Как найти нетабличный арккосинус

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a, тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π3, то значение косинуса отсюда равно 12 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 12 получим π на 3. Такое тригонометрическое выражение записывается как arcos(12)=π3.

Величиной угла может быть как градус, так и радиан. Значение угла π3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 12 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид arccos12=60°

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0, ±30, ±45, ±60, ±90, ±120, ±135, ±150, ±180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin(-π2)=-1, sin(-π3)=-32, sin(-π4)=-22, sin(-π6)=-12,sin 0 =0, sinπ6=12, sinπ4=22, sinπ3=32, sinπ2=1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от -1 и заканчивая 1, также значения от –π2 до +π2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

α -1 -32 -22 -12 0 12 22 32
arcsin αкак угол

в радианах

-π2 -π3 -π4 -π6 0 π6 π4 π3
в градусах -90° -60° -45° -30° 30° 45° 60°
arcsin α как число -π2 -π3 -π4 -π6 0 π6 π4 π3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0=1, cos π6=32 , cos π4=22, cos π3=12, cosπ2=0,cos2π3=-12, cos3π4=-22, cos5π6=-32, cosπ=-1

Следуя из таблицы, находим значения арккосинуса:

arccos (-1)=π, arccos (-32)=5π6, arcocos (-22)=3π4, arccos-12=2π3, arccos 0 =π2, arccos 12=π3, arccos 22=π4, arccos32=π6, arccos 1 =0

Таблица арккосинусов.

α -1 -32 -22 -12 0 12 22 32 1
arccos αкак угол

в радианах

π 5π6 3π4 2π3 π2 π3 π4 π6 0
в градусах 180° 150° 135° 120° 90° 60° 45° 30°
arccos α как число π 5π6 3π4 2π3 π2 π3 π4 π6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α -3 -1 -33 0 33 1 3
arctg aкак угол в радианах -π3 -π4 -π6 0 π6 π4 π3
в градусах -60° -45° -30° 30° 45° 60°
arctg a как число -π3 -π4 -π6 0 π6 π4 π3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

arcsin, arccos, arctg и arcctg

Для точного значения arcsin, arccos, arctg и arcctg числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения arcsin, arccos, arctg и arcctg отрицательных и положительных чисел сводится к нахождению формул arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(-α)=-arcsin α, arccos(-α)=π-arccos α, arctg(-α)=-arctg α, arcctg(-α)=π-arcctg α.

Рассмотрим решение нахождения значений  arcsin, arccos, arctg и arcctg с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0,2857, ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0,2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0,2863 используется та самая поправка в 0,0006, так как ближайшим числом будет 0,2857. Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Таким образом находятся значения arcsin, arccos, arctg и arcctg.

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы arcsin α+arccos α=π2, arctg α+arcctg α=π2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном arcsin α= -π12 необходимо найти значение arccos α, тогда необходимо вычислить арккосинус по формуле:

arccos α=π2−arcsin α=π2−(−π12)=7π12.

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π10, а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0,9511, после чего заглядываем в таблицу Брадиса.

Нахождение значения arcsin, arccos, arctg и arcctg

При поиске значения арктангенса 0,9511  определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Нахождение значения arcsin, arccos, arctg и arcctg

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

На этой странице даны таблица арккосинусов и легкий способ, как запомнить арккосинус -a (arccos -a).

Таблица арккосинусов

    [begin{array}{*{20}{c}} a&{ - 1}&{ - frac{{sqrt 3 }}{2}}&{ - frac{{sqrt 2 }}{2}}&{ - frac{1}{2}}&0&{frac{1}{2}}&{frac{{sqrt 2 }}{2}}&{frac{{sqrt 3 }}{2}}&1 \ {arccos a}&pi &{frac{{5pi }}{6}}&{frac{{3pi }}{4}}&{frac{{2pi }}{3}}&{frac{pi }{2}}&{frac{pi }{3}}&{frac{pi }{4}}&{frac{pi }{6}}&0 end{array}]

