать тупой угол с острым. Этой опасности не возникнет, если первым определить, по теореме косинусов, наибольший угол (он лежит против наибольшей из сторон) — два других угла точно являются острыми, и применение к ним теоремы синусов безопасно.

Ещё один метод вычисления углов по известным сторонам — использование теоремы котангенсов.

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть для определённости известны длины сторон a,b и угол gamma между ними. Этот вариант задачи всегда имеет единственное решение. Для определения длины стороны c применяется теорема косинусов[8]:

{displaystyle c={sqrt {a^{2}+b^{2}-2abcos gamma }}.}

Фактически задача сведена к предыдущему случаю. Далее ещё раз применяется теорема косинусов для нахождения второго угла:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}}=arccos {frac {b-acos gamma }{sqrt {a^{2}+b^{2}-2abcos gamma }}}.}

Третий угол находится из теоремы о сумме углов треугольника: beta =180^{circ }-alpha -gamma .

Заданы две стороны и угол не между ними

Две стороны и угол напротив одной из них[править | править код]

В этом случае решений может быть два, одно или ни одного. Пусть известны две стороны b,c и угол beta . Тогда уравнение для угла gamma находится из теоремы синусов[9]:

{displaystyle sin gamma ={frac {c}{b}}sin beta .}

Для краткости обозначим {displaystyle D={frac {c}{b}}sin beta } (правая часть уравнения). Это число всегда положительно. При решении уравнения возможны 4 случая, во многом зависящие от D[10][11].

  1. Задача не имеет решения (сторона b «не достаёт» до линии BC) в двух случаях: если D>1 или если угол beta geqslant 90^{circ } и при этом bleqslant c.
  2. Если {displaystyle D=1,} существует единственное решение, причём треугольник прямоугольный: {displaystyle gamma =arcsin D=90^{circ }.}

  1. Если {displaystyle D<1,} то возможны 2 варианта.
    1. Если b<c, то угол gamma имеет два возможных значения: острый угол {displaystyle gamma =arcsin D} и тупой угол {displaystyle gamma '=180^{circ }-gamma }. На рисунке справа первому значению соответствуют точка C, сторона b и угол gamma , а второму значению — точка C', сторона {displaystyle b'=b} и угол gamma '.
    2. Если bgeqslant c, то beta geqslant gamma (большей стороне треугольника соответствует больший противолежащий угол). Поскольку в треугольнике не может быть двух тупых углов, тупой угол для gamma исключён и решение {displaystyle gamma =arcsin D} единственно.

Третий угол определяется по формуле {displaystyle alpha =180^{circ }-beta -gamma }. Третью сторону можно найти по теореме синусов:

a=b {frac {sin alpha }{sin beta }}

В данном случае заданы сторона и прилежащие к ней углы. Аналогичные рассуждения имеют смысл, даже если один из известных углов противоположен стороне.

Сторона и два угла[править | править код]

Пусть задана сторона c и два угла. Эта задача имеет единственное решение, если сумма двух углов меньше 180^{circ }. В противном случае задача решения не имеет.

Вначале определяется третий угол. Например, если даны углы alpha ,beta , то {displaystyle gamma =180^{circ }-alpha -beta }. Далее обе неизвестные стороны находятся по теореме синусов[12]:

{displaystyle a=c {frac {sin alpha }{sin gamma }},quad b=c {frac {sin beta }{sin gamma }}.}

Решение прямоугольных треугольников[править | править код]

Прямоугольный треугольник

В этом случае известен один из углов — он равен 90°. Необходимо знать ещё два элемента, хотя бы один из которых — сторона. Возможны следующие случаи:

  • два катета;
  • катет и гипотенуза;
  • катет и прилежащий острый угол;
  • катет и противолежащий острый угол;
  • гипотенуза и острый угол.

Вершину прямого угла традиционно обозначают буквой C, гипотенузу — c. Катеты обозначаются a и b, а величины противолежащих им углов — alpha и beta соответственно.

Расчётные формулы существенно упрощаются, так как вместо теорем синусов и косинусов можно использовать более простые соотношения — теорему Пифагора:

c^{2}=a^{2}+b^{2}

и определения основных тригонометрических функций:

sin alpha =cos beta ={frac {a}{c}},quad cos alpha =sin beta ={frac {b}{c}},
{displaystyle operatorname {tg} alpha =operatorname {ctg} beta ={frac {a}{b}},quad operatorname {ctg} alpha =operatorname {tg} beta ={frac {b}{a}}.}

Ясно также, что углы alpha и beta  — острые, так как их сумма равна 90^{circ }. Поэтому любой из неизвестных углов однозначно определяется по любой из его тригонометрических функций (синусу, косинусу, тангенсу и др.) путём вычисления соответствующей обратной тригонометрической функции.

При корректной постановке задачи (если заданы гипотенуза и катет, то катет должен быть меньше гипотенузы; если задан один из двух непрямых углов, то он должен быть острый) решение всегда существует и единственно.

Два катета[править | править код]

Гипотенуза находится по теореме Пифагора:

c={sqrt {a^{2}+b^{2}}}.

Углы могут быть найдены с использованием функции арктангенса:

{displaystyle alpha =operatorname {arctg} {frac {a}{b}},quad beta =operatorname {arctg} {frac {b}{a}}}

или же по только что найденной гипотенузе:

alpha =arcsin {frac {a}{c}}=arccos {frac {b}{c}},quad beta =arcsin {frac {b}{c}}=arccos {frac {a}{c}}.

