Как найти нейтральные частицы

Истинно нейтральные частицы
Группа Нейтральная частица
Античастица Сами себе
Квантовые числа
Электрический заряд 0
Цветной заряд 0
Барионное число 0
Лептонное число 0
B−L 0
Магнитный момент 0
Изотопический спин 0
Странность 0
Очарование 0
Прелесть 0
Истинность 0
Гиперзаряд 0

Истинно нейтральные частицы — элементарные частицы или системы элементарных частиц, которые переходят в себя при зарядовом сопряжении, то есть являются античастицами для самих себя. Иногда также говорят, что они не имеют античастиц.

Для того, чтобы частица называлась истинно нейтральной, недостаточно, чтобы частица была электрически нейтральной. Многие нейтральные частицы, такие как нейтрон, гипероны Σ0 и Ξ0, мезоны D0 и B0, а также нейтрино, имеют отличные от себя античастицы. Истинно нейтральные частицы полностью тождественны своим античастицам, поэтому все их квантовые числа, которые меняют знак при зарядовом сопряжении, должны быть равны нулю. Таким образом, истинные нейтральные частицы имеют нулевые значения электрического заряда, магнитного момента, барионного и лептонного чисел, изотопического спина, странности, очарования, прелести, истинности, цвета.

Несоставные истинно нейтральные частицы[править | править код]

Из несоставных частиц истинно нейтральными частицами являются фотон, Z-бозон, бозон Хиггса, а также два бесцветных глюона g_{3} и g_{8}. Кроме того, есть много гипотетических истинно нейтральных частиц: гравитон, аксион и др. Все эти частицы являются бозонами. Все известные фермионы имеют какое-либо отличие от своей античастицы, но в 1937 году Этторе Майорана указал на возможность существования истинно нейтрального фермиона. Эту гипотетическую частицу называют майорановской частицей. Гипотетические частицы нейтралино в суперсимметричных моделях являются фермионами Майораны[⇨].

Составные истинно нейтральные частицы[править | править код]

Истинно нейтральными частицами могут быть не только отдельные элементарные частицы, но и их системы, в том числе — системы из чётного количества фермионов. Например, позитроний — система из позитрона и электрона — является истинно нейтральной частицей, поскольку при зарядовом сопряжении позитрон заменяется на электрон, а электрон — на позитрон, вновь образуя, таким образом, позитроний.

Согласно современным представлениям, истинно нейтральные мезоны π0, φ0, η0 и др. также являются составными частицами — системами из кварка и антикварка одного аромата (так называемые кварконии).

Зарядовая чётность[править | править код]

У истинно нейтральных частиц есть присущая только им характеристика — зарядовая чётность, которая показывает как изменяется её вектор состояния (волновая функция) при замене частиц античастицами (преобразование зарядового сопряжения). Если система обладает определённой зарядовой чётностью, то это означает, что при зарядовом сопряжении её волновые функции остаются неизменными (зарядово чётная система), или меняют знак (зарядово нечётная система).[1]

Характеристики[править | править код]

Частица Символ Масса, ГэВ/c² Переносимое
взаимодействие
Взаимодействия,
в которых участвует
Спин Время жизни, c Пример распада (>5 %) Электрический
заряд, e
Фотон γ 0 (теоретическое значение)
< 10−22 эВ/c2 (экспериментальное ограничение)[2][3]
Электромагнитное
взаимодействие
Электромагнитное
взаимодействие, гравитационное взаимодействие
1 Стабилен 0 (<10−35 e)[4][5]
Z-бозон Z 91,1876±0,0021 ГэВ/c2[6] Слабое
взаимодействие
Слабое
взаимодействие, гравитационное взаимодействие
1 3⋅10−25 l + l (лептон +
соответствующий антилептон)[6]
0
Глюоны g_{3} и g_{8} g_{3} и g_{8} 0 (теоретическое значение)[7]
< 0,0002 эВ/c2 (экспериментальное ограничение)[8]
Сильное
взаимодействие
Сильное
взаимодействие, гравитационное взаимодействие
1 Не встречаются в свободном состоянии 0[7]
Бозон Хиггса H0
125,26±0,21 ГэВ/c2[9] Поле Хиггса (не считается
фундаментальным взаимодействием)
Поле Хиггса, слабое взаимодействие, гравитационное взаимодействие 0 1,56⋅10−22[Note 1] (предсказание Стандартной модели) Два фотона, W- и Z-бозоны[11] 0
Гравитон G 0 (теоретическое значение)
< 1,1 × 10−29 эВ/c2 (экспериментальное ограничение)[12]
Гравитация Гравитационное взаимодействие 2 Гипотетическая
частица
0
Аксион A0
От 10−18 до 1 МэВ/c2 Электромагнитное
взаимодействие
0 Гипотетическая
частица
A0
γ + γ
0
Майорановский фермион <0,2—0,4 эВ/c2 ½ Гипотетическая
частица
0
Нейтралино 0 >300 ГэВ/c2[13] Слабое
взаимодействие
½[14] Гипотетическая
частица
0

