Как найти нод теория чисел

Понятие наибольшего общего делителя

Для начала разберемся, что такое общий делитель. У целого числа может быть несколько делителей. А сейчас нам особенно интересно, как обращаться с делителями сразу нескольких целых чисел.

Делитель натурального числа — это такое целое натуральное число, на которое делится данное число без остатка. Если у натурального числа больше двух делителей, его называют составным.

Общий делитель нескольких целых чисел — это такое число, которое может быть делителем каждого числа из указанного множества. Например, у чисел 12 и 8 общими делителями будут 4 и 1. Чтобы это проверить, напишем верные равенства: 8 = 4 * 2 и 12 = 3 * 4.

Любое число можно разделить на 1 и на само себя. Значит, у любого набора целых чисел будет как минимум два общих делителя.

Наибольшим общим делителем двух чисел a и b называется наибольшее число, на которое a и b делятся без остатка. Для записи может использоваться аббревиатура НОД. Для двух чисел можно записать вот так: НОД (a, b).

Например, для 4 и 16 НОД будет 4. Как мы к этому пришли:

  1. Зафиксируем все делители четырех: 4, 2, 1.
  2. А теперь все делители шестнадцати: 16, 8, 4 и 1.
  3. Выбираем общие: это 4, 2, 1. Самое большое общее число: 4. Вот и ответ.

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Найдем наибольший общий делитель нескольких целых чисел: 12, 6, 42, 18. Он будет равен шести. Ответ можно записать так: НОД (12, 6, 42, 18) = 6. А чтобы проверить правильность ответа, нужно записать все делители и выбрать из них самые большие.

Взаимно простые числа — это натуральные числа, у которых только один общий делитель — единица. Их НОД равен 1.

Еще один пример. Рассчитаем НОД для 28 и 64.

Как находим:

 

  1. Распишем простые множители для каждого числа и подчеркнем одинаковые

    Д (28) = 2 * 2 * 7

    Д (64) = 2 * 2 * 2 * 2 * 2 * 2

  2. Найдем произведение одинаковых простых множителей и запишем ответ

    НОД (28; 64) = 2 * 2 = 4

Ответ: НОД (28; 64) = 4

Оформить поиск НОД можно в строчку, как мы сделали выше или в столбик, как на картинке.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Узнай, какие профессии будущего тебе подойдут

Способы нахождения наибольшего общего делителя

Найти наибольший общий делитель можно двумя способами. Рассмотрим оба, чтобы при решении задач выбирать самую оптимальную последовательность действий.

1. Разложение на множители

Чтобы найти НОД нескольких чисел, достаточно разложить их на простые множители и перемножить между собой общие множители для всех чисел.

Пример 1. Найти НОД (84, 90).

Как решаем:

 

  1. Разложим числа 84 и 90 на простые множители:

    Пример разложения чисел 84 и 90

  2. Подчеркнем все общие множители и перемножим их между собой:

    2 * 3 = 6.

 

Ответ: НОД (84, 90) = 6.

Пример 2. Найти НОД (15, 28).

Как решаем:

 

  1. Разложим 15 и 28 на простые множители:

    пример разложения чисел 15 и 28

  2. Числа 15 и 28 являются взаимно простыми, так как их наибольший общий делитель — единица.

 

Ответ: НОД (15, 28) = 1.

Пример 3. Найти НОД для 24 и 18.

Как решаем:

 

  1. Разложим оба числа на простые множители:

    Разложение чисел на простые множители

  2. Найдем общие множители чисел 24 и 18: 2 и 3. Для удобства общие множители можно подчеркнуть.

    Находим общие множители

  3. Перемножим общие множители:

    НОД (24, 18) =2 * 3 = 6

 

Ответ: НОД (24, 18) = 6

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

2. Алгоритм Евклида

Способ Евклида помогает найти НОД через последовательное деление. Сначала посмотрим, как работает этот способ с двумя числами, а затем применим его к трем и более.

Алгоритм Евклида заключается в следующем: если большее из двух чисел делится на меньшее — наименьшее число и будет их наибольшим общим делителем. Использовать метод Евклида можно легко по формуле нахождения наибольшего общего делителя.

Формула НОД: НОД (a, b) = НОД (b, с), где с — остаток от деления a на b.

Пример 1. Найти НОД для 24 и 8.

Как рассуждаем:

Так как 24 делится на 8 и 8 тоже делится на 8, значит, 8 — общий делитель этих чисел. Этот делитель является наибольшим, потому что 8 не может делиться ни на какое число, большее его самого. Поэтому: НОД (24, 8) = 8.

В остальных случаях для нахождения наибольшего общего делителя двух чисел нужно соблюдать такой порядок действий:

 

  1. Большее число поделить на меньшее.
  2. Меньшее число поделить на остаток, который получается после деления.
  3. Первый остаток поделить на второй остаток.
  4. Второй остаток поделить на третий и т. д.
  5. Деление продолжается до тех пор, пока в остатке не получится нуль. Последний делитель и есть наибольший общий делитель.

Пример 2. Найти наибольший общий делитель чисел 140 и 96:

Как решаем:

 

  1. 140 : 96 = 1 (остаток 44)
  2. 96 : 44 = 2 (остаток 8)
  3. 44 : 8 = 5 (остаток 4)
  4. 8 : 4 = 2

Последний делитель равен 4 — это значит: НОД (140, 96) = 4.

Ответ: НОД (140, 96) = 4

Пошаговое деление можно записать столбиком:

пошаговое деление солбиком

Чтобы найти наибольший общий делитель трех и более чисел, делаем в такой последовательности:

 

  1. Найти наибольший общий делитель любых двух чисел из данных.
  2. Найти НОД найденного делителя и третьего числа.
  3. Найти НОД последнего найденного делителя и четвёртого числа и т. д.

Свойства наибольшего общего делителя

У наибольшего общего делителя есть ряд определенных свойств. Опишем их в виде теорем и сразу приведем доказательства.

Важно! Все свойства НОД будем формулировать для положительных целых чисел, при этом будем рассматривать делители только больше нуля.

Свойство 1. Наибольший общий делитель чисел а и b равен наибольшему общему делителю чисел b и а, то есть НОД (a, b) = НОД (b, a). Перемена мест чисел не влияет на конечный результат.