Катет и гипотенуза[править | править код]

Пусть известны катет b и гипотенуза c — тогда катет a находится из теоремы Пифагора:

a={sqrt {c^{2}-b^{2}}}.

После этого углы определяются аналогично предыдущему случаю.

Катет и прилежащий острый угол[править | править код]

Пусть известны катет b и прилежащий к нему угол alpha .

Гипотенуза c находится из соотношения

c={frac {b}{cos alpha }}.

Катет a может быть найден либо по теореме Пифагора аналогично предыдущему случаю, либо из соотношения

a=b mathrm {tg} ,alpha .

Острый угол beta может быть найден как

beta =90^{circ }-alpha .

Катет и противолежащий острый угол[править | править код]

Пусть известны катет b и противолежащий ему угол beta .

Гипотенуза c находится из соотношения

c={frac {b}{sin beta }}.

Катет a и второй острый угол alpha могут быть найдены аналогично предыдущему случаю.

Гипотенуза и острый угол[править | править код]

Пусть известны гипотенуза c и острый угол beta .

Острый угол alpha может быть найден как

alpha =90^{circ }-beta .

Катеты определяются из соотношений

a=csin alpha =ccos beta ,
b=csin beta =ccos alpha .

Решение сферических треугольников[править | править код]

Стороны сферического треугольника a,b,c измеряют величиной опирающихся на них центральных углов

Сферический треугольник общего вида полностью определяется тремя из шести своих характеристик (3 стороны и 3 угла). Стороны сферического треугольника a,b,c принято измерять не линейными единицами, а величиной опирающихся на них центральных углов.

Решение треугольников в сферической геометрии имеет ряд отличий от плоского случая. Например, сумма трёх углов alpha +beta +gamma зависит от треугольника; кроме того, на сфере не существует неравных подобных треугольников, и поэтому задача построения треугольника по трём углам имеет единственное решение. Но основные соотношения: две сферические теоремы косинусов и сферическая теорема синусов, — используемые для решения задачи, аналогичны плоскому случаю.

Из других соотношений могут оказаться полезными формулы аналогии Непера[13] и формула половины стороны[14].

Три стороны[править | править код]

Если даны (в угловых единицах) стороны a,b,c, то углы треугольника определяются из теоремы косинусов[15]:

alpha =arccos left({frac {cos a-cos b cos c}{sin b sin c}}right),
beta =arccos left({frac {cos b-cos c cos a}{sin c sin a}}right),
gamma =arccos left({frac {cos c-cos a cos b}{sin a sin b}}right),

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть заданы стороны a,b и угол gamma между ними. Сторона c находится по теореме косинусов[15]:

c=arccos left(cos acos b+sin asin bcos gamma right)

Углы alpha ,beta можно найти так же, как в предыдущем случае, можно также использовать формулы аналогии Непера:

{displaystyle alpha =operatorname {arctg}  {frac {2sin a}{operatorname {tg} ({frac {gamma }{2}})sin(b+a)+operatorname {ctg} ({frac {gamma }{2}})sin(b-a)}},}
{displaystyle beta =operatorname {arctg}  {frac {2sin b}{operatorname {tg} ({frac {gamma }{2}})sin(a+b)+operatorname {ctg} ({frac {gamma }{2}})sin(a-b)}}.}

Заданы две стороны и угол не между ними

Две стороны и угол не между ними[править | править код]

Пусть заданы стороны b,c и угол beta . Чтобы решение существовало, необходимо выполнение условия:

{displaystyle b>arcsin(sin c,sin beta ).}

Угол gamma получается из теоремы синусов:

{displaystyle gamma =arcsin left({frac {sin c,sin beta }{sin b}}right).}

Здесь, аналогично плоскому случаю, при b<c получаются два решения: gamma и {displaystyle 180^{circ }-gamma }.

Остальные величины можно найти из формул аналогии Непера[16]:

a=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(b-c)right){frac {sin left({frac {1}{2}}(beta +gamma )right)}{sin left({frac {1}{2}}(beta -gamma )right)}}right},
alpha =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(beta -gamma )right){frac {sin left({frac {1}{2}}(b+c)right)}{sin left({frac {1}{2}}(b-c)right)}}right}.

Заданы сторона и прилежащие углы

Сторона и прилежащие углы[править | править код]

В этом варианте задана сторона c и углы alpha ,beta . Угол gamma определяется по теореме косинусов[17]:

{displaystyle gamma =arccos(sin alpha sin beta cos c-cos alpha cos beta ).}

Две неизвестные стороны получаются из формул аналогии Непера:

a=operatorname {arctg} left{{frac {2sin alpha }{operatorname {ctg} (c/2)sin(beta +alpha )+operatorname {tg} (c/2)sin(beta -alpha )}}right}
b=operatorname {arctg} left{{frac {2sin beta }{operatorname {ctg} (c/2)sin(alpha +beta )+operatorname {tg} (c/2)sin(alpha -beta )}}right}

или, если использовать вычисленный угол gamma , по теореме косинусов:

{displaystyle a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),}
{displaystyle b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right).}

Заданы два угла и сторона не между ними

Два угла и сторона не между ними[править | править код]

В отличие от плоского аналога данная задача может иметь несколько решений.