См. также[править | править код]

  • Зарядовое сопряжение

Примечания[править | править код]

Комментарии
  1. В Стандартной модели ширина распада бозона Хиггса с массой 126 ГэВ/с2 предсказывается 4,21⋅10−3 ГэВ.[10] Среднее время жизни tau =hbar /Gamma .
Источники
  1. Ландау Л. Д., Лившиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 306—308
  2. Черные дыры Керра помогли физикам взвесить фотоны Архивная копия от 28 декабря 2014 на Wayback Machine (2012)
  3. Pani Paolo, Cardoso Vitor, Gualtieri Leonardo, Berti Emanuele, Ishibashi Akihiro. Black-Hole Bombs and Photon-Mass Bounds (англ.) // Physical Review Letters. — 2012. — Vol. 109, iss. 13. — P. 131102 (5 p.). — doi:10.1103/PhysRevLett.109.131102.
  4. Particle Data Group Архивная копия от 25 декабря 2018 на Wayback Machine (2008)
  5. Kobychev, V. V.; Popov, S. B. Constraints on the photon charge from observations of extragalactic sources (англ.) // Astronomy Letters : journal. — 2005. — Vol. 31. — P. 147—151. — doi:10.1134/1.1883345. (недоступная ссылка) (англ.)
    Altschul, B. Bound on the Photon Charge from the Phase Coherence of Extragalactic Radiation (англ.) // Physical Review Letters : journal. — 2007. — Vol. 98. — P. 261801. (англ.)
  6. 1 2 J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). Калибровочные бозоны, Z-бозон. Доступно на pdglive.lbl.gov Архивировано 12 июля 2012 года. (англ.)
  7. 1 2 W.-M. Yao et al. Review of Particle Physics // Journal of Physics G  (англ.) (рус.. — 2006. — Т. 33. — С. 1. — doi:10.1088/0954-3899/33/1/001. — Bibcode: 2006JPhG…33….1Y. — arXiv:astro-ph/0601168. Архивировано 22 февраля 2017 года.

  8. F. Yndurain. Limits on the mass of the gluon // Physics Letters B  (англ.) (рус.. — 1995. — Т. 345, № 4. — С. 524. — doi:10.1016/0370-2693(94)01677-5. — Bibcode: 1995PhLB..345..524Y.
  9. Новости Большого адронного коллайдера: ATLAS и CMS вновь «взвесили» бозон Хиггса. old.elementy.ru. Дата обращения: 30 июля 2017. Архивировано 5 января 2022 года.
  10. LHC Higgs Cross Section Working Group; Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (англ.) // CERN Report 2 (Tables A.1 – A.20) : journal. — 2012. — Vol. 1201. — P. 3084. — Bibcode: 2012arXiv1201.3084L. — arXiv:1201.3084.
  11. Бозон Хиггса Архивная копия от 4 марта 2016 на Wayback Machine // Л. Н. Смирнова. Детектор ATLAS Большого адронного коллайдера. Кафедра общей ядерной физики физического факультета МГУ
  12. Goldhaber A. S., Nieto M. M. Mass of the graviton // Physical Review D. — 1974. — Vol. 9. — P. 1119—1121. — ISSN 0556-2821. — doi:10.1103/PhysRevD.9.1119. [исправить]
  13. Суперсимметрия в свете данных LHC: что делать дальше? Обзор экспериментальных данных. Дата обращения: 30 августа 2014. Архивировано 9 июля 2014 года.
  14. Введение Фундаментальные частицы Свойства суперсимметричных частиц. Дата обращения: 30 августа 2014. Архивировано 10 августа 2014 года.

Литература[править | править код]

  • Истинно нейтральные частицы — статья из Физической энциклопедии

Ссылки[править | править код]

  • Ung Chan Tsan. What is a truly neutral particle? (англ.) // International Journal of Modern Physics E. — 2004. — Vol. 13, no. 2. — P. 425—437. — doi:10.1142/S0218301304002272.
  • Davydov, A.S. Quantum Mechanics. — 2nd. — Pergamon Press, 1976. — P. 218. — ISBN 978-1-4831-8783-9. Архивная копия от 12 марта 2017 на Wayback Machine
  • Okun, L.B. Particle Physics: The Quest for the Substance of Substance. — CRC Press, 1985. — P. 131. — ISBN 978-3-7186-0228-5. Архивная копия от 12 марта 2017 на Wayback Machine

Истинно нейтральные частицы — элементарные частицы или системы элементарных частиц, которые переходят в себя при зарядовом сопряжении, то есть являются античастицами для самих себя. Иногда также говорят, что они не имеют античастиц.