Доказывать свойство не имеет смысла, так как оно напрямую исходит из самого определения НОД.

Свойство 2. Если а делится на b, то множество общих делителей чисел а и b совпадает со множеством делителей числа b, поэтому НОД (a, b) = b.

Доказательство

 

Любой общий делитель чисел а и b является делителем каждого из этих чисел, в том числе и числа b. Так как а кратно b, то любой делитель числа b является делителем и числа а, благодаря свойствам делимости. Из этого следует, что любой делитель числа b является общим делителем чисел а и b.

 

Значит, если а делится на b, то совокупность делителей чисел а и b совпадает с совокупностью делителей одного числа b. А так как наибольшим делителем числа b является само число b, то наибольший общий делитель чисела и b также равен b, то есть НОД (а, b) = b.

 

В частности, если a = b, то НОД (a, b) = НОД (a, a) = НОД (b, b) = a = b.

  • Например, НОД (25, 25) = 25.

Доказанное свойство наибольшего делителя можно использовать, чтобы найти НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число.

  • Например, НОД (4, 40) = 4, так как 40 кратно 4.

Свойство 3. Если a = bq + c, где а, b, с и q — целые числа, то множество общих делителей чисел а и b совпадает со множеством общих делителей чисел b и с. Равенство НОД (a, b) = НОД (b, c) справедливо.

Доказательство

 

Существует равенство a = bq + c, значит всякий общий делитель чисел а и b делит также и с, исходя из свойств делимости. По этой же причине, всякий общий делитель чисел b и с делит а. Поэтому совокупность общих делителей чисел а и b совпадает с совокупностью общих делителей чисел b и c.

 

Поэтому должны совпадать и наибольшие из этих общих делителей, и равенство НОД (a, b) = НОД (b, c) можно считать справедливым.

Свойство 4. Если m — любое натуральное число, то НОД (mа, mb) = m * НОД(а, b).

Доказательство

Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД (mа, mb)= mr, где r — это НОД (а, b). На этом свойстве наибольшего общего делителя основан поиск НОД с помощью разложения на простые множители.

Свойство 5. Пусть р — любой общий делитель чисел а и b, тогда НОД (а : p, b : p) = НОД (а, b) : p. А именно, если p = НОД (a, b) имеем НОД (a : НОД (a, b), b: НОД (a, b)) = 1, то есть, числа a : НОД (a, b) и b : НОД (a, b) — взаимно простые.

Так как a = p(a : p) и b = p(b : p), и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД (a, b) = НОД (p(a : p), p(b : p)) = p * НОД (a : p, b : p), откуда и следует доказываемое равенство.

Знакомство с темой наибольшего общего делителя начинается в 5 классе с теории и закрепляется в 6 классе на практике. В этой статье мы узнали все основные определения, свойства и их доказательства, а также как найти НОД.

Сайт переезжает. Большинство статей уже перенесено на новую версию.
Скоро добавим автоматические переходы, но пока обновленную версию этой статьи можно найти там.

Теория чисел

  • Простые числа
  • Разложение на простые множители
  • Решето Эратосфена
  • Линейное решето Эратосфена*
  • НОД и НОК
  • Алгоритм Евклида
  • Расширенный алгоритм Евклида*
  • Операции по модулю
  • Быстрое возведение в степень
  • Деление по простому модулю*

Простые числа

Простым называется натуральное число, которое делится только на единицу и на себя. Единица при этом простым числом не считается. Составным числом называют непростое число, которое еще и не единица.

Примеры простых чисел: (2), (3), (5), (179), (10^9+7), (10^9+9).

Примеры составных чисел: (4), (15), (2^{30}).

Еще одно определение простого числа: (N) — простое, если у (N) ровно два делителя. Эти делители при этом равны (1) и (N).

Проверка на простоту за линию

С точки зрения программирования интересно научиться проверять, является ли число (N) простым. Это очень легко сделать за (O(N)) – нужно просто проверить, делится ли оно хотя бы на одно из чисел (2, 3, 4, ldots, N-1) . (N > 1) является простым только в случае, если оно не делится на на одно из этих чисел.

def is_prime(n):
    if n == 1:
        return False
    for i in range(2, n): # начинаем с 2, так как на 1 все делится; n не включается
        if n % i == 0:
            return False
    return True

for i in range(1, 10):
    print(i, is_prime(i))
(1, False)
(2, True)
(3, True)
(4, False)
(5, True)
(6, False)
(7, True)
(8, False)
(9, False)

Проверка на простоту за корень

Алгоритм можно ускорить с (O(N)) до (O(sqrt{N})).

Пусть (N = a times b), причем (a leq b). Тогда заметим, что (a leq sqrt N leq b).

Почему? Потому что если (a leq b < sqrt{N}), то (ab leq b^2 < N), но (ab = N). А если (sqrt{N} < a leq b), то (N < a^2 leq ab), но (ab = N).

Иными словами, если число (N) равно произведению двух других, то одно из них не больше корня из (N), а другое не меньше корня из (N).

Из этого следует, что если число (N) не делится ни на одно из чисел (2, 3, 4, ldots, lfloorsqrt{N}rfloor), то оно не делится и ни на одно из чисел (lceilsqrt{N}rceil + 1, ldots, N-2, N-1), так как если есть делитель больше корня (не равный (N)), то есть делитель и меньше корня (не равный 1). Поэтому в цикле for достаточно проверять числа не до (N), а до корня.

def is_prime(n):
    if n == 1:
        return False
    # Удобно вместо for i in range(2, n ** 0.5) писать так:
    i = 2
    while i * i <= n:
        if n % i == 0:
            return False
        i += 1
    return True

for i in [1, 2, 3, 10, 11, 12, 10**9+6, 10**9+7]:
    print(i, is_prime(i))
(1, False)
(2, True)
(3, True)
(10, False)
(11, True)
(12, False)
(1000000006, False)
(1000000007, True)

Разложение на простые множители

Любое натуральное число можно разложить на произведение простых, и с такой записью очень легко работать при решении задач. Разложение на простые множители еще называют факторизацией.