Арккосинус отрицательного числа вычисляется по формуле:

arccos (-a) = п — arccos a

Если требуется найти отрицательный арккосинус для не табличного значения, вроде arccos(-1/3)=п-arccos(1/3), придется использовать эту формулу. Для табличных значений можно легко запомнить арккосинус -a без формул, используя следующее замечание: arccos -a отличается от arccos a тем, что у него в числителе появляется число, на единицу меньшее знаменателя.

arccos(1/2)=п/3. В знаменателе 3. Значит, у arccos(-1/2) в числителе появляется число, на 1 меньше знаменателя, то есть 2: arccos(-1/2)=2п/3. Остальные табличные значения арккосинуса -a можно найти аналогично:

arccos(√2/2)=п/4, следовательно, arccos(-√2/2)=3п/4;

arccos(√3/2)=п/6, следовательно, arccos(-√3/2)=5п/6.

Этот способ дает возможность сэкономить драгоценное время на контрольной или экзамене.

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом числа а называется число varphi  in left[-frac{pi }{2} ;frac{pi }{2}right], такое, что sinvarphi  = a. Или, можно сказать, что это такой угол varphi, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right], синус которого равен числу а.

Арккосинусом числа а называется число varphi  in  [0 ; pi ], такое, что cosvarphi  = a.

Арктангенсом числа а называется число varphi  in  left(-frac{pi }{2};frac{pi }{2}right), такое, что tg varphi  = a.

Арккотангенсом числа а называется число varphi  in  left(0 ; pi right), такое, что ctg = a.

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Помните, мы уже встречались с обратными функциями.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

{(sqrt{a})}^2=a; sqrt{a}ge 0; age 0.

Логарифм числа b по основанию a — такое число с, что boldsymbol{a^c=b.}

При этом b textgreater 0,, , a textgreater 0,, , ane 1.

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения x^2=5 — это sqrt{5} и -sqrt{5}. Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: 2^x=7. Решение этого уравнения — иррациональное число {log}_27. Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение sinx = frac{1}{4}.

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна frac{1}{4}. И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right], синус которого равен frac{1}{4} — это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, — это arcsin frac{1}{4}+2 pi n,, nin Z.

А вторая серия решений нашего уравнения — это pi -arcsin frac{1}{4}+2 pi n,, nin Z.

Подробнее о решении тригонометрических уравнений — здесь.

Осталось выяснить — зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right]?

Дело в том, что углов, синус которых равен, например, frac{1}{4}, бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right].

Взгляните на тригонометрический круг. Вы увидите, что на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right] каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка [-1;1] отвечает одно-единственное значение угла на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right]. Это значит, что на отрезке [-1;1] можно задать функцию y={arcsin x,  } принимающую значения от -frac{pi }{2} до frac{pi }{2}.

Повторим определение еще раз:

Арксинусом числа a называется число varphi in left[-frac{pi }{2}, ;frac{pi }{2}right], такое, что sin{mathbf varphi } = a.

Обозначение: varphi = arcsina. Область определения арксинуса — отрезок [-1;1]. Область значений — отрезок left[-frac{pi }{2}, ;frac{pi }{2}right].

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right].

Мы готовы построить график функции y = arcsin x.

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Поскольку x = sin y, следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок [-1;1].

Мы сказали, что у принадлежит отрезку left[-frac{pi }{2}, ;frac{pi }{2}right]. Это значит, что областью значений функции y = arcsin x является отрезок left[-frac{pi }{2}, ;frac{pi }{2}right].

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями x= -1; , x = 1, , y= -frac{pi}{2} и y= frac{pi}{2} .

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен нулю. Что это за число? — Понятно, что это ноль.

Аналогично, арксинус единицы — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен единице. Очевидно, это frac{pi}{2} .

Продолжаем: arcsin frac{1}{2} — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен frac{1}{2}. Да, это frac{pi}{6}.

x -1 -frac{1}{2} 0 frac{1}{2} 1
y = arcsinx -frac{pi}{2} -frac{pi}{6} 0 frac{pi}{6} frac{pi}{2}

Строим график функции y = arcsinx.