Для того, чтобы частица называлась истинно нейтральной, недостаточно, чтобы частица была электрически нейтральной. Многие нейтральные частицы, такие как нейтрон, гипероны Σ0 и Ξ0, мезоны D0 и B0, а также нейтрино, имеют отличные от себя античастицы. Истинно нейтральные частицы полностью тождественны своим античастицам, поэтому все их квантовые числа, которые меняют знак при зарядовом сопряжении, должны быть равны нулю. Таким образом, истинные нейтральные частицы имеют нулевые значения электрического заряда, магнитного момента, барионного и лептонного чисел, изотопического спина, странности, очарования, прелести, истинности, цвета.

Из несоставных частиц истинно нейтральными частицами являются фотон, Z-бозон, а также два бесцветных глюона g_3 и g_8. Кроме того, есть много гипотетических истинно нейтральных частиц: гравитон, нейтральный бозон Хиггса, аксион и др. Все эти частицы являются бозонами. Все известные фермионы имеют какое-либо отличие от своей античастицы, но в 1937 году Этторе Майорана указал на возможность существования истинно нейтрального фермиона. Эту гипотетическую частицу называют майорановской частицей.

Составные истинно нейтральные частицы

Однако истинно нейтральными частицами могут являться не только отдельные элементарные частицы, но и их системы, в том числе — системы из чётного количества фермионов. Например, позитроний — система из позитрона и электрона — является истинно нейтральной частицей, поскольку при зарядовом сопряжении позитрон заменяется на электрон, а электрон — на позитрон, вновь образуя, таким образом, позитроний.

Согласно современным представлениям, истинно нейтральные мезоны π0, φ0, η0 и др. также являются составными частицами — системами из кварка и антикварка одного аромата (так называемые кварконии).

Зарядовая чётность

У истинно нейтральных частиц есть присущая только им характеристика — зарядовая чётность, которая показывает как изменяется её вектор состояния при замене частиц античастицами.

Литература

  • Истинно нейтральные частицы — статья из Физической энциклопедии

Ссылки

  • Ung Chan Tsan What is a truly neutral particle? (англ.) // International Journal of Modern Physics E. — 2004. — Т. 13. — № 2. — С. 425-437. — DOI:10.1142/S0218301304002272

Истинно нейтральные частицы

Истинно нейтральные частицы — элементарные частицы или системы элементарных частиц, которые переходят в себя при зарядовом сопряжении, то есть являются античастицами для самих себя. Иногда также говорят, что они не имеют античастиц.

Истинно нейтральные частицы
Группа Нейтральная частица
Античастица Сами себе
Квантовые числа
Электрический заряд 0
Цветной заряд 0
Барионное число 0
Лептонное число 0
B−L 0
Магнитный момент 0
Изотопический спин 0
Странность 0
Очарование 0
Прелесть 0
Истинность 0
Гиперзаряд 0

Для того, чтобы частица называлась истинно нейтральной, недостаточно, чтобы частица была электрически нейтральной. Многие нейтральные частицы, такие как нейтрон, гипероны Σ0 и Ξ0, мезоны D0 и B0, а также нейтрино, имеют отличные от себя античастицы. Истинно нейтральные частицы полностью тождественны своим античастицам, поэтому все их квантовые числа, которые меняют знак при зарядовом сопряжении, должны быть равны нулю. Таким образом, истинные нейтральные частицы имеют нулевые значения электрического заряда, магнитного момента, барионного и лептонного чисел, изотопического спина, странности, очарования, прелести, истинности, цвета.

Несоставные истинно нейтральные частицыПравить

Из несоставных частиц истинно нейтральными частицами являются фотон, Z-бозон, бозон Хиггса, а также два бесцветных глюона   и  . Кроме того, есть много гипотетических истинно нейтральных частиц: гравитон, аксион и др. Все эти частицы являются бозонами. Все известные фермионы имеют какое-либо отличие от своей античастицы, но в 1937 году Этторе Майорана указал на возможность существования истинно нейтрального фермиона. Эту гипотетическую частицу называют майорановской частицей. Гипотетические частицы нейтралино в суперсимметричных моделях являются фермионами Майораны[⇨].

Составные истинно нейтральные частицыПравить

Истинно нейтральными частицами могут быть не только отдельные элементарные частицы, но и их системы, в том числе — системы из чётного количества фермионов. Например, позитроний — система из позитрона и электрона — является истинно нейтральной частицей, поскольку при зарядовом сопряжении позитрон заменяется на электрон, а электрон — на позитрон, вновь образуя, таким образом, позитроний.