Пусть заданы сторона a и углы alpha ,beta . Сторона b определяется по теореме синусов[18]:

{displaystyle b=arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Если угол для стороны a острый и alpha >beta , существует второе решение:

{displaystyle b=pi -arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Остальные величины определяются из формул аналогии Непера:

{displaystyle c=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(a-b)right){frac {sin left({frac {1}{2}}(alpha +beta )right)}{sin left({frac {1}{2}}(alpha -beta )right)}}right}.}
{displaystyle gamma =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(alpha -beta )right){frac {sin left({frac {1}{2}}(a+b)right)}{sin left({frac {1}{2}}(a-b)right)}}right}.}

Три угла[править | править код]

Если заданы три угла, стороны находятся по теореме косинусов:

a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),
b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right),
c=arccos left({frac {cos gamma +cos alpha cos beta }{sin alpha sin beta }}right).

Другой вариант: использование формулы половины угла[19].

Решение прямоугольных сферических треугольников[править | править код]

Изложенные алгоритмы значительно упрощаются, если известно, что один из углов треугольника (например, угол C) прямой. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведённых соотношений[20]:

{displaystyle sin a=sin ccdot sin alpha =operatorname {tg} bcdot operatorname {ctg} beta ,}
{displaystyle sin b=sin ccdot sin beta =operatorname {tg} acdot operatorname {ctg} alpha ,}
{displaystyle cos c=cos acdot cos b=operatorname {ctg} alpha cdot operatorname {ctg} beta ,}
{displaystyle operatorname {tg} a=sin bcdot operatorname {tg} alpha ,}
{displaystyle operatorname {tg} b=operatorname {tg} ccdot cos alpha ,}
{displaystyle cos alpha =cos acdot sin beta =operatorname {tg} bcdot operatorname {ctg} c,}
{displaystyle cos beta =cos bcdot sin alpha =operatorname {tg} acdot operatorname {ctg} c.}

Вариации и обобщения[править | править код]

Во многих практически важных задачах вместо сторон треугольника задаются другие его характеристики — например, длина медианы, высоты, биссектрисы, радиус вписанного или описанного круга и т. д. Аналогично вместо углов при вершинах треугольника в задаче могут фигурировать иные углы. Алгоритмы решения подобных задач чаще всего комбинируются из рассмотренных выше теорем тригонометрии.

Примеры:

Примеры практического применения[править | править код]

Триангуляция[править | править код]

Чтобы определить расстояние d от берега до недоступной точки — например, до удалённого корабля,— нужно отметить на берегу две точки, расстояние l между которыми известно, и измерить углы alpha и beta между линией, соединяющей эти точки, и направлением на корабль. Из формул варианта «сторона и два угла» можно найти длину высоты треугольника[23]:

d={frac {sin alpha ,sin beta }{sin(alpha +beta )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} alpha +operatorname {tg} beta }},l

Этот метод используется в каботажном судоходстве. Углы alpha ,beta при этом оцениваются наблюдениями с корабля известных ориентиров на земле. Аналогичная схема используется в астрономии, чтобы определить расстояние до близкой звезды: измеряются углы наблюдения этой звезды с противоположных точек земной орбиты (то есть с интервалом в полгода) и по их разности (параллаксу) вычисляют искомое расстояние[23].

Другой пример: требуется измерить высоту h горы или высокого здания. Известны углы alpha ,beta наблюдения вершины из двух точек, расположенных на расстоянии l. Из формул того же варианта, что и выше, получается[24]:

h={frac {sin alpha ,sin beta }{sin(beta -alpha )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} beta -operatorname {tg} alpha }},l

Расстояние между двумя точками на поверхности земного шара[править | править код]

Distance on earth.png

Надо вычислить расстояние между двумя точками на земном шаре[25]:

Точка A: широта lambda _{mathrm {A} }, долгота L_{mathrm {A} },
Точка B: широта lambda _{mathrm {B} }, долгота L_{mathrm {B} },

Для сферического треугольника ABC, где C — северный полюс, известны следующие величины:

{displaystyle a=90^{mathrm {o} }-lambda _{mathrm {B} }}
{displaystyle b=90^{mathrm {o} }-lambda _{mathrm {A} }}
{displaystyle gamma =L_{mathrm {A} }-L_{mathrm {B} }}

Это случай «две стороны и угол между ними». Из приведенных выше формул получается:

mathrm {AB} =Rarccos left{sin lambda _{mathrm {A} },sin lambda _{mathrm {B} }+cos lambda _{mathrm {A} },cos lambda _{mathrm {B} },cos left(L_{mathrm {A} }-L_{mathrm {B} }right)right},

где R — радиус Земли.

История[править | править код]

Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[26]

Общая постановка задачи решения треугольников (как плоских, так и сферических) появилась в древнегреческой геометрии[27]. Во второй книге «Начал» Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[28]:

В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле.

Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[29]: древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике», написанной в XIII веке[30].

Первые тригонометрические таблицы составил, вероятно, Гиппарх в середине II века до н. э. для астрономических расчётов. Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Первая книга «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные тригонометрические таблицы хорд для острых и тупых углов, с шагом 30 угловых минут. В таблицах Птолемей приводит значение длин хорд с точностью до трех шестидесятиричных знаков[31]. Такая точность примерно соответствует пятизначной десятичной таблице синусов с шагом 15 угловых минут[1].

