Первообразная (неопределенный интеграл)
Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет
многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной
к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на
оптимизацию.
Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача — задача о восстановлении
закона движения по известной скорости. Рассмотрим одну из таких задач.
Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти
закон движения.
Решение. Пусть s = s(t) — искомый закон движения. Известно, что s'(t) = v(t). Значит, для решения задачи нужно подобрать функцию
s = s(t), производная которой равна gt. Нетрудно догадаться, что ( s(t) = frac{gt^2}{2} ). В самом деле
( s'(t) = left( frac{gt^2}{2} right)’ = frac{g}{2}(t^2)’ = frac{g}{2} cdot 2t = gt )
Ответ: ( s(t) = frac{gt^2}{2} )
Сразу заметим, что пример решен верно, но неполно. Мы получили ( s(t) = frac{gt^2}{2} ). На самом деле задача имеет бесконечно
много решений: любая функция вида ( s(t) = frac{gt^2}{2} + C ), где C — произвольная константа, может служить законом движения,
поскольку ( left( frac{gt^2}{2} +C right)’ = gt )
Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в
какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s0, то из равенства s(t) = (gt2)/2 + C
получаем: s(0) = 0 + С, т. е. C = s0. Теперь закон движения определен однозначно: s(t) = (gt2)/2 + s0.
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например:
возведение в квадрат (х2) и извлечение квадратного корня ( ( sqrt{x} ) ), синус (sin x) и арксинус (arcsin x) и т. д.
Процесс нахождения производной по заданной функции называют дифференцированием, а обратную операцию, т. е. процесс нахождения
функции по заданной производной, — интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у’ = f'(x).
Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем»,
они говорят, что это, по отношению к функции у’ = f'(x), первичный образ, или первообразная.
Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для ( x in X )
выполняется равенство F'(x) = f(x)
На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).
Приведем примеры.
1) Функция у = х2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство
(x2)’ = 2х
2) Функция у = х3 является первообразной для функции у = 3х2, поскольку для любого х справедливо равенство
(x3)’ = 3х2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство
(sin(x))’ = cos(x)
При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно
связаны с соответствующими правилами вычисления производных.
Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.
Правило 1. Первообразная суммы равна сумме первообразных.
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.
Правило 2. Если F(x) — первообразная для f(x), то kF(x) — первообразная для kf(x).
Теорема 1. Если y = F(x) — первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция
( y=frac{1}{k}F(kx+m) )
Теорема 2. Если y = F(x) — первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много
первообразных, и все они имеют вид y = F(x) + C.
Методы интегрирования
Метод замены переменной (метод подстановки)
Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом
заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора
подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл ( textstyle int F(x)dx ). Сделаем подстановку ( x= varphi(t) ) где
( varphi(t) ) — функция, имеющая непрерывную производную.
Тогда ( dx = varphi ‘ (t) cdot dt ) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла
получаем формулу интегрирования подстановкой:
( int F(x) dx = int F(varphi(t)) cdot varphi ‘ (t) dt )
Интегрирование выражений вида ( textstyle int sin^n x cos^m x dx )
Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.
Интегрирование по частям
Интегрирование по частям — применение следующей формулы для интегрирования:
( textstyle int u cdot dv = u cdot v – int v cdot du )
или:
( textstyle int u cdot v’ cdot dx = u cdot v – int v cdot u’ cdot dx )
Таблица неопределённых интегралов (первообразных) некоторых функций
$$ int 0 cdot dx = C $$
$$ int 1 cdot dx = x+C $$
$$ int x^n dx = frac{x^{n+1}}{n+1} +C ;; (n neq -1) $$
$$ int frac{1}{x} dx = ln |x| +C $$
$$ int e^x dx = e^x +C $$
$$ int a^x dx = frac{a^x}{ln a} +C ;; (a>0, ;; a neq 1) $$
$$ int cos x dx = sin x +C $$
$$ int sin x dx = -cos x +C $$
$$ int frac{dx}{cos^2 x} = text{tg} x +C $$
$$ int frac{dx}{sin^2 x} = -text{ctg} x +C $$
$$ int frac{dx}{sqrt{1-x^2}} = text{arcsin} x +C $$
$$ int frac{dx}{1+x^2} = text{arctg} x +C $$
$$ int text{ch} x dx = text{sh} x +C $$
$$ int text{sh} x dx = text{ch} x +C $$
Неопределенный интеграл онлайн
В школе говорят, интеграл – это значок ∫, а вычисление интеграла, то есть процесс интегрирования, – это операция обратная дифференцированию. Согласитесь скучно!
Разумеется, у школьников возникает резонный вопрос: а нафиг он нам нужен?
Но если бы учитель уделил несколько минут на вводную про интегралы, такой вопрос всё равно бы возник, но уже не у всех!
Вводная к интегралам
В далеком 17 веке были на тот момент нерешенные насущные проблемы, а именно изучались закономерности движения тел. Много трудов было проделано Ньютоном, чтобы понять, как вычисляется скорость тела в любой момент времени. Но чем дальше, тем оказалось интереснее.