Согласно современным представлениям, истинно нейтральные мезоны π0, φ0, η0 и др. также являются составными частицами — системами из кварка и антикварка одного аромата (так называемые кварконии).

Зарядовая чётностьПравить

У истинно нейтральных частиц есть присущая только им характеристика — зарядовая чётность, которая показывает как изменяется её вектор состояния (волновая функция) при замене частиц античастицами (преобразование зарядового сопряжения). Если система обладает определённой зарядовой чётностью, то это означает, что при зарядовом сопряжении её волновые функции остаются неизменными (зарядово чётная система), или меняют знак (зарядово нечётная система).[1]

ХарактеристикиПравить

Частица Символ Масса, ГэВ/c² Переносимое
взаимодействие
Взаимодействия,
в которых участвует
Спин Время жизни, c Пример распада (>5 %) Электрический
заряд, e
Фотон γ 0 (теоретическое значение)
< 10−22 эВ/c2 (экспериментальное ограничение)[2][3]
Электромагнитное
взаимодействие
Электромагнитное
взаимодействие, гравитационное взаимодействие
1 Стабилен 0 (<10−35 e)[4][5]
Z-бозон Z 91,1876±0,0021 ГэВ/c2[6] Слабое
взаимодействие
Слабое
взаимодействие, гравитационное взаимодействие
1 3⋅10−25 l + l (лептон +
соответствующий антилептон)[6]
0
Глюоны   и     и   0 (теоретическое значение)[7]
< 0,0002 эВ/c2 (экспериментальное ограничение)[8]
Сильное
взаимодействие
Сильное
взаимодействие, гравитационное взаимодействие
1 Не встречаются в свободном состоянии 0[7]
Бозон Хиггса H0
125,26±0,21 ГэВ/c2[9] Поле Хиггса (не считается
фундаментальным взаимодействием)
Поле Хиггса, слабое взаимодействие, гравитационное взаимодействие 0 1,56⋅10−22[Note 1] (предсказание Стандартной модели) Два фотона, W- и Z-бозоны[11] 0
Гравитон G 0 (теоретическое значение)
< 1,1 × 10−29 эВ/c2 (экспериментальное ограничение)[12]
Гравитация Гравитационное взаимодействие 2 Гипотетическая
частица
0
Аксион A0
От 10−18 до 1 МэВ/c2 Электромагнитное
взаимодействие
0 Гипотетическая
частица
A0
γ + γ
0
Майорановский фермион <0,2—0,4 эВ/c2 ½ Гипотетическая
частица
0
Нейтралино 0 >300 ГэВ/c2[13] Слабое
взаимодействие
½[14] Гипотетическая
частица
0

См. такжеПравить

  • Зарядовое сопряжение

ПримечанияПравить

Комментарии
  1. В Стандартной модели ширина распада бозона Хиггса с массой 126 ГэВ/с2 предсказывается 4,21⋅10−3 ГэВ.[10] Среднее время жизни  .
Источники
  1. Ландау Л. Д., Лившиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 306—308
  2. Черные дыры Керра помогли физикам взвесить фотоны (2012)
  3. Pani Paolo, Cardoso Vitor, Gualtieri Leonardo, Berti Emanuele, Ishibashi Akihiro. Black-Hole Bombs and Photon-Mass Bounds (англ.) // Physical Review Letters. — 2012. — Vol. 109, iss. 13. — P. 131102 (5 p.). — doi:10.1103/PhysRevLett.109.131102.
  4. Particle Data Group (2008)
  5. Kobychev, V. V.; Popov, S. B. Constraints on the photon charge from observations of extragalactic sources (англ.) // Astronomy Letters : journal. — 2005. — Vol. 31. — P. 147—151. — doi:10.1134/1.1883345. (недоступная ссылка) (англ.)
    Altschul, B. Bound on the Photon Charge from the Phase Coherence of Extragalactic Radiation (англ.) // Physical Review Letters : journal. — 2007. — Vol. 98. — P. 261801. (англ.)
  6. 1 2 J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). Калибровочные бозоны, Z-бозон. Доступно на pdglive.lbl.gov Архивировано 12 июля 2012 года. (англ.)
  7. 1 2
    W.-M. Yao et al. Review of Particle Physics // Journal of Physics G  (англ.) (рус.. — 2006. — Т. 33. — С. 1. — doi:10.1088/0954-3899/33/1/001. — Bibcode: 2006JPhG…33….1Y. — arXiv:astro-ph/0601168.