Птолемей явно не формулирует теорему синусов и косинусов для треугольников. Тем не менее он всегда справляется с задачей решения треугольников, разбивая треугольник на два прямоугольных[32].

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию[33]. Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов[34]. Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике.

В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[35]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В частности, индийцы первыми ввели в использование косинус[36]. Кроме того, индийцы знали формулы для кратных углов sin nvarphi , cos nvarphi для n=2,3,4,5. В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась[37].

В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[38]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[36].

Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[29]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[39]. Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения[40].

Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[41]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём углам[42]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для эффективного решения треугольников.

В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10″[43]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[44]. Алгебраизация тригонометрии, начатая Франсуа Виетом, была завершена Леонардом Эйлером в XVIII веке, после чего алгоритмы решения треугольников приобрели современный вид.

См. также[править | править код]

  • Признаки подобия треугольников
  • Площадь треугольника
  • Сферическая тригонометрия
  • Сферический треугольник
  • Триангуляция
  • Тригонометрические тождества
  • Тригонометрические функции
  • Формулы Мольвейде

Примечания[править | править код]

  1. 1 2 Выгодский М. Я., 1978, с. 266—268.
  2. Плоский треугольник иногда называют прямолинейным.
  3. Элементарная математика, 1976, с. 487.
  4. Solving Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 июня 2019 года.
  5. Элементарная математика, 1976, с. 488.
  6. Степанов Н. Н., 1948, с. 133.
  7. Solving SSS Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 сентября 2012 года.
  8. Solving SAS Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  9. Solving SSA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012). Архивировано 30 сентября 2012 года.
  10. Выгодский М. Я., 1978, с. 294.
  11. Элементарная математика, 1976, с. 493—496.
  12. Solving ASA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  13. Степанов Н. Н., 1948, с. 87—90.
  14. Степанов Н. Н., 1948, с. 102—104.
  15. 1 2 Энциклопедия элементарной математики, 1963, с. 545.
  16. Степанов Н. Н., 1948, с. 121—128.
  17. Степанов Н. Н., 1948, с. 115—121.
  18. Степанов Н. Н., 1948, с. 128—133.
  19. Степанов Н. Н., 1948, с. 104—108.
  20. Основные формулы физики, 1957, с. 14—15.
  21. Цейтен Г. Г., 1932, с. 223—224.
  22. Цейтен Г. Г., 1938, с. 126—127.
  23. 1 2 Геометрия: 7—9 классы, 2009, с. 260—261.
  24. Геометрия: 7—9 классы, 2009, с. 260.
  25. Степанов Н. Н., 1948, с. 136—137.
  26. van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
  27. Глейзер Г. И., 1982, с. 77.
  28. Глейзер Г. И., 1982, с. 94—95.
  29. 1 2 Матвиевская Г. П., 2012, с. 92—96.
  30. Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
  31. История математики, том I, 1970, с. 143.
  32. Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 366. — 456 с.
  33. Матвиевская Г. П., 2012, с. 25—27.
  34. Матвиевская Г. П., 2012, с. 33—36.
  35. Матвиевская Г. П., 2012, с. 40—44.
  36. 1 2 Сираждинов С. Х., Матвиевская Г. П., 1978, с. 79.
  37. Юшкевич А. П. История математики в Средние века. — М.: ГИФМЛ, 1961. — С. 160. — 448 с.
  38. Матвиевская Г. П., 2012, с. 51—55.
  39. Матвиевская Г. П., 2012, с. 111.
  40. Матвиевская Г. П., 2012, с. 96—98.
  41. Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
  42. Рыбников К. А., 1960, с. 105.
  43. История математики, том I, 1970, с. 320.
  44. Степанов Н. Н. § 42. Формулы «аналогии Непера» // Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948. — С. 87—90. — 154 с.

Литература[править | править код]

Теория и алгоритмы
  • Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: 7—9 классы. Учебник для общеобразовательных учреждений. — 19-е изд. — М.: Просвещение, 2009. — 384 с. — ISBN 978-5-09-021136-9.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия, учебник для 10 класса. — М.: МЦНМО, 2002. — ISBN 5-94057-050-X.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Мензел Д. (ред.). Основные формулы физики. Глава 1. Основные математические формулы. — М.: Изд. иностранной литературы, 1957. — 658 с.
  • Основные понятия сферической геометрии и тригонометрии // Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. — С. 518—557. — 568 с.
  • Степанов Н. Н. Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948.
История
  • Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
  • Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. — М.: Просвещение, 1983. — 352 с.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
    • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
    • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
    • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
  • Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I.
  • Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. — М.: Просвещение, 1978. — 95 с. — (Люди науки).
  • Цейтен Г. Г. История математики в древности и в средние века. — М.Л.: ГТТИ, 1932. — 230 с.
  • Цейтен Г. Г. История математики в XVI и XVII веках. — М.Л.: ОНТИ, 1938. — 456 с.

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

Далее, из формулы

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

Из формулы (3) найдем cosA:

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Как найти углы прямоугольного треугольника

Онлайн калькулятор

Чтобы найти острые углы прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для угла α:
    • угол β
    • длины катетов a и b
    • длину гипотенузы (с) и длину одного из катетов
  • для угла β:
    • угол α
    • длины катетов a и b
    • длину гипотенузы (с) и длину одного из катетов

Введите их в соответствующие поля и получите результат.