[11 = 11 = 11^1] [100 = 2 times 2 times 5 times 5 = 2^2 times 5^2] [126 = 2 times 3 times 3 times 7 = 2^1 times 3^2 times 7^1]

Рассмотрим, например, такую задачу:

Условие: Нужно разбить (N) людей на группы равного размера. Нам интересно, какие размеры это могут быть.

Решение: По сути нас просят найти число делителей (N). Нужно посмотреть на разложение числа (N) на простые множители, в общем виде оно выглядит так:

[N= p_1^{a_1} times p_2^{a_2} times ldots times p_k^{a_k}]

Теперь подумаем над этим выражением с точки зрения комбинаторики. Чтобы «сгенерировать» какой-нибудь делитель, нужно подставить в степень (i)-го простого число от 0 до (a_i) (то есть (a_i+1) различное значение), и так для каждого. То есть делитель (N) выглядит ровно так: [M= p_1^{b_1} times p_2^{b_2} times ldots times p_k^{b_k}, 0 leq b_i leq a_i] Значит, ответом будет произведение ((a_1+1) times (a_2+1) times ldots times (a_k + 1)).

Алгоритм разложения на простые множители

Применяя алгоритм проверки числа на простоту, мы умеем легко находить минимальный простой делитель числа N. Ясно, что как только мы нашли простой делитель числа (N), мы можем число (N) на него поделить и продолжить искать новый минимальный простой делитель.

Будем перебирать простой делитель от (2) до корня из (N) (как и раньше), но в случае, если (N) делится на этот делитель, будем просто на него делить. Причем, возможно, нам понадобится делить несколько раз ((N) может делиться на большую степень этого простого делителя). Так мы будем набирать простые делители и остановимся в тот момент, когда (N) стало либо (1), либо простым (и мы остановились, так как дошли до корня из него). Во втором случае надо еще само (N) добавить в ответ.

Напишем алгоритм факторизации:

def factorize(n):
    factors = []
    i = 2
    while i * i <= n: # перебираем простой делитель
        while n % i == 0: # пока N на него делится
            n //= i # делим N на этот делитель
            factors.append(i)
        i += 1
    # возможно, в конце N стало большим простым числом,
    # у которого мы дошли до корня и поняли, что оно простое
    # его тоже нужно добавить в разложение
    if n > 1:
        factors.append(n)
    return factors

for i in [1, 2, 3, 10, 11, 12, 10**9+6, 10**9+7]:
    print(i, '=', ' x '.join(str(x) for x in factorize(i)))
1 = 
2 = 2
3 = 3
10 = 2 x 5
11 = 11
12 = 2 x 2 x 3
1000000006 = 2 x 500000003
1000000007 = 1000000007

Задание

За сколько работает этот алгоритм?

.

.

.

.

Решение

За те же самые (O(sqrt{N})). Итераций цикла while с перебором делителя будет не больше, чем (sqrt{N}). Причем ровно (sqrt{N}) операций будет только в том случае, если (N) – простое.

А итераций деления (N) на делители будет столько, сколько всего простых чисел в факторизации числа (N). Понятно, что это не больше, чем (O(log{N})).

Задание

Докажите, что число (N) имеет не больше, чем (O(log{N})) простых множителей в факторизации.

Разные свойства простых чисел*

Вообще, про простые числа известно много свойств, но почти все из них очень трудно доказать. Вот еще некоторые из них:

  • Простых чисел, меньших (N), примерно (frac{N}{ln N}).
  • N-ое простое число равно примерно (Nln N).
  • Простые числа распределены более-менее равномерно. Например, если вам нужно найти какое-то простое число в промежутке, то можно их просто перебрать и проверить — через несколько сотен какое-нибудь найдется.
  • Для любого (N ge 2) на интервале ((N, 2N)) всегда найдется простое число (Постулат Бертрана)
  • Впрочем, существуют сколь угодно длинные отрезки, на которых простых чисел нет. Самый простой способ такой построить – это начать с (N! + 2).
  • Есть алгоритмы, проверяющие число на простоту намного быстрее, чем за корень.
  • Максимальное число делителей равно примерно (O(sqrt[3]{n})). Это не математический результат, а чисто эмпирический — не пишите его в асимптотиках.
  • Максимальное число делителей у числа на отрезке ([1, 10^5]) — 128
  • Максимальное число делителей у числа на отрекзке ([1, 10^9]) — 1344
  • Максимальное число делителей у числа на отрезке ([1, 10^{18}]) — 103680
  • Наука умеет факторизовать числа за (O(sqrt[4]{n})), но об этом как-нибудь в другой раз.
  • Любое число больше трёх можно представить в виде суммы двух простых (гипотеза Гольдбаха), но это не доказано.

Решето Эратосфена

Часто нужно не проверять на простоту одно число, а найти все простые числа до (N). В этом случае наивный алгоритм будет работать за (O(Nsqrt N)), так как нужно проверить на простоту каждое число от 1 до (N).

Но древний грек Эратосфен предложил делать так:

Запишем ряд чисел от 1 до (N) и будем вычеркивать числа: * делящиеся на 2, кроме самого числа 2 * затем деляющиеся на 3, кроме самого числа 3 * затем на 5, затем на 7, и так далее и все остальные простые до n. Таким образом, все незачеркнутые числа будут простыми — «решето» оставит только их.

Красивая визуализация

Задание

Найдите этим способом на бумажке все простые числа до 50, потом проверьте с программой:

N = 50
prime = [1] * (N + 1)
prime[0], prime[1] = 0, 0
for i in range(2, N + 1): # можно и до sqrt(N)
    if prime[i]:
        for j in range(2 * i, N + 1, i): # идем с шагом i, можно начиная с i * i
            prime[j] = 0
for i in range(1, N + 1):
    if prime[i]:
        print(i)
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

У этого алгоритма можно сразу заметить несколько ускорений.

Во-первых, число (i) имеет смысл перебирать только до корня из (N), потому что при зачеркивании составных чисел, делящихся на простое (i > sqrt N), мы ничего не зачеркнем. Почему? Пусть существует составное (M leq N), которое делится на %i%, и мы его не зачеркнули. Но тогда (i > sqrt N geq sqrt M), а значит по ранее нами доказанному утверждению (M) должно делиться и на простое число, которое меньше корня. Но это значит, что мы его уже вычеркнули.