Свойства функции y = arcsinx

1. Область определения D(y): x in left[-1;1right]

2. Область значений E (y): y in left[-frac{pi }{2}, ;frac{pi }{2}right]

3. arcsin(- x) = arcsinx, то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция y = arcsinx монотонно возрастает. Ее наименьшее значение, равное – frac{ pi }{2}, достигается при x=-1, а наибольшее значение, равное frac{pi}{2}, при x = 1.

5. Что общего у графиков функций y=sin x и y=arcsin x? Не кажется ли вам, что они «сделаны по одному шаблону» — так же, как правая ветвь функции y=x^2 и график функции y=sqrt{x} , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от -frac{pi}{2} до frac{pi}{2} , а затем развернули его вертикально — и мы получим график арксинуса.

То, что для функции y=sin x на этом промежутке — значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус — взаимно-обратные функции. Другие примеры пар взаимно обратных функций — это y = x^2 при xgeq 0 и y= sqrt{x}, а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой y=x.

Аналогично, определим функцию y={arccos x}. Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок [0;pi ].

Арккосинусом числа a называется число {mathbf varphi } in [0;pi ], такое, что cos varphi = a.

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке [0;pi ].

Обозначение: varphi = arccosa. Область определения арккосинуса — отрезок [-1;1]. Область значений — отрезок [0;pi ].

Очевидно, отрезок [0;pi ] выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка [0;pi ].

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение: arccos(-a) = pi - arccosa.

Построим график функции y = arccosx.

Нам нужен такой участок функции y = cosx, на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок left[0; pi right]. На этом отрезке функция y = cosx монотонно убывает, то есть соответствие между множествами left[0; pi right] и left[-1; 1right] взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку [-1; 1], будет такое число y, принадлежащее промежутку [0;pi ], что x=cos y.

Значит, arccos 1 = 0, поскольку cos0 = 1;

arccos (-1) = pi, так как cos pi = -1;

arccos 0 = frac{pi}{2} , так как cos frac{pi}{2} = 0,

arccos frac{1}{2} = frac{pi }{3}, так как cos frac{pi }{3} = 0,

x -1 -frac{1}{2} 0 frac{1}{2} 1
arccosx pi frac{2pi}{3} frac{pi}{2} frac{pi}{3} 0

Вот график арккосинуса:

Свойства функции y = arccosx:

1. Область определения D(y): x in left[-1;1right]

2. Область значений E (y): y in left[0; pi right]

3. arccos(- x) = pi - arccosx

Эта функция общего вида — она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное pi, функция у = arccosx принимает при x=-1, а наименьшее значение, равное нулю, принимает при x=1.

5. Функции y = cos x и y = arccosx являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число varphi in left(-frac{pi }{2}, ;frac{pi }{2}right), такое, что tg{mathbf varphi } = a.

Обозначение: varphi = arctga. Область определения арктангенса — промежуток (-infty; +infty). Область значений — интервал left(-frac{pi }{2}, ;frac{pi }{2}right).

Почему в определении арктангенса исключены концы промежутка — точки pm frac {pi}{2}? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу (-frac{pi}{2} ; frac{pi}{2} ), такое, что tg y =x.

Как строить график – уже понятно. Поскольку арктангенс — функция обратная тангенсу, мы поступаем следующим образом:

– Выбираем такой участок графика функции y = tg x, где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция y = tg x принимает значения от -infty до +infty.

Тогда у обратной функции, то есть у функции y=arctg,x, область, определения будет вся числовая прямая, от -infty до +infty, а областью значений — интервал (-frac{pi}{2} ; frac{pi}{2} ).