Найти угол α зная угол β и наоборот

Формула

Найти углы прямоугольного треугольника зная катеты

Катет a =
Катет b =

Чему равны острые углы (α и β) прямоугольного треугольника если известны оба катета (a и b)?

Формулы

Пример

Для примера определим чему равны углы α и β в градусах если катет a = 5 см, а катет b = 2 см:

Найти углы прямоугольного треугольника по катету и гипотенузе

Гипотенуза c =
Катет =

Чему равны острые углы (α и β) прямоугольного треугольника если известны гипотенуза c и один из катетов (a или b)?

Углы треугольника

Геометрическая фигура из трех отрезков, соединенных между собой тремя точками, не лежащими на одной прямой, называется треугольником. Это — многоугольник с тремя углами. Сумма всех углов треугольника равна 180°. Если известна величина двух из них, третий угол определяем вычитанием из 180° величины двух известных углов.

α = 180°-β-γ

Если известны стороны треугольника, можно рассчитать его углы, воспользовавшись теоремой косинусов. Здесь, квадрат одной стороны треугольника (а) равен сумме квадратов двух его других сторон (b,с), образующих искомый угол (α), плюс удвоенное произведение этих сторон (b,с) на косинус угла.

a 2 = b 2 + c 2 + 2abc cos (α)

Отсюда, косинус искомого угла равняется сумме квадратов смежных сторон (b, с) минус квадрат третей стороны треугольника (а), противолежащей искомому углу, и все это делится на удвоенное произведение смежных сторон:

cos (α) = (b 2 + c 2 — a 2 ) / 2bc

,
где а, b, с — стороны треугольника.
Используя теорему косинусов, определяем косинусы остальных углов. Величины углов в градусах находим по тригонометрической таблице.

[spoiler title=”источники:”]

http://poschitat.online/ugly-pryamougolnogo-treugolnika

[/spoiler]


Загрузить PDF


Загрузить PDF

В геометрии угол — это фигура, которая образована двумя лучами, которые выходят из одной точки (она называется вершиной угла). В большинстве случаев единицей измерения угла является градус (°) — помните, что полный угол или один оборот равен 360°. Найти значение угла многоугольника можно по его типу и значениям других углов, а если дан прямоугольный треугольник, угол можно вычислить по двум сторонам. Более того, угол можно измерить с помощью транспортира или вычислить с помощью графического калькулятора.

  1. Изображение с названием Calculate Angles Step 1

    1

    Сосчитайте число сторон многоугольника. Чтобы вычислить внутренние углы многоугольника, сначала нужно определить, сколько у многоугольника сторон. Обратите внимание, что число сторон многоугольника равно числу его углов.[1]

    • Например, у треугольника 3 стороны и 3 внутренних углов, а у квадрата 4 стороны и 4 внутренних углов.
  2. Изображение с названием Calculate Angles Step 2

    2

    Вычислите сумму всех внутренних углов многоугольника. Для этого воспользуйтесь следующей формулой: (n – 2) x 180. В этой формуле n — это количество сторон многоугольника. Далее приведены суммы углов часто встречающихся многоугольников:[2]

    • Сумма углов треугольника (многоугольника с 3-мя сторонами) равна 180°.
    • Сумма углов четырехугольника (многоугольника с 4-мя сторонами) равна 360°.
    • Сумма углов пятиугольника (многоугольника с 5-ю сторонами) равна 540°.
    • Сумма углов шестиугольника (многоугольника с 6-ю сторонами) равна 720°.
    • Сумма углов восьмиугольника (многоугольника с 8-ю сторонами) равна 1080°.
  3. Изображение с названием Calculate Angles Step 3

    3

    Разделите сумму всех углов правильного многоугольника на число углов. Правильный многоугольник это многоугольник с равными сторонами и равными углами. Например, каждый угол равностороннего треугольника вычисляется так: 180 ÷ 3 = 60°, а каждый угол квадрата находится так: 360 ÷ 4 = 90°.[3]

    • Равносторонний треугольник и квадрат — это правильные многоугольники. А у здания Пентагона (Вашингтон, США) и дорожного знака «Стоп» форма правильного восьмиугольника.
  4. Изображение с названием Calculate Angles Step 4

    4

    Вычтите сумму всех известных углов из общей суммы углов неправильного многоугольника. Если стороны многоугольника не равны друг другу, и его углы также не равны друг другу, сначала сложите известные углы многоугольника. Теперь полученное значение вычтите из суммы всех углов многоугольника — так вы найдете неизвестный угол.[4]

    • Например, если дано, что 4 угла пятиугольника равны 80°, 100°, 120° и 140°, сложите эти числа: 80 + 100 + 120 + 140 = 440. Теперь вычтите это значение из суммы всех углов пятиугольника; эта сумма равна 540°: 540 – 440 = 100°. Таким образом, неизвестный угол равен 100°.

    Совет: неизвестный угол некоторых многоугольников можно вычислить, если знать свойства фигуры. К примеру, в равнобедренном треугольнике две стороны равны и два угла равны; в параллелограмме (это четырехугольник) противоположные стороны равны и противоположные углы равны.