Во-вторых, по этой же самое причине (j) имеет смысл перебирать только начиная с (i^2). Зачем вычеркивать (2i), (3i), (4i), …, ((i-1)i), если они все уже вычеркнуты, так как мы уже вычеркивали всё, что делится на (2), (3), (4), …, ((i-1)).

Асимптотика

Такой код будет работать за (O(N log log N)) по причинам, которые мы пока не хотим объяснять формально.

Гармонический ряд

Научимся оценивать асимптотику величины (1 + frac{1}{2} + ldots + frac{1}{N}), которая нередко встречается в задачах, где фигурирует делимость.

Возьмем (N) равное (2^i – 1) и запишем нашу сумму следующим образом: [left(frac{1}{1}right) + left(frac{1}{2} + frac{1}{3}right) + left(frac{1}{4} + ldots + frac{1}{7}right) + ldots + left(frac{1}{2^{i – 1}} + ldots + frac{1}{2^i – 1}right)]

Каждое из этих слагаемых имеет вид [frac{1}{2^j} + ldots + frac{1}{2^{j + 1} – 1} le frac{1}{2^j} + ldots + frac{1}{2^j} = 2^j frac{1}{2^j} = 1]

Таким образом, наша сумма не превосходит (1 + 1 + ldots + 1 = i le 2log_2(2^i – 1)). Тем самым, взяв любое (N) и дополнив до степени двойки, мы получили асимптотику (O(log N)).

Оценку снизу можно получить аналогичным образом, оценив каждое такое слагаемое снизу значением (frac{1}{2}).

Попытка объяснения асимптотики** (для старших классов)

Мы знаем, что гармонический ряд (1 + frac{1}{2} + frac{1}{3} + ldots + frac{1}{N}) это примерно (log N), а значит [N + frac{N}{2} + frac{N}{3} + ldots + frac{N}{N} sim N log N]

А что такое асимптотика решета Эратосфена? Мы как раз ровно (frac{N}{p}) раз зачеркиваем числа делящиеся на простое число (p). Если бы все числа были простыми, то мы бы как раз получили (N log N) из формули выше. Но у нас будут не все слагаемые оттуда, только с простым (p), поэтому посмотрим чуть более точно.

Известно, что простых чисел до (N) примерно (frac{N}{log N}), а значит допустим, что k-ое простое число примерно равно (k ln k). Тогда

[sum_{substack{2 leq p leq N \ text{p is prime}}} frac{N}{p} sim frac{1}{2} + sum_{k = 2}^{frac{N}{ln N}} frac{N}{k ln k} sim int_{2}^{frac{N}{ln N}} frac{N}{k ln k} dk =N(lnlnfrac{N}{ln N} – lnln 2) sim N(lnln N – lnlnln N) sim N lnln N]

Но вообще-то решето можно сделать и линейным.

Задание

Решите 5 первых задач из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34271

Линейное решето Эратосфена*

Наша цель — для каждого числа до (N) посчитать его минимальный простой делитель. Будем хранить его в массиве min_d. Параллельно будем хранить и список всех найденных простых чисел primes – это ровно те числа (x), у которых (min_d[x] = x).

Основное утверждение такое:

Пусть у числа (M) минимальный делитель равен (a). Тогда, если (M) составное, мы хотим вычеркнуть его ровно один раз при обработке числа (frac{M}{a}).

Мы также перебираем число (i) от (2) до (N). Если (min_d[i]) равно 0 (то есть мы не нашли ни один делитель у этого числа еще), значит оно простое – добавим в primes и сделаем (min_d[i] = i).

Далее мы хотим вычеркнуть все числа (i times k) такие, что (k) – это минимальный простой делитель этого числа. Из этого следует, что необходимо и достаточно перебрать (k) в массиве primes, и только до тех пор, пока (k < min_d[i]). Ну и перестать перебирать, если (i times k > N).

Алгоритм пометит все числа по одному разу, поэтому он корректен и работает за (O(N)).

N = 30
primes = []
min_d = [0] * (N + 1)

for i in range(2, N + 1):
    if min_d[i] == 0:
        min_d[i] = i
        primes.append(i)
    for p in primes:
        if p > min_d[i] or i * p > N:
            break
        min_d[i * p] = p
    print(i, min_d)
print(min_d)
print(primes)
2 [0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3 [0, 0, 2, 3, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
4 [0, 0, 2, 3, 2, 0, 2, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
5 [0, 0, 2, 3, 2, 5, 2, 0, 2, 3, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0]
6 [0, 0, 2, 3, 2, 5, 2, 0, 2, 3, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0]
7 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0]
8 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0]
9 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 0, 0, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0]
10 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 0, 2, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0]
11 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 0, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 0, 5, 0, 3, 0, 0, 0]
12 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 0, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 0, 3, 0, 0, 0]
13 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 0, 0, 0]
14 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 0]
15 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
16 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
17 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
18 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 0, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
19 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
20 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
21 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
22 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 0, 2, 5, 2, 3, 2, 0, 2]
23 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
24 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
25 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
26 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
27 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
28 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 0, 2]
29 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2]
30 [0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2]
[0, 0, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Этот алгоритм работает асимптотически быстрее, чем обычное решето. Но на практике, если писать обычное решето Эратсфена с оптимизациями, то оно оказывается быстрее линейнего. Также линейное решето занимает гораздо больше памяти – ведь в обычном решете можно хранить просто (N) бит, а здесь нам нужно (N) чисел и еще массив primes.

Зато один из «побочных эффектов» алгоритма — он неявно вычисляет факторизацию всех чисел от (1) до (N). Ведь зная минимальный простой делитель любого числа от (1) до (N) можно легко поделить на это число, посмотреть на новый минимальный простой делитель и так далее.

НОД и НОК

Введем два определения.

Наибольший общий делитель (НОД) чисел (a_1, a_2, ldots, a_n) — это максимальное такое число (x), что все (a_i) делятся на (x).

Наименьшее общее кратное (НОК) чисел (a_1, a_2, ldots, a_n) — это минимальное такое число (x), что (x) делится на все (a_i).