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

tg 0 = 0, значит, arctg 0 = 0

tg frac{pi}{4} = 1, значит, arctg 1 = frac{pi}{4}

tg (-frac{pi}{4}) = -1, значит, arctg (-1) = - frac{pi}{4}.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала (-frac{pi}{2} ; frac{pi}{2} ) значение тангенса стремится к бесконечности? — Очевидно, это frac{pi}{2} .

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте y=frac{pi}{2} .

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте y= - frac{pi}{2} .

На рисунке — график функции y =arctg x

Свойства функции y=arctg,x

1. Область определения D(y): x in R

2. Область значений E (y): y in (-frac{pi}{2} ; frac{pi}{2} )

3. Функция y=arctg,x нечетная.

4. Функция y=arctg,x является строго возрастающей.

5. Прямые y= - frac{pi}{2} и y= frac{pi}{2} — горизонтальные асимптоты данной функции.

6. Функции y = tg x и y = arctg x являются взаимно обратными — конечно, когда функция y = tg x рассматривается на промежутке (-frac{pi}{2} ; frac{pi}{2} )

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число {mathbf varphi } in (0{mathbf ;}{mathbf pi }), такое, что ctg{mathbf varphi } = a.

График функции y = arcctg x:

Свойства функции y=arcctg,x

1. Область определения D(y): x in R

2. Область значений E (y): y in (0; pi )

3. Функция y=arcctg ,x – общего вида, то есть ни четная, ни нечетная.

4. Функция y=arcctg,x является строго убывающей.

5. Прямые y= 0 и y= pi — горизонтальные асимптоты данной функции.

6. Функции y = ctg x и y = arcctg x являются взаимно обратными, если рассматривать y = ctg x на промежутке (0; pi ).

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Обратные тригонометрические функции и их графики» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos ( 1 2 ) = π 3 .

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin ( – π 2 ) = – 1 , sin ( – π 3 ) = – 3 2 , sin ( – π 4 ) = – 2 2 , sin ( – π 6 ) = – 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от – 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

в р а д и а н а х

α – 1 – 3 2 – 2 2 – 1 2 0 1 2 2 2 3 2
a r c sin α к а к у г о л – π 2 – π 3 – π 4 – π 6 0 π 6 π 4 π 3
в г р а д у с а х – 90 ° – 60 ° – 45 ° – 30 ° 0 ° 30 ° 45 ° 60 °
a r c sin α к а к ч и с л о – π 2 – π 3 – π 4 – π 6 0 π 6 π 4 π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = – 1 2 , cos 3 π 4 = – 2 2 , cos 5 π 6 = – 3 2 , cos π = – 1

Следуя из таблицы, находим значения арккосинуса:

a r c cos ( – 1 ) = π , arccos ( – 3 2 ) = 5 π 6 , arcocos ( – 2 2 ) = 3 π 4 , arccos – 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0

в р а д и а н а х

α – 1 – 3 2 – 2 2 – 1 2 0 1 2 2 2 3 2 1
a r c cos α к а к у г о л π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0
в г р а д у с а х 180 ° 150 ° 135 ° 120 ° 90 ° 60 ° 45 ° 30 ° 0 °
a r c cos α к а к ч и с л о π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α – 3 – 1 – 3 3 0 3 3 1 3
a r c t g a к а к у г о л в р а д и а н а х – π 3 – π 4 – π 6 0 π 6 π 4 π 3
в г р а д у с а х – 60 ° – 45 ° – 30 ° 0 ° 30 ° 45 ° 60 °
a r c t g a к а к ч и с л о – π 3 – π 4 – π 6 0 π 6 π 4 π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

a r c sin , a r c cos , a r c t g и a r c c t g

Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin ( – α ) = – a r c sin α , a r c cos ( – α ) = π – a r c cos α , a r c t g ( – α ) = – a r c t g α , a r c c t g ( – α ) = π – a r c c t g α .

Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном a r c sin α = – π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:

a r c cos α = π 2 − a r c sin α = π 2 − ( − π 12 ) = 7 π 12 .

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.