    Реклама

  1. Изображение с названием Calculate Angles Step 5

    1

    Помните, что в любом прямоугольном треугольнике один угол всегда равен 90°. Это так, даже если прямой угол никак не отмечен или его значение не указано. Таким образом, один угол прямоугольного треугольника всегда известен, а другие углы можно вычислить с помощью тригонометрии.[5]

  2. Изображение с названием Calculate Angles Step 6

    2

    Измерьте длину двух сторон треугольника. Самая длинная сторона прямоугольного треугольника называется гипотенузой. Прилежащая сторона это сторона, которая находится возле неизвестного угла. Противолежащая сторона — это сторона, которая находится напротив неизвестного угла. Измерьте две стороны, чтобы вычислить неизвестные углы треугольника.[6]

    Совет: воспользуйтесь графическим калькулятором, чтобы решить уравнения, или найдите онлайн-таблицу со значениями синусов, косинусов и тангенсов.

  3. Изображение с названием Calculate Angles Step 7

    3

    Вычислите синус угла, если вам известны противолежащая сторона и гипотенуза. Для этого подставьте значения в уравнение: sin(x) = противолежащая сторона ÷ гипотенуза. Например, противолежащая сторона равна 5 см, а гипотенуза равна 10 см. Разделите 5/10 = 0,5. Таким образом, sin(x) = 0,5, то есть x = sin-1 (0,5).[7]

    • Если у вас есть графический калькулятор, введите 0,5 и нажмите клавишу sin-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 30°.
  4. Изображение с названием Calculate Angles Step 8

    4

    Вычислите косинус угла, если вам известны прилежащая сторона и гипотенуза. Для этого подставьте значения в уравнение: cos(x) = прилежащая сторона ÷ гипотенуза. Например, прилежащая сторона равна 1,67 см, а гипотенуза равна 2 см. Разделите 1,67/2 = 0,83. Таким образом, cos(x) = 0,83, то есть x = cos-1 (0,83).[8]

    • Если у вас есть графический калькулятор, введите 0,83 и нажмите клавишу cos-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 33,6°.
  5. Изображение с названием Calculate Angles Step 9

    5

    Вычислите тангенс угла, если вам известны противолежащая и прилежащая стороны. Для этого подставьте значения в уравнение: tg(x) = противолежащая сторона ÷ прилежащая сторона. Например, противолежащая сторона равна 75 см, а прилежащая сторона равна 75 см. Разделите 75/100 = 0,75. Таким образом, tg(x) = 0,75, то есть x = tg-1 (0,75).[9]

    • Если у вас есть графический калькулятор, введите 0,75 и нажмите клавишу tg-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 36,9°.

    Реклама

Советы

  • Названия углов соответствуют их значениям. Угол в 90° — это прямой угол. Угол в 180° — это развернутый угол. Угол, который лежит между 0° и 90° — это острый угол. Угол, который лежит между 90° и 180° — это тупой угол. Угол, который лежит между 180° и 360° — это невыпуклый угол.
  • Если сумма двух углов равна 90°, они называются дополнительными. Запомните: два острых угла прямоугольного треугольника всегда являются дополнительными. Если же сумма двух углов равна 180°, они называются смежными.

Реклама

Об этой статье

Эту страницу просматривали 236 588 раз.

Была ли эта статья полезной?

Пересечение двух параллельных прямых секущей

Параллельными      называются пара прямых, которые при продолжении не пересекаются.

Когда      две паралелльные прямые      $a$    и   $b$     пересекаются секущей    $c$ , то образуется много разнообразных углов.

Некоторые    пары углов имеют свои имена – названия:

пара     накрест лежащие углы   :   ∠3   и   ∠5,         ∠4   и    ∠6;
пара     односторонние углы   :       ∠4    и   ∠5,         ∠3   и   ∠6;
пара     соответственные углы :      ∠1   и   ∠5,         ∠4   и   ∠8,      ∠2   и   ∠6,      ∠3   и   ∠7.

Свойства:     

  • накрест лежащие углы равны:    3 = 5, 4 = 6.
  • соответственные углы равны:    1 = 5,    4 = 8,     2 = 6,     3 = 7.
  • сумма односторонних углов равна 180 градусов:   3 + 6 = 180 градусов,    4 + 5 = 180 градусов.

        


_____________________________________________________________________________________

Теорема    Если две параллельные линии пересекаются третьей (Секущей), тогда выполняется следующее:
ТеоремаТеорема    *      накрест лежащие углы равны   ;
ТеоремаТеорема    *      соответственные углы равны ;
ТеоремаТеорема    *      сумма односторонних углов 180 град. ;
ТеоремаТеорема    *      вертикальные равны ∠3 = ∠1, ∠8 = ∠6 .

_____________________________________________________________________________________

Теорема    Если две прямые перпендикулярны (обе одновременно) к третьей, то они параллельны друг другу.

_____________________________________________________________________________________

Теорема    Если две прямые не параллельны друг другу, то равенства для сумм углов не выполняются:   3 + 6 < 180 ;     4 + 5 > 180 .

_____________________________________________________________________________________

Теорема    Если одна прямая параллельна   второй, а вторая параллельна   третьей, то первая прямая так же параллельна третьей.

_____________________________________________________________________________________

Задача 1:   На рисунке АС и МК параллельны, отрезки АВ = ВК равные. Дан угол ∠АКМ = 40°. Найти ∠КВС.