Например, * НОД(18, 30) = 6 * НОД(60, 180, 315) = 15 * НОД(1, N) = 1 * НОК(12, 30) = 6 * НОК(1, 2, 3, 4) = 12 * НОК(1, (N)) = (N)

Зачем они нужны? Например, они часто возникают в задачах.

Условие: Есть (N) шестеренок, каждая (i)-ая зацеплена с ((i-1))-ой. (i)-ая шестеренка имеет (a_i) зубчиков. Сколько раз нужно повернуть полносьтю первую шестеренку, чтобы все остальные шестеренки тоже вернулись на изначальное место?

Решение: Когда одна шестеренка крутится на 1 зубчик, все остальные тоже крутятся на один зубчик. Нужно найти минимальное такое число зубчиков (x), что при повороте на него все шестеренки вернутся в изначальное положение, то есть (x) делится на все (a_i), то есть это НОК((a_1, a_2, ldots, a_N)). Ответом будет (frac{x}{a_1}).

Еще пример задачи на применение НОД и НОК:

Условие: Город — это прямоугольник (n) на (m), разделенный на квадраты единичного размера. Вертолет летит из нижнего левого угла в верхний правый по прямой. Вертолет будит людей в квартале, когда он пролетает строго над его внутренностью (границы не считаются). Сколько кварталов разбудит вертолёт?

Решение: Вертолет пересечет по вертикали ((m-1)) границу. С этим ничего не поделать — каждое считается как новое посещение какого-то квартала. По горизонтали то же самое — ((n-1)) переход в новую ячейку будет сделан.

Однако еще есть случай, когда он пересекает одновременно обе границы (то есть пролетает над каким-нибудь углом) — ровно тот случай, когда нового посещения квартала не происходит. Сколько таких будет? Ровно столько, сколько есть целых решений уравнения (frac{n}{m} = frac{x}{y}). Мы как бы составили уравнение движения вертолёта и ищем, в скольки целых точках оно выполняется.

Пусть (t = НОД(n, m)), тогда (n = at, m = bt).

Тогда (frac{n}{m} = frac{a}{b} = frac{x}{y}). Любая дробь с натуральными числителем и знаменателем имеет ровно одно представление в виде несократимой дроби, так что (x) должно делиться на (a), а (y) должно делиться на (b). А значит, как ответ подходят ((a, b), (2a, 2b), (3a, 3b), cdots, ((t-1)a, (t-1)b)). Таких ответов ровно (t = НОД(n, m))

Значит, итоговый ответ: ((n-1) + (m-1) – (t-1)).

Кстати, когда (НОД(a, b) = 1), говорят, что (a) и (b) взаимно просты.

Алгоритм Евклида

Осталось придумать, как искать НОД и НОК. Понятно, что их можно искать перебором, но мы хотим хороший быстрый способ.

Давайте для начала научимся искать (НОД(a, b)).

Мы можем воспользоваться следующим равенством: [НОД(a, b) = НОД(a, b – a), b > a]

Оно доказывается очень просто: надо заметить, что множества общих делителей у пар ((a, b)) и ((a, b – a)) совпадают. Почему? Потому что если (a) и (b) делятся на (x), то и (b-a) делится на (x). И наоборот, если (a) и (b-a) делятся на (x), то и (b) делится на (x). Раз множства общих делитей совпадают, то и максимальный делитель совпадает.

Из этого равенства сразу следует следующее равенство: [НОД(a, b) = НОД(a, b operatorname{%} a), b > a]

(так как (НОД(a, b) = НОД(a, b – a) = НОД(a, b – 2a) = НОД(a, b – 3a) = ldots = НОД(a, b operatorname{%} a)))

Это равенство дает идею следующего рекурсивного алгоритма:

[НОД(a, b) = НОД(b operatorname{%} a, a) = НОД(a operatorname{%} , (b operatorname{%} a), b operatorname{%} a) = ldots]

Например: [НОД(93, 36) = ] [= НОД(36, 93spaceoperatorname{%}36) = НОД(36, 21) = ] [= НОД(21, 15) = ] [= НОД(15, 6) = ] [= НОД(6, 3) = ] [= НОД(3, 0) = 3]

Задание:

Примените алгоритм Евклида и найдите НОД чисел: * 1 и 500000 * 10, 20 * 18, 60 * 55, 34 * 100, 250

По-английски наибольший общий делительgreatest common divisor. Поэтому вместо НОД будем в коде писать gcd.

def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)

print(gcd(1, 500000))
print(gcd(10, 20))
print(gcd(18, 60))
print(gcd(55, 34))
print(gcd(100, 250))
print(gcd(2465473782, 12542367456))
1
10
6
1
50
6

Вообще, в C++ такая функция уже есть в компиляторе g++ — называется __gcd. Если у вас не Visual Studio, то, скорее всего, у вас g++. Вообще, там много всего интересного.

А за сколько оно вообще работает?

Задание

Докажите, что алгоритм Евклида для чисел (N), (M) работает за (O(log(N+M))).

Кстати, интересный факт: самыми плохими входными данными для алгоритма Евклида являются числа Фибоначчи. Именно там и достигается логарифм.

Как выразить НОК через НОД

(НОК(a, b) = frac{ab}{НОД(a, b)})

По этой формуле можно легко найти НОК двух чисел через их произведение и НОД. Почему она верна?

Посмотрим на разложения на простые множители чисел a, b, НОК(a, b), НОД(a, b).

[ a = p_1^{a_1}times p_2^{a_2}timesldotstimes p_n^{a_n} ] [ b = p_1^{b_1}times p_2^{b_2}timesldotstimes p_n^{b_n} ] [ ab = p_1^{a_1+b_1}times p_2^{a_2+b_2}timesldotstimes p_n^{a_n+b_n} ]

Из определений НОД и НОК следует, что их факторизации выглядят так: [ НОД(a, b) = p_1^{min(a_1, b_1)}times p_2^{min(a_2, b_2)}timesldotstimes p_n^{min(a_n, b_n)} ] [ НОК(a, b) = p_1^{max(a_1, b_1)}times p_2^{max(a_2, b_2)}timesldotstimes p_n^{max(a_n, b_n)} ]

Тогда посчитаем (НОД(a, b) times НОК(a, b)): [ НОД(a, b)НОК(a, b) = p_1^{min(a_1, b_1)+max(a_1, b_1)}times p_2^{min(a_2, b_2)+max(a_2, b_2)}timesldotstimes p_n^{min(a_n, b_n)+max(a_n, b_n)} =] [ = p_1^{a_1+b_1}times p_2^{a_2+b_2}timesldotstimes p_n^{a_n+b_n} = ab]

Формула доказана.