Допустим, мы знаем закон изменения скорости тела – это некая функция. Тогда площадь фигуры, ограниченная этой кривой и осью координат, будет равна пройденному пути. Вычисляя неопределенный интеграл от функции, мы как раз находим общий закон движения.
В этом заключается один из физических смыслов интеграла.
Как вы уже поняли, геометрический смысл интеграла – это площадь криволинейной трапеции. Соответственно с помощью кратного интеграла вычисляется объем тела.
Решение интегралов
Лейбниц и Ньютон заложили основы дифференциального и интегрального исчисления. В последующие десятилетия было много великих открытий, связанных с вычислением интегралов.
Поскольку подынтегральная функция может принимать различные виды, естественно это привело к разделению интегралов на свои типы, а главное были отрыты многочисленные методы решения интегралов.
Но не все так безоблачно. На практике часто происходит так, что в аналитическом виде вычислить интегралы невозможно, то есть используя какой-либо известный метод. Конечно, получить аналитическое решение это здорово, но, с другой стороны, главное ведь вычислить точное значение интеграла. В этом случае интегралы решаются численными методами. Благодаря компьютерным мощностям, такие задачи не представляют особых сложностей для современного человека.
Калькулятор решения интегралов
Теперь самое интересное. Еще каких-то 15 лет назад школьник и помыслить не мог, что под рукой будут такие калькуляторы интегралов, как, например, наш. Это безусловно облегчает процесс обучения. Можно проверять свои решения, находить допущенные ошибки и лучше усваивать образовательный курс.
И тут в который раз повторяем, калькулятор решения интегралов – это только ваш безотказный помощник, к которому можете обратиться в любое время. Но никак не подмена вашей головы. Старайтесь самостоятельно решать задачи, только так можно развивать мышление, а компьютер будет в помощь.
bold{mathrm{Basic}} | bold{alphabetagamma} | bold{mathrm{ABGamma}} | bold{sincos} | bold{gedivrightarrow} | bold{overline{x}spacemathbb{C}forall} | bold{sumspaceintspaceproduct} | bold{begin{pmatrix}square&square\square&squareend{pmatrix}} | bold{H_{2}O} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Подпишитесь, чтобы подтвердить свой ответ
Подписаться
Войдите, чтобы сохранять заметки
Войти
Номер Строки
Примеры
-
int e^xcos (x)dx
-
int cos^3(x)sin (x)dx
-
int frac{2x+1}{(x+5)^3}
-
int x^2ln(5x)
-
int frac{1}{x^2}dx
-
int frac{e^{2x}}{1+e^{2x}}
-
неполные:дроби:int_{0}^{1} frac{32}{x^{2}-64}dx
-
подстановка:intfrac{e^{x}}{e^{x}+e^{-x}}dx,:u=e^{x}
- Показать больше
Описание
Поэтапное решение неопределенных интегралов
indefinite-integral-calculator
ru
Блог-сообщения, имеющие отношение к Symbolab
High School Math Solutions – Polynomial Long Division Calculator
Polynomial long division is very similar to numerical long division where you first divide the large part of the…
Read More
Введите Задачу
Сохранить в блокнот!
Войти
Неопределенным интегралом от заданной функции
называется множество всех её первообразных:
Для того чтобы вычислить неопределенный интеграл от некоторой функции необходимо использовать таблицу элементарных интегралов и правила интегрирования или воспользоваться нашим бесплатным онлайн сервисом.
Наш онлайн калькулятор способен найти подробное решение для очень многих типов интегралов. Решение, полученное у нас, содержит описание действий полностью на русском языке и соответствует стандартам образования, принятым в российских ВУЗах и учебных заведениях бывшего постсоветского пространства.
Со всеми преимуществами подробного решения Вы можете ознакомиться
здесь.
Посмотреть пример подробного решения можно
здесь.
Как пользоваться калькулятором неопределенного интеграла
1
Шаг 1
Введите вашу интегральную задачу в поле ввода.
2
Шаг 2
Нажмите Enter на клавиатуре или на стрелку справа от поля ввода.
3
Шаг 3
Во всплывающем окне выберите «Найти неопределенный интеграл». Вы также можете воспользоваться поиском.
Что такое неопределенный интеграл
Неопределенный интеграл – этот набор первообразных функции f (x) называется неопределенным интегралом этой функции и обозначается символом ∫f (x) dx. Как следует из вышеизложенного, если F (x) – некоторая первообразная функции f (x), то ∫f (x) dx = F (x) + C, где C – произвольная константа. Функция f (x) обычно называется подынтегральным выражением, а произведение f (x) dx – подынтегральным выражением.
Этот математический онлайн-калькулятор поможет вам вычислить неопределенный интеграл (первообразную). Программа вычисления неопределенного интеграла (первообразной) не просто дает ответ на поставленную задачу, а дает подробное решение с пояснениями, т.е. отображает процесс интегрирования функции. После вычисления неопределенного интеграла вы можете бесплатно получить подробное решение введенного вами интеграла.