  8. F. Yndurain. Limits on the mass of the gluon // Physics Letters B  (англ.) (рус.. — 1995. — Т. 345, № 4. — С. 524. — doi:10.1016/0370-2693(94)01677-5. — Bibcode: 1995PhLB..345..524Y.
  9. Новости Большого адронного коллайдера: ATLAS и CMS вновь «взвесили» бозон Хиггса. old.elementy.ru. Дата обращения: 30 июля 2017.
  10. LHC Higgs Cross Section Working Group; Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (англ.) // CERN Report 2 (Tables A.1 – A.20) : journal. — 2012. — Vol. 1201. — P. 3084. — Bibcode: 2012arXiv1201.3084L. — arXiv:1201.3084.
  11. Бозон Хиггса // Л. Н. Смирнова. Детектор ATLAS Большого адронного коллайдера. Кафедра общей ядерной физики физического факультета МГУ
  12. Goldhaber A. S., Nieto M. M. Mass of the graviton // Physical Review D. — 1974. — Vol. 9. — P. 1119—1121. — ISSN 0556-2821. — doi:10.1103/PhysRevD.9.1119. [исправить]
  13. Суперсимметрия в свете данных LHC: что делать дальше? Обзор экспериментальных данных
  14. Введение Фундаментальные частицы Свойства суперсимметричных частиц

ЛитератураПравить

  • Истинно нейтральные частицы — статья из Физической энциклопедии

СсылкиПравить

  • Ung Chan Tsan. What is a truly neutral particle? (англ.) // International Journal of Modern Physics E. — 2004. — Vol. 13, no. 2. — P. 425—437. — doi:10.1142/S0218301304002272.
  • Davydov, A.S. Quantum Mechanics. — 2nd. — Pergamon Press, 1976. — P. 218. — ISBN 978-1-4831-8783-9.
  • Okun, L.B. Particle Physics: The Quest for the Substance of Substance. — CRC Press, 1985. — P. 131. — ISBN 978-3-7186-0228-5.

Истинно
нейтральные частицы — частицы, которые
являются античастицами для самих себя.

Соответственно,
истинные нейтральные частицы имеют
нулевые значения электрического заряда,
магнитного момента, барионного и
лептонного чисел, изотопического спина,
странности, очарования, прелести,
истинности, цвета.

Из
несоставных часиц истинно нейтральными
частицами являются фотон, Z-бозон, а
также два бесцветных глюона g2 и g8.

12. Кварки. Дробные значения электрического и барионного зарядов.

Кварк
— фундаментальная частица в Стандартной
модели, обладающая электрическим
зарядом, кратным e/3, и не наблюдающаяся
в свободном состоянии. Кварки являются
точечными частицами вплоть до масштаба
примерно 0,5×10−19 м, что примерно в 20 тысяч
раз меньше размера протона. Из кварков
состоят адроны, в частности, протон и
нейтрон. В настоящее время известно 6
разных «сортов».

Электрический
заряд: U
(верхний) 2/3, D(нижний)
-1/3, S
(странный) -1/3, C
(очарованный) 2/3, B(красота)-1/3,
T(истинный)2/3

Барионный
заряд: у всех 1/3

14. Заряд и масса ядра. Ядерные силы. Природа ядерных сил.

заряд
ядра
любого
хим.элемента определяется по периодической
таблице. он равен порядковому номеру
элемента.

Для
определения массы
ядра
нужно
из массы атома вычесть сумму масс всех
электронов.

Ядерные
силы

Протоны,
имеющиеся в ядре, отталкиваются друг
от друга кулоновскими силами. Однако
это не приводит к разрушению ядер.
Очевидно, между нуклонами в ядре действуют
силы притяжения неэлектрической природы.
Эти силы получили название ядерных.
Взаимодействие нуклонов получило
название сильного взаимодействия.

Свойства
ядерных сил:

зарядовая
независимость;

короткодействующий
характер (ядерные силы действуют на
расстояниях, не превышающих 2·10-15 м);

насыщаемость
(ядерные силы удерживают друг возле
друга не больше определенного числа
нуклонов).

15. Дефект массы и энергия связи.

Дефект массы
— разность между массой покоя атомного
ядра данного изотопа, выраженной в
атомных единицах массы, и массовым
числом данного изотопа.

Энергия связи
ядра

минимальная энергия, необходимая для
того, чтобы разделить ядро на составляющие
его нуклоны (протоны и нейтроны).

Согласно соотношению
Эйнштейна дефект массы и энергия связи
нуклонов в ядре эквивалентны:

где Δm
— дефект массы и с
— скорость света в вакууме.

18. Гипотеза де Бройля.

Гипотеза де Бройля
заключается в том, что французский физик
Луи де Бройль выдвинул идею приписать
волновые свойства электрону. Проводя
аналогию между квантом, де Бройль
предположил, что движение электрона
или какой-либо другой частицы, обладающей
массой покоя, связано с волновым
процессом.

Гипотеза де Бройля
устанавливает, что движущейся частице,
обладающей энергией E и импульсом p,
соответствует волновой процесс, частота
которого равна:

а длина волны:

где p – импульс
движущейся частицы.