Как посчитать НОД/НОК от более чем 2 чисел

Для того, чтобы искать НОД или НОК у более чем двух чисел, достаточно считать их по цепочке:

(НОД(a, b, c, d, ldots) = НОД(НОД(a, b), c, d, ldots))

(НОК(a, b, c, d, ldots) = НОК(НОК(a, b), c, d, ldots))

Почему это верно?

Ну просто множество общих делителей (a) и (b) совпадает с множеством делителей (НОД(a, b)). Из этого следует, что и множество общих делителей (a), (b) и еще каких-то чисел совпадает с множеством общих делителей (НОД(a, b)) и этих же чисел. И раз совпадают множества общих делителей, то и наибольший из них совпадает.

С НОК то же самое, только фразу “множество общих делителей” надо заменить на “множество общих кратных”.

Задание

Решите задачи F, G, H, I из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34271

Расширенный алгоритм Евклида*

Очень важным для математики свойством наибольшего общего делителя является следующий факт:

Для любых целых (a, b) найдутся такие целые (x, y), что (ax + by = d), где (d = gcd(a, b)).

Из этого следует, что существует решение в целых числах, например, у таких уравнений: * (8x + 6y = 2) * (4x – 5y = 1) * (116x + 44y = 4) * (3x + 11y = -1)

Мы сейчас не только докажем, что решения у таких уравнений существуют, но и приведем быстрый алгоритм нахождения этих решений. Здесь нам вновь пригодится алгоритм Евклида.

Рассмотрим один шаг алгоритма Евклида, преобразующий пару ((a, b)) в пару ((b, a operatorname{%} b)). Обозначим (r = a operatorname{%} b), то есть запишем деление с остатком в виде (a = bq + r).

Предположим, что у нас есть решение данного уравнения для чисел (b) и (r) (их наибольший общий делитель, как известно, тоже равен (d)): [bx_0 + ry_0 = d]

Теперь сделаем в этом выражении замену (r = a – bq):

[bx_0 + ry_0 = bx_0 + (a – bq)y_0 = ay_0 + b(x_0 – qy_0)]

Tаким образом, можно взять (x = y_0), а (y = (x_0 – qy_0) = (x_0 – (a operatorname{/} b)y_0)) (здесь (/) обозначает целочисленное деление).

В конце алгоритма Евклида мы всегда получаем пару ((d, 0)). Для нее решение требуемого уравнения легко подбирается — (d * 1 + 0 * 0 = d). Теперь, используя вышесказанное, мы можем идти обратно, при вычислении заменяя пару ((x, y)) (решение для чисел (b) и (a operatorname{%} b)) на пару ((y, x – (a / b)y)) (решение для чисел (a) и (b)).

Это удобно реализовывать рекурсивно:

def extended_gcd(a, b):
    if b == 0:
        return a, 1, 0
    d, x, y = extended_gcd(b, a % b)
    return d, y, x - (a // b) * y

a, b = 3, 5
res = extended_gcd(a, b)
print("{3} * {1} + {4} * {2} = {0}".format(res[0], res[1], res[2], a, b))
3 * 2 + 5 * -1 = 1

Но также полезно и посмотреть, как будет работать расширенный алгоритм Евклида и на каком-нибудь конкретном примере. Пусть мы, например, хотим найти целочисленное решение такого уравнения: [116x + 44y = 4] [(2times44+28)x + 44y = 4] [44(2x+y) + 28x = 4] [44x_0 + 28y_0 = 4] Следовательно, [x = y_0, y = x_0 – 2y_0] Будем повторять такой шаг несколько раз, получим такие уравнения: [116x + 44y = 4] [44x_0 + 28y_0 = 4, x = y_0, y = x_0 – 2y_0] [28x_1 + 16y_1 = 4, x_0 = y_1, y_0 = x_1 – y_1] [16x_2 + 12y_2 = 4, x_1 = y_2, y_1 = x_2 – y_2] [12x_3 + 4y_3 = 4, x_2 = y_3, y_2 = x_3 – y_3] [4x_4 + 0y_4 = 4, x_3 = y_4, y_3 = x_4 – 3 y_4] А теперь свернем обратно: [x_4 = 1, y_4 = 0] [x_3 = 0, y_3 =1] [x_2 = 1, y_2 =-1] [x_1 = -1, y_1 =2] [x_0 = 2, y_0 =-3] [x = -3, y =8]

Действительно, (116times(-3) + 44times8 = 4)

Задание

Решите задачу J из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34273

Операции по модулю

Выражение (a equiv b pmod m) означает, что остатки от деления (a) на (m) и (b) на (m) равны. Это выражение читается как «(a) сравнимо (b) по модулю (m)».

Еще это можно опрделить так: (a) сравнимо c (b) по модулю (m), если ((a – b)) делится на (m).

Все целые числа можно разделить на классы эквивалентности — два числа лежат в одном классе, если они сравнимы по модулю (m). Говорят, что мы работаем в «кольце остатков по модулю (m)», и в нем ровно (m) элементов: (0, 1, 2, cdots, m-1).

Сложение, вычитение и умножение по модулю определяются довольно интуитивно — нужно выполнить соответствующую операцию и взять остаток от деления.