При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Арккосинус. Решение уравнения cos x=a

п.1. Понятие арккосинуса

В записи (y=cosx) аргумент x – это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если (cosx=1), то (x=2pi k, kinmathbb); (cosx=0), то (x=fracpi2+pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: (0leq xleq pi) (верхняя половина числовой окружности).

(arccosfrac12=fracpi3, arccosleft(-frac<sqrt<3>><2>right)=frac<5pi><6>)
(arccos2) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arccosx


1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (0leq arccosxleq pi) . Область значений (yin[0;pi])
3. Максимальное значение (y_=pi) достигается в точке x =-1
Минимальное значение (y_=0) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.

п.3. Уравнение cos⁡x=a

Значениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус?

Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.

1) Решим уравнение (cosx=frac12).
Найдем точку (frac12) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (pmfracpi3) – это базовые корни.
Если взять верхний корень (fracpi3) и прибавить к нему полный оборот (fracpi3+2pi=frac<7pi><3>), косинус полученного угла (cosfrac<7pi><3>=frac12), т.е. (frac<7pi><3>) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi3+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (-fracpi3+2pi k).
Получаем ответ: (x=pmfracpi3+2pi k)

Заметим, что полученный ответ является записью вида
(x=pm arccosfrac12+2pi k)
А т.к. арккосинус для (frac12) точно известен и равен (fracpi3), то мы его и пишем в ответе.
Но так бывает далеко не всегда.

2) Решим уравнение (cosx=0,8)

Найдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению верхняя точка – это угол, равный arccos⁡0,8.
Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
(x=pm arccos0,8+2pi k)

п.4. Формула арккосинуса отрицательного аргумента

Докажем полезную на практике формулу для (arccos(-a)).

По построению: $$ begin angle DA’O=angle BAO=angle CAO=90^<circ>\ OD=OB=OC=1\ OA’=OA=a end Rightarrow $$ (по катету и гипотенузе) begin Delta DA’O=Delta BAO=Delta CAORightarrow\ Rightarrow angle DOC=angle A’OA-alpha+alpha=angle A’OA=180^<circ>=pi\ -arccosa+pi=arccos(-a) end

п.5. Примеры

Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.

Для (y=arccosx) область определения (-1leq xleq 1), область значений (0leq yleq pi).
Обратная функция (y=cosx) должна иметь ограниченную область определения (0leq xleq pi) и область значений (-1leq yleq 1).
Строим графики:

Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

Пример 3. Запишите в порядке возрастания: $$ arccos0,8; arccos(-0,5); arccosfracpi7 $$

Способ 1. Решение с помощью числовой окружности

Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; (fracpi7approx 0,45)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: (angle A_1OAltangle A_2OAangle A_3OA)
$$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$


Способ 2. Решение с помощью графика (y=arccosx)

Отмечаем на оси OX аргументы 0,8; -0,5; (fracpi7approx 0,45). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY – получаем значения арккосинусов по возрастанию: $$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$

Способ 3. Аналитический
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; (fracpi7); -0,5.
И записываем арккосинусы по возрастанию: (arccos0,8lt arccosfracpi7lt arccos(-0,5))

Пример 4*. Решите уравнения:
(a) arccos(x^2-3x+3)=0) begin x^2-3x+3=cos0=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:

(б) arccos^2x-arccosx-6=0)
( text<ОДЗ:> -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: $$ t^2-t-6=0Rightarrow (t-3)(t+2)=0Rightarrow left[ begin t_1=3\ t_2=-2lt 0 – text <не подходит>end right. $$ Возвращаемся к исходной переменной: begin arccosx=3\ x=cos3 end Ответ: cos3

(в) arccos^2x-pi arccosx+frac<2pi^2><9>=0)
( text<ОДЗ:> -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: begin t^2-pi t+frac<2pi^2><9>=0\ D=(pi^2)-4cdot frac<2pi^2><9>=frac<pi^2><9>, sqrt=fracpi3\ left[ begin t_1=frac<pi-fracpi3><2>=fracpi3\ t_2=frac<pi+fracpi3><2>=frac<2pi> <3>end right. Rightarrow left[ begin arccosx_1=fracpi3\ arccosx_2=frac<2pi> <3>end right. Rightarrow left[ begin x_1=cosleft(fracpi3right)=frac12\ x_2=cosleft(frac<2pi><3>right)=-frac12 end right. end Ответ: (left<pmfrac12right>)