  • Решение:        АС ║ МК параллельны, АК – секущая, $Rightarrow$   ∠АКМ и ∠КАВ накрест лежащие, $Rightarrow$   ∠КАВ = 40°.
  • ∆АВК – равнобедренный, АВ = ВК       $Rightarrow$    углы у основания   ∠КАВ = ∠АКВ значит,   $Rightarrow$   ∠АКВ = 40°.
  • Значит, углы   ∠АКВ = ∠АКМ равные. Угол ∠МКВ состоит из частей, аддитивность,      ∠МКВ = ∠АКВ + ∠АКМ = 80°.
  • АС ║ МК параллельны, АК – секущая, $Rightarrow$   ∠ВКМ и ∠КВС накрест лежащие, $Rightarrow$ Ответ: ∠КВС = 80°.

                 

Задача 2:   На рисунке, даны углы ∠ВАМ = 30°,   ∠АВК = 150°,   ∠ВКС = 110°. Найти ∠АМР.

  • Решение:     Углы ∠ВАМ и ∠АВК – односторонные от секущей АВ. Их сумма ∠ВАМ + ∠АВК = 180°.
  • Сумма односторонных 180°? … по теореме “о параллельных”, прямые   АМ и ВК должны быть параллельными. АМ ║ ВК.
  • Теперь:    АМ ║ ВК,      СР – секущая. Односторонные углы равные,   ∠ВКС = ∠АМК.       Значит,   ∠АМК = 110°.
  • Наконец, углы    ∠АМК и ∠АМР – смежные. Значит,   ∠АМК + ∠АМР = 180°.     $Rightarrow$       ∠АМР = 180° – ∠АМК = 70°.
  • Ответ:    ∠АМР = 70°.            Замечание: “надо видеть все секущие к параллельным, и углы к ним”.

Задача 3:   На рисунке, АВ параллельно МК, угол ∠РМК составляет треть угла ∠САВ. Найти эти углы.

  • Решение:     Дано: отношение углов ∠РМК : ∠САВ = 1 : 3. Выразим:   ∠САВ = 3∠РМК
  • Как связаны искомые углы по рисунку?        ∠САВ и ∠МАВ – смежные, значит ∠МАВ = 180° – ∠САВ.
  • Углы ∠МАВ и ∠РМК односторонные углы при параллельных АВ ║ МК и секущей РС. Значит, ∠МАВ = ∠РМК
  • Из двух равенств получаем   ∠РМК = 180° – ∠САВ. Вспомним ∠САВ = 3∠РМК, подставим:   ∠РМК = 180° – 3∠РМК
  • ∠РМК = 45°, значит ∠САВ = 3∠РМК = 135°.               Ответ:         45°,     135°

     

Задача 4:   На рисунке, АD параллельно ВС, угол ∠МВС = 65°, ∠ВСК = 80°. Найти четырехугольника АВСD.

  • Трапеция АВСD:     Четырехугольник с двумя параллельными сторонами называется трапецией. АD ║ ВС.
  • Решение:     Угол трапеции ∠АВС смежен с ∠МВС, значит ∠АВС = 180° – ∠МВС = 115°.
  • Аналогично, угол трапеции ∠ВСD смежный к углу ∠ВСК, значит ∠ВСD = 180° – ∠ВСК = 100°.
  • АМ секущая к АD ║ ВС    $Rightarrow$   ∠ВАD и ∠МВС соответственные, значит равные    ∠ВАD = ∠МВС = 65°.
  • Аналогично, КD секущая к АD ║ ВС    $Rightarrow$   ∠АDС и ∠ВСК соответственные, значит равные    ∠АDС = ∠ВСК = 80°.
  • Ответ:    Углы трапеции   ∠ВАD = 65° ∠АВС = 115°      ∠ВСD = 100°       ∠АDС= 80°

Задача 4, продолжение, “углы в трапеции”:         Пусть углы любые:     ∠МВС = х,    ∠ВСК = у.

  • Такими же рассуждениями о смежных и односторонных, получим:    ∠А = х     ∠В = 180° – х    ∠С = 180° – у      ∠D = у
  • Видно: ∠А + ∠В = 180°    ∠С + ∠D = 180°.          Сумма углов при боковой стороне трапеции 180° .    Односторонные!
  • Видно: ∠А + ∠В + ∠С + ∠D = 180°.            Сумма всех углов трапеции равна 360°. .      Как у четырехугольника?

Факты, Следствия из теорем о углах при параллельных и секущей к ним:

  • В параллелограмме и трапеции диагонали образуют со сторонами равные накрест лежащие углы.         Что секущая?
  • В паралеллограмме сумма углов у одной стороны равен 180 град. – внутренные односторонные.     Что секущая?
  • В трапеции сумма углов у боковых сторон равен 180 град. – внутренные односторонные. Что секущая?
  • Еще о углах:          Диаметры в окружности при пересечении образуют равные вертикальные углы.
  • Сумма углов треугольника 180 градусов .          Достроить параллельную, увидеть секущую!

Интерактивные Упражнения:

Задачи из сайта https://resh.edu.ru :

Задача 1:   Установите соответствие между углами и их градусными мерами, если ∠РМЕ = 50°, а ∠1 = ∠2 и РМ = РЕ.

                           

Задача 2:    На рисунке через параллельные прямые m и n проведена секущая k, угол 1 составляет 50% угла 2. Найдите угол 1.

Задача 3:   По рисунку найдите градусную меру неизвестного угла х. Параллельные прямые а и b пересечены секущими МК и МF.

                      

Задача 4:    Прямые а и m параллельны. АК и КР – секущие, ∆ВКО – равнобедренный. ∠3 = 120°. Чему равен ∠2?