С делением намного сложнее — поделить и взять по модулю не работает. Об этом подробнее поговорим чуть дальше.

a = 30
b = 50
mod = 71

print('{} + {} = {} (mod {})'.format(a, b, (a + b) % mod, mod))
print('{} - {} = {} (mod {})'.format(a, b, (a - b) % mod, mod)) # на C++ это может не работать, так как модуль от отрицательного числа берется странно
print('{} - {} = {} (mod {})'.format(a, b, (a - b + mod) % mod, mod)) # на C++ надо писать так, чтобы брать модулю от гарантированно неотрицательного числа
print('{} * {} = {} (mod {})'.format(a, b, (a * b) % mod, mod))
# print((a / b) % mod) # а как писать это, пока неясно
30 + 50 = 9 (mod 71)
30 - 50 = 51 (mod 71)
30 - 50 = 51 (mod 71)
30 * 50 = 9 (mod 71)

Задание

Посчитайте: * (2 + 3 pmod 5) * (2 * 3 pmod 5) * (2 ^ 3 pmod 5) * (2 – 4 pmod 5) * (5 + 5 pmod 6) * (2 * 3 pmod 6) * (3 * 3 pmod 6)

Для умножения (в C++) нужно ещё учитывать следующий факт: при переполнении типа всё ломается (разве что если вы используете в качестве модуля степень двойки).

  • int вмещает до (2^{31} – 1 approx 2 cdot 10^9).
  • long long вмещает до (2^{63} – 1 approx 8 cdot 10^{18}).
  • long long long в плюсах нет, при попытке заиспользовать выдает ошибку long long long is too long.
  • Под некоторыми компиляторами и архитектурами доступен int128, но не везде и не все функции его поддерживают (например, его нельзя вывести обычными методами).

Зачем нужно считать ответ по модулю

Очень часто в задаче нужно научиться считать число, которое в худшем случае гораздо больше, чем (10^{18}). Тогда, чтобы не заставлять вас писать длинную арифметику, автор задачи часто просит найти ответ по модулю большого числа, обычно (10^9 + 7)

Кстати, вместо того, чтобы писать (1000000007) удобно просто написать (1e9 + 7). (1e9) означает (1 times 10^9)

int mod = 1e9 + 7; # В C++
cout << mod;
1000000007
N = 1e9 + 7 # В питоне такое число становится float
print(N)
print(int(N))
1000000007.0
1000000007

Быстрое возведение в степень

Задача: > Даны натуральные числа (a, b, c < 10^9). Найдите (a^b) (mod (c)).

Мы хотим научиться возводить число в большую степень быстро, не просто умножая (a) на себя (b) раз. Требование на модуль здесь дано только для того, чтобы иметь возможность проверить правильность алгоритма для чисел, которые не влезают в int и long long.

Сам алгоритм довольно простой и рекурсивный, постарайтесь его придумать, решая вот такие примеры (прямо решать необязательно, но можно придумать, как посчитать значение этих чисел очень быстро):

  • (3^2)
  • (3^4)
  • (3^8)
  • (3^{16})
  • (3^{32})
  • (3^{33})
  • (3^{66})
  • (3^{132})
  • (3^{133})
  • (3^{266})
  • (3^{532})
  • (3^{533})
  • (3^{1066})

Да, здесь специально приведена такая последовательность, в которой каждое следующее число легко считается через предыдущее: его либо нужно умножить на (a=3), либо возвести в квадрат. Так и получается рекурсивный алгоритм:

  • (a^0 = 1)
  • (a^{2k}=(a^{k})^2)
  • (a^{2k+1}=a^{2k}times a)

Нужно только после каждой операции делать mod: * (a^0 pmod c = 1) * (a^{2k} pmod c = (a^{k} pmod c)^2 pmod c) * (a^{2k+1} pmod c = ((a^{2k}pmod c) times a) pmod c)

Этот алгоритм называется быстрое возведение в степень. Он имеет много применений: * в криптографии очень часто надо возводить число в большую степень по модулю * используется для деления по простому модулю (см. далее) * можно быстро перемножать не только числа, но еще и матрицы (используется для динамики, например)

Асимптотика этого алгоритма, очевидно, (O(log c)) – за каждые две итерации число уменьшается хотя бы в 2 раза.

Задание

Решите задачу K из этого контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34271

Задание

Решите как можно больше задач из практического контеста:

https://informatics.msk.ru/mod/statements/view.php?id=34273

Деление по модулю*

Давайте все-таки научимся не только умножать, но и делить по простому модулю. Вот только что это значит?

(a / b) = (a times b^{-1}), где (b^{-1}) – это обратный элемент к (b).

Определение: (b^{-1}) – это такое число, что (bb^{-1} = 1)

Утверждение: в кольце остатков по простому модулю (p) у каждого остатка (кроме 0) существует ровно один обратный элемент.

Например, обратный к (2) по модулю (5) это (3) ((2 times 3 = 1 pmod 5)))

Задание

Найдите обратный элемент к: * числу (3) по модулю (5) * числу (3) по модулю (7) * числу (1) по модулю (7) * числу (2) по модулю (3) * числу (9) по модулю (31)

Давайте докажем это утверждение: надо заметить, что если каждый ненулевой остаток (1, 2, ldots, (p-1)) умножить на ненулевой остаток (a), то получатся числа (a, 2a, ldots, (p-1)a) – и они все разные! Они разные, потому что если (xa = ya), то ((x-y)a = 0), а значит ((x – y) a) делится на (p), (a) – ненулевой остаток, а значит (x = y), и это не разные числа. И из того, что все числа получились разными, это все ненулевые, и их столько же, следует, что это ровно тот же набор чисел, просто в другом порядке!

Из этого следует, что среди этих чисел есть (1), причем ровно один раз. А значит существует ровно один обратный элемент (a^{-1}). Доказательство закончено.

Это здорово, но этот обратный элемент еще хочется быстро находить. Быстрее, чем за (O(p)).

Есть несколько способов это сделать.

Через малую теорему Ферма

Малая теорема Ферма: > (a^{p-1} = 1 pmod p), если (p) – простое, (a neq 0 pmod p)).

Доказательство: В предыдущем пункте мы выяснили, что множества чисел (1, 2, ldots, (p-1)) и (a, 2a, ldots, (p-1)a) совпадают. Из этого следует, что их произведения тоже совпадают по модулю: ((p-1)! = a^{p-1} (p-1)! pmod p).

((p-1)!neq 0 pmod p) а значит на него можно поделить (это мы кстати только в предыдущем пункте доказали, поделить на число – значит умножить на обратный к нему, который существует).

А значит, (a^{p – 1} = 1 pmod p).

Как это применить Осталось заметить, что из малой теоремы Ферма сразу следует, что (a^{p-2}) – это обратный элемент к (a), а значит мы свели задачу к возведению (a) в степень (p-2), что благодаря быстрому возведению в степень мы умеем делать за (O(log p)).