19. Элементарные понятия квантовой механики. (см. Тетр. 30стр)

Квантовая
механика — раздел теоретической физики,
описывающий квантовые системы и законы
их движения.

Основными
понятиями квантовой кинематики являются
понятия наблюдаемой и состояния.

Основные
уравнения квантовой динамики — уравнение
Шрёдингера, уравнение фон Неймана,
уравнение Линдблада, уравнение Гейзенберга
и уравнение Паули.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Истинно нейтральные частицы

  • Истинно нейтральные частицы — элементарные частицы или системы элементарных частиц, которые переходят в себя при зарядовом сопряжении, то есть являются античастицами для самих себя. Иногда также говорят, что они не имеют античастиц.

    Для того, чтобы частица называлась истинно нейтральной, недостаточно, чтобы частица была электрически нейтральной. Многие нейтральные частицы, такие как нейтрон, гипероны Σ0 и Ξ0, мезоны D0 и B0, а также нейтрино, имеют отличные от себя античастицы. Истинно нейтральные частицы полностью тождественны своим античастицам, поэтому все их квантовые числа, которые меняют знак при зарядовом сопряжении, должны быть равны нулю. Таким образом, истинные нейтральные частицы имеют нулевые значения электрического заряда, магнитного момента, барионного и лептонного чисел, изотопического спина, странности, очарования, прелести, истинности, цвета.

Источник: Википедия

Связанные понятия

Арома́т, фле́йвор (англ. flavour) — общее название для ряда квантовых чисел, характеризующих тип кварка или лептона.

Изотопи́ческий спин (изоспи́н) — одна из внутренних характеристик (квантовое число), определяющая число зарядовых состояний адронов. В частности, протон и нейтрон (общее наименование этих элементарных частиц — нуклоны) различаются значением проекции изоспина, тогда как абсолютные значения их изоспина одинаковы. Последнее выражает свойство изотопической инвариантности сильного взаимодействия. Понятие изотопического спина было введено Гейзенбергом в 1932 г.Изоспин сохраняется во всех процессах, обусловленных…

Безма́ссовые части́цы (люксо́ны) — частицы, масса покоя которых равна нулю. Не имеют аналога в нерелятивистской механике.

В физике элементарных частиц калибровочные бозоны — это бозоны, которые действуют как переносчики фундаментальных взаимодействий природы. Точнее, элементарные частицы, взаимодействия которых описываются калибровочной теорией, оказывают действие друг на друга при помощи обмена калибровочными бозонами, обычно как виртуальными частицами.

Слабый изоспин в теоретической физике соответствует идее изоспина для сильного взаимодействия, но применённой для слабого взаимодействия. Обычно обозначается T или IW.

Цветной заряд — квантовое число, в квантовой хромодинамике, приписываемое глюонам и кваркам. Эти элементарные частицы взаимодействуют между собой подобно тому, как взаимодействуют между собой электрические заряды, однако, в отличие от электрических зарядов, у которых два знака, цветов три. Их называют «красным», «зелёным» и «синим», хотя эти названия не имеют никакого отношения к цветам, которые мы видим в повседневной жизни. Для каждого цвета существует также антицвет: «антикрасный», «антизелёный…

Поле Хиггса или хиггсовское поле — поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, британского физика Питера Хиггса. Квант этого поля — хиггсовская частица (хиггсовский бозон).

Чётность — свойство физической величины сохранять свой знак (или изменять на противоположный) при некоторых дискретных преобразованиях. Она выражается числом, принимающим два значения: +1 и −1.

Магни́тное ква́нтовое число́ (m) — квантовое число, параметр, который вводится при решении уравнения Шрёдингера для электрона в водородоподобном атоме (и вообще для любого движения заряженной частицы). Магнитное квантовое число характеризует ориентацию в пространстве орбитального момента импульса электрона или пространственное расположение атомной орбитали. Оно принимает целые значения от -l до +l, где l — орбитальное квантовое число, то есть имеет ровно столько значений, сколько орбиталей существует…

В физике понятие заря́да используется для описания нескольких физических величин, таких как электрический заряд в электромагнетизме или цветовой заряд в квантовой хромодинамике. Все эти заряды связаны с сохранением квантовых чисел.

Подробнее: Заряд (физика)

Фундамента́льная части́ца — бесструктурная элементарная частица, которую до настоящего времени не удалось описать как составную. На сегодняшний день термин применяется преимущественно для лептонов и кварков (по 6 частиц каждого рода, вместе с античастицами, составляют набор из 24 фундаментальных частиц) в совокупности с калибровочными бозонами (частицами-переносчиками фундаментальных взаимодействий).