Задача 5: На рисунке прямые AB║CD, при этом AB = AC, ∠BCD = 45°. Найдите угол 2   

                       

Задача 6:   Прямые FP и EK параллельны, чему равна градусная мера угла x?

Задача 7: Через параллельные прямые а и b проведены секущие ВА и ВС, так что АВ = ВС, при этом ∠ВСА = 80°. Найдите градусную меру угла 1.   

                   

Задача 8:    В треугольнике АВС BD – секущая к параллельным прямым BC и DE, при этом ВD = DC, ∠BDE = 40°. Чему равен угол ADВ?

Задача 9:    Прямые KN и ME параллельны. По рисунку найдите угол ЕМР, если сумма углов треугольника равна 180°.

                     

Задача 10:     На рисунке через параллельные прямые m и n проведена секущая k, угол 1 составляет 20 % угла 2. Найдите угол 1.

Задача 11: Прямые a и b параллельны. Основываясь на рисунке, определите, чему равна градусная мера угла y.

                      

Задача 12:    ∆ВКО – равнобедренный. ∠3 = 110°. Чему равен ∠2?

Задача 13:   На рисунке AB║CD, при этом AB=AC, ∠BCD = 45°. Найдите угол BAC.   

                              

Задача 14:   На рисунке прямые а║b, при этом MO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ?

Задача 15:   Дан треугольник АВС. BD – секущая к параллельным прямым BC и DE, при этом ВD = DC, ∠BDE = 50°. Чему равен угол ADE?

                                  

Задача 16:   Прямые а и b параллельны. Чему равна градусная мера суммы углов 1, 2, 3?

Задача 17: Проведена секущая к прямым BC и DE, при этом ВD = DC, BC || DE, ∠BDE = 40°. Чему равен ∠ADE?   

Задача 18:   Один из односторонних углов при двух параллельных прямых и секущей на 66º меньше другого. Найдите меньший из односторонних углов.

Задача 19: Сумма пары накрест лежащих углов, образованных при пересечении параллельных прямых секущей, равна 110°. Найдите, чему равен один накрест лежащий угол.

Задача 20:    “углы в параллелограмме и трапеции”:

  1. один из углов параллелограмма 40. найти остальные

  2. найти углы параллелограмма, если известно, что сумма двух 80.      (100, 160)

  3. найти углы параллелограмма, если известно, что разность двух 70. (110, 130)

  4. Диагональ параллелограмма состовляет с одной из сторон углы 25 и 35. найти все углы параллелограмма

  5. Углы параллелограмма относятся как 2:3 найти все углы

  6. Чему равны углы равнобедренной трапеции, если разность противолежащих 40

Ответ:

1. Дано в треугольнике NKM: ∠K=35°, ∠M=25°. Сумма всех внутренних углов треугольника равна 180°. Тогда ∠N+∠K+∠M=180° и поэтому  

∠N=180°–∠K–∠M=180°–35°–25°=120°.

2. Дано в треугольнике EPK: ∠P=40°, ∠K=60°. Сумма всех внутренних углов треугольника равна 180°. Тогда ∠E+∠P+∠K=180° и поэтому  

∠E=180°–∠P–∠K=180°–40°–60°=80°.

3. Дано в треугольнике STM: ∠T=90°, ∠M=30°. Сумма всех внутренних углов треугольника равна 180°. Тогда ∠S+∠T+∠M=180° и поэтому  

∠S=180°–∠T–∠M=180°–90°–30°=60°.

4. Дано в треугольнике BAC: ∠A=40°, AC=BC, то есть треугольник BAC равнобедренный. Углы при основании равнобедренного треугольника равны и сумма всех внутренних углов треугольника равна 180°. Значит, ∠B=∠A=70° и ∠A+∠B+∠C=180° и поэтому  

∠C=180°–∠A–∠B=180°–70°–70°=40°.

5. Дано в треугольнике QMN: QM=MN=QN, то есть треугольник QMN равносторонний. Известно, что все углы равностороннего треугольника равны и имеют градусную меру 60°. Значит, ∠Q=∠M=∠N=60°.

6. Дано в треугольнике KEP: ∠E=90°, ∠K=30°. Сумма всех внутренних углов треугольника равна 180°. Тогда ∠K+∠E+∠P=180° и поэтому  

∠P=180°–∠E–∠K=180°–90°–60°=30°.

9. Дано в треугольнике NMK: внешний угол при M равен 130°, NM=NK, то есть треугольник NMK равнобедренный. Известно, что  

а) углы при основании равнобедренного треугольника равны;

б) внешний угол треугольника равен сумме двух других внутренних не смежных с ним;

в) сумма смежных углов равна 180°.  

Тогда ∠M=∠K, ∠N+∠K=130° и ∠M=180°–130°=50°.  

Значит, ∠K=∠M=50° и ∠N=130°–∠K=130°–50°=80°.

10. Дано в треугольнике DCE: внешний угол при E равен 140°, ∠C=80°. Известно, что  

а) внешний угол треугольника равен сумме двух других внутренних не смежных с ним;

б) сумма смежных углов равна 180°;

в) сумма всех внутренних углов треугольника равна 180°.  

Тогда ∠C+∠D=140°, ∠E=180°–140°=40° и ∠D+∠C+∠E =180°.  

Отсюда ∠D=180°–∠C–∠E =180°–80°–40°=60°.

Добавить комментарий