[spoiler title=”источники:”]

http://100urokov.ru/predmety/urok-4-prostejshaya-trigonometriya

http://reshator.com/sprav/algebra/10-11-klass/arkkosinus-reshenie-uravneniya-cosx-a/

[/spoiler]

Содержание:

При изучении тригонометрических функций часто возникает вопрос о нахождении значения аргумента, при котором значение функции равно заданному числу.

Нахождение значения аргумента

Например, найдем все значения аргумента, при которых значение функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

На единичной окружности найдем точки Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ординаты которых равны Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияЭтим точкам соответствуют углы Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения  и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияи таких углов бесконечно много. Однако, если рассмотреть промежуток Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то на нем функция Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения возрастает и принимает все значения от -1 до 1. Поэтому для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения из промежутка Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственное число Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения такое что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так на промежутке Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решениясуществует единственное значение аргумента, при котором значение функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения равно Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения — это угол равный Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения( рис.93) 

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арксинуса

Определение:

Арксинусом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения синус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 94).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №1

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

  Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №2

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 95, б).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Заметим, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( рис.95)  Так как углы, соответствующие точкам Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения где Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения с ординатами Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения отличаются только знаком, то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 96).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Пусть Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения тогда Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Так как точкиАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения имеют противоположные ординаты, то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то по определению арксинуса Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Воспользуемся полученным равенством и найдем значение выражения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Отметим, что областью определения выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения является отрезок Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла.

Например, выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения  не имеют смысла, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Из определения арксинуса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Рассмотрим промежуток Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения на котором функция Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения возрастает и принимает все значения от Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения до 1. Для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения из промежутка Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственное число Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения такое, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арккосинуса

Определение:

Арккосинусом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения косинус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 97).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например: Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
 

Пример №3

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №4

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( рис. 98.а)

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( рис.98.б)

Заметим, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( см.98) 

Пусть Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так как точки Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения имеют противоположные абсциссы, то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то по определению арккосинуса Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 99).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Воспользуемся полученным равенством и найдем значение выражения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Областью определения выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения  является отрезок Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла.

Так, выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеют смысла, поскольку

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Из определения арккосинуса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

На промежутке монотонности Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственный угол, тангенс которого равен некоторому данному числу Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арктангенса

Определение:

Арктангенсом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения тангенс которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 100).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №5

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения верно равенство Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 101).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения 

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №6

Найдите значение выражения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Из определения арктангенса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

На промежутке монотонности Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственный угол, котангенс которого равен некоторому данному числу Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арккотангенса

Определение:

Арккотангенсом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения котангенс которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 102).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

  • Заказать решение задач по высшей математике

Пример №7

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения верно равенство Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 103).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №8

Найдите значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Из определения арккотангенса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Примеры заданий и их решения

Пример №9

Верно ли, что:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

а) Верно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

б)    верно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

в)    неверно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

г)    неверно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №10

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №11

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №12

Оцените значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

По определению арктангенса числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Воспользуемся свойствами числовых неравенств и получим: Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №13

Найдите область определения выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 а) По определению арксинуса числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения это угол, синус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

б)    По определению арккосинуса числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения это угол, косинус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №14

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №15

Вычислите Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №16

Найдите значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Воспользуемся формулой Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то эту формулу сразу применить нельзя.

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №17

Найдите значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

  • Тригонометрические уравнения
  • Тригонометрические неравенства
  • Формулы приведения
  • Синус, косинус, тангенс суммы и разности
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Функция y=sin x и её свойства и график
  • Функция y=cos x и её свойства и график
  • Функции y=tg x и y=ctg x – их свойства, графики

Добавить комментарий