Лепто́ны (греч. λεπτός — лёгкий) — фундаментальные частицы с полуцелым спином, не участвующие в сильном взаимодействии. Наряду с кварками и калибровочными бозонами лептоны составляют неотъемлемую часть Стандартной модели.

Это список частиц в физике элементарных частиц, включающий не только открытые, но и гипотетические элементарные частицы, а также составные частицы, состоящие из элементарных частиц.

Поляризация вакуума — совокупность виртуальных процессов рождения и аннигиляции пар частиц в вакууме, обусловленных квантовыми флуктуациями. Эти процессы формируют нижнее (вакуумное) состояние систем взаимодействующих квантовых полей.

Во́лны де Бро́йля — волны вероятности (или волны амплитуды вероятности), определяющие плотность вероятности обнаружения объекта в заданной точке конфигурационного пространства. В соответствии с принятой терминологией говорят, что волны де Бройля связаны с любыми частицами и отражают их волновую природу.

Виртуа́льная части́ца — объект, который характеризуется почти всеми квантовыми числами, присущими одной из реальных элементарных частиц, но для которого нарушена свойственная последней связь между энергией и импульсом частицы. Понятие о виртуальных частицах возникло в квантовой теории поля. Такие частицы, родившись, не могут «улететь на бесконечность»; они обязаны либо поглотиться какой-либо частицей, либо распасться на реальные частицы. Известные в физике фундаментальные взаимодействия протекают…

В физике элементарных частиц поколение — это часть классификации элементарных частиц, относящаяся к фундаментальным фермионам (кваркам и лептонам). Частицы разных поколений отличаются только массой и ароматом; все фундаментальные взаимодействия и квантовые числа идентичны. Согласно Стандартной Модели, существует всего три поколения.

Подробнее: Поколение (физика)

Хира́льность (киральность) — свойство физики элементарных частиц, состоящее в различии правого и левого, и указывающее на то, что Вселенная является несимметричной относительно замены правого на левое и левого на правое. Обычно говорят про хиральность молекул и про киральность элементарных частиц.

Вырождение (квантовая механика) — явление, при котором некоторая физическая величина (например. энергия, импульс и т. д.), характеризующая квантовую физическую систему, принимает одно и то же значение для разных состояний квантовой физической системы. Кратностью вырождения называется число различных состояний квантовой физической системы, имеющих одно и то же значение физической величины.

Ко́мптоновская длина́ волны́ (λC) — параметр элементарной частицы: величина размерности длины, характерная для релятивистских квантовых процессов, идущих с участием этой частицы. Комптоновская длина волны эквивалентна длине волны фотона, чья энергия равна энергии покоя самой частицы. Название параметра связано с именем А. Комптона и комптоновским эффектом.

Спонта́нное наруше́ние электросла́бой симметри́и — явление в теории электрослабого взаимодействия, заключающееся в том, что калибровочные W± и Z-бозоны, отвечающие за слабое взаимодействие, становятся массивными, в то время как фотон остаётся безмассовым.

Неупру́гое рассе́яние — столкновение частиц (включая столкновения с фотонами), сопровождающееся изменением их внутреннего состояния, превращением в другие частицы или дополнительным рождением новых частиц.

Глюо́н (от англ. gluon, от glue — клей) — элементарная безмассовая частица, переносчик сильного взаимодействия.

Тождественные (иначе неразличимые) частицы — это частицы, которые принципиально не могут быть распознаны и отличены одна от другой, то есть подчиняются Принципу тождественности одинаковых частиц. К таким частицам относятся: элементарные частицы (электроны, нейтроны и т. д.) а также составные микрочастицы, такие как атомы и молекулы. Существует два больших класса тождественных частиц: бозоны и фермионы.

Адронная струя образуется несколькими элементарными частицами, летящими в одном направлении в узком конусе. Физическая причина образования струи — адронизация кварка или глюона с большой энергией (намного большей, чем масса пиона). В природе адронные струи образуются только искусственным образом, в экспериментах в физике высоких энергий.

Ку́перовская па́ра — связанное состояние двух взаимодействующих через фонон электронов. Обладает нулевым спином и зарядом, равным удвоенному заряду электрона. Впервые подобное состояние было описано Леоном Купером в 1956 году, рассмотревшим лишь упрощенную двухчастичную задачу. Коррелированные пары электронов ответственны за явление сверхпроводимости.

Квазичасти́ца (от лат. quas(i) «наподобие», «нечто вроде») — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких как твердые тела и квантовые жидкости.

Множитель Ланде (гиромагнитный множитель, иногда тж. g-фактор) — множитель в формуле для расщепления уровней энергии в магнитном поле, определяющий масштаб расщепления в относительных единицах. Частный случай более общего g-фактора.

В физике квантова́ние — построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.

Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.

Фоковское состояние— это квантовомеханическое состояние с точно определённым количеством частиц. Названо в честь советского физика В. А. Фока.

Аномальный магнитный момент — отклонение величины магнитного момента элементарной частицы от значения, предсказываемого квантовомеханическим релятивистским уравнением движения частицы. В квантовой электродинамике аномальный магнитный момент электрона и мюона вычисляется методом радиационных поправок (пертурбативным методом), в квантовой хромодинамике магнитные моменты сильно взаимодействующих частиц (адронов) вычисляются методом операторного разложения (непертурбативным методом).

Гравито́н — гипотетическая безмассовая элементарная частица — переносчик гравитационного взаимодействия и квант гравитационного поля без электрического и других зарядов (однако обладают энергией и поэтому участвуют в гравитационном взаимодействии). Должен обладать спином 2 и двумя возможными направлениями поляризации. Всегда движется со скоростью света.

Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом, обусловленным спином частицы. Наиболее часто встречающимся примером такого взаимодействия является взаимодействие электрона, находящегося на одной из орбит в атоме, с собственным спином. Такое взаимодействие, в частности, приводит к возникновению так называемой тонкой структуры энергетического спектра электрона и расщеплению спектроскопических линий атома.

Электронное нейтрино (обозначаются как νe) — элементарная частица, являющаяся одним из трёх видов нейтрино. Вместе с электроном составляет первое поколение лептонов.

Позитро́ний — связанная квантовомеханическая система (экзотический атом), состоящая из электрона и позитрона. В зависимости от взаимного направления спинов электрона и позитрона различают ортопозитроний (спины сонаправлены, суммарный спин S = 1) и парапозитроний (спины противоположно направлены, суммарный спин S = 0). Позитроний, как и атом водорода, представляет собой систему двух тел, и его поведение и свойства точно описываются в квантовой механике. Он был впервые экспериментально идентифицирован…

Конфа́йнмент (от англ. confinement — удержание <цвета>) — явление в физике элементарных частиц, состоящее в невозможности получения кварков в свободном состоянии, поскольку в экспериментах наблюдаются только агрегаты кварков, состоящие из двух (мезоны), трёх (барионы), четырёх (тетракварки) и пяти (пентакварки) кварков. Тем не менее, имеются веские указания в пользу того, что сами кварки существуют: кварки хорошо описывают систематику элементарных частиц (Стандартная модель) и наблюдаются внутри…

Хи́ггсовский механи́зм или механи́зм Хи́ггса, предложенный английским физиком Питером Хиггсом в 1964 г. и основанный на предположении Филиппа Андерсона, — теория, которая описывает, как приобретают массы все элементарные частицы. Например, он делает Z-бозон отличным от фотона. Этот механизм может быть рассмотрен как элементарный случай тахионной конденсации, где роль тахиона играет скалярное поле, названное полем Хиггса. Массивный квант этого поля был назван бозоном Хиггса.

Подробнее: Механизм Хиггса

Константа взаимодействия или константа связи — параметр в квантовой теории поля, определяющий силу (интенсивность) взаимодействия частиц или полей. Константа взаимодействия связана с вершинами на диаграмме Фейнмана.

Тонкая структура (мультиплетное расщепление) — явление в атомной физике, описывающее расщепление спектральных линий (уровней энергии, спектральных терм) атома.

Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.

Подробнее: Энергетический спектр

Суба́томная частица — это элементарная или составная частица, которая входит в состав атома. Изучением этих частиц занимаются такие дисциплины, как физика элементарных частиц и ядерная физика.

Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества (источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки; элементарным источником магнетизма считают замкнутый ток).

Электри́ческий ди́польный моме́нт — векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на неё внешних полей. Главная после суммарного заряда и положения системы в целом (её радиус-вектора) характеристика конфигурации зарядов системы при наблюдении её издали.

Гиперо́ны — семейство элементарных частиц, барионы, содержащие минимум один s-кварк, но не содержащие более тяжёлых кварков (c и b). Таким образом, у всех гиперонов ненулевая странность, но нулевые очарование и прелесть.

Спонтанное излучение или спонтанное испускание — процесс самопроизвольного испускания электромагнитного излучения квантовыми системами (атомами, молекулами) при их переходе из возбуждённого состояния в стабильное.

Втори́чное квантова́ние (каноническое квантование) — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред.

В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях выше энергии объединения (порядка 100 ГэВ) они соединяются в единое электрослабое взаимодействие.

Подробнее: Электрослабое взаимодействие

Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц. Равен приблизительно 1,602 176 6208(98)⋅10−19 Кл в Международной системе единиц (СИ) (4,803 204 673(29)⋅10−10 Фр в системе СГСЭ). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие.

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Добавить комментарий