Обобщение У малой теоремы Ферма есть обобщение для составных (p):

Теорема Эйлера: > (a^{varphi(p)} = 1 pmod p), (a) – взаимно просто с (p), а (varphi(p)) – это функция Эйлера (количество чисел, меньших (p) и взаимно простых с (p)).

Доказывается теорема очень похоже, только вместо ненулевых остатков (1, 2, ldots, p-1) нужно брать остатки, взаимно простые с (p). Их как раз не (p-1), а (varphi(p)).

Для нахождения обратного по этой теореме достаточно посчитать функцию Эйлера (varphi(p)) и найти (a^{-1} = a^{varphi(p) – 1}).

Но с этим возникают большие проблемы: посчитать функцию Эйлера сложно. Более того, на предполагаемой невозможности быстро ее посчитать построены некоторые криптографические алгоритм типа RSA. Поэтому быстро делить по составному модулю этим способом не получится.

Через расширенный алгоритм Евклида

Этим способом легко получится делить по любому модулю! Рекомендую.

Пусть мы хотим найти (a^{-1} pmod p), (a) и (p) взаимно простые (а иначе обратного и не будет существовать).

Давайте найдем корни уравнения

[ax + py = 1]

Они есть и находятся расширенным алгоритмом Евклида за (O(log p)), так как (НОД(a, p) = 1), ведь они взаимно простые.

Тогда если взять остаток по модулю (p):

[ax = 1 pmod p]

А значит, найденный (x) и будет обратным элементом к (a).

То есть надо просто найти (x) из решения того уравнения по модулю (p). Можно брать по модулю прямо походу решения уравнения, чтобы случайно не переполниться.

Рассмотрим два основных метода нахождения НОД двумя основными способами: с использованием алгоритма Евклида и путем разложения на простые множители. Применим оба метода для двух, трех и большего количества чисел.

Алгоритм Евклида для нахождения НОД

Алгоритм Евклида позволяет с легкостью вычислить наибольший общий делитель для двух положительных чисел. Формулировки и доказательство алгоритма Евклида мы привели в разделе «Наибольший общий делитель: определитель, примеры».

Суть алгоритма заключается в том, чтобы последовательно проводить деление с остатком, в ходе которого получается ряд равенств вида:

a=b·q1+r1, 0<r1<bb=r1·q2+r2, 0<r2<r1r1=r2·q3+r3, 0<r3<r2r2=r3·q4+r4, 0<r4<r3⋮rk-2=rk-1·qk+rk, 0<rk<rk-1rk-1=rk·qk+1

Мы можем закончить деление тогда, когда rk+1=0, при этом rk=НОД(a, b).

Пример 1

Найдите наибольший общий делитель чисел 64 и 48.

Решение

Введем обозначения: a=64, b=48.

На основе алгоритма Евклида проведем деление 64 на 48.

Получим 1 и остаток 16. Получается, что q1=1, r1=16.

Вторым шагом разделим 48 на 16, получим 3. То есть q2=3, а r2=0. Таким образом число 16 – это наибольший общий делитель для чисел из условия.

Ответ: НОД(64, 48)=16.

Пример 2

Чему равен НОД чисел 111 и 432?

Решение

Делим 432 на 111. Согласно алгоритму Евклида получаем цепочку равенств 432=111·3+99, 111=99·1+12, 99=12·8+3, 12=3·4.

Таким образом, наибольший общий делитель чисел 111 и 432 – это 3.

Ответ: НОД(111, 432)=3.

Пример 3

Найдите наибольший общий делитель чисел 661 и 113.

Решение

Проведем последовательно деление чисел и получим НОД(661, 113)=1. Это значит, что 661 и 113 – это взаимно простые числа. Мы могли выяснить это до начала вычислений, если бы обратились к таблице простых чисел.

Ответ: НОД(661, 113)=1.

Нахождение НОД с помощью разложения чисел на простые множители

Для того, чтобы найти наибольший общий делитель двух чисел методом разложения на множители, необходимо перемножить все простые множители, которые получаются при разложении этих двух чисел и являются для них общими.

Пример 4

Если мы разложим числа 220 и 600 на простые множители, то получим два произведения: 220=2·2·5·11 и 600=2·2·2·3·5·5. Общими в этих двух произведениях будут множители 2,2 и 5. Это значит, что НОД(220, 600)=2·2·5=20.

Пример 5

Найдите наибольший общий делитель чисел 72 и 96.

Решение

Найдем все простые множители чисел 72 и 96:

72361893122233

96482412631222223

Общими для двух чисел простые множители: 2, 2, 2 и 3. Это значит, что НОД(72, 96)=2·2·2·3=24.

Ответ: НОД(72, 96)=24.

Правило нахождения наибольшего общего делителя двух чисел основано на свойствах наибольшего общего делителя, согласно которому НОД(m·a1, m·b1)=m·НОД(a1, b1), где m– любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Независимо  от количества чисел, для которых нам нужно найти НОД, мы будем действовать по одному и тому же алгоритму, который заключается в последовательном нахождении НОД двух чисел. Основан этот алгоритм на применении следующей теоремы: НОД нескольких чисел a1, a2, …, ak равен числу dk, которое находится при последовательном вычислении НОД(a1, a2)=d2, НОД(d2, a3)=d3, НОД(d3, a4)=d4, …, НОД(dk-1, ak)=dk.

Пример 6

Найдите наибольший общий делитель четырех чисел 78, 294, 570 и 36.

Решение

Введем обозначения: a1=78, a2=294, a3=570, a4=36.

Начнем с того, что найдем НОД чисел 78 и 294: d2=НОД(78, 294)=6.

Теперь приступим к нахождению d3=НОД(d2, a3)=НОД(6, 570). Согласно алгоритму Евклида 570=6·95. Это значит, что d3=НОД(6, 570)=6.

Найдем d4=НОД(d3, a4)=НОД(6, 36). 36 делится на 6 без остатка. Это позволяет нам получить d4=НОД(6, 36)=6.

d4=6, то есть, НОД(78, 294, 570, 36)=6.

Ответ: НОД(78, 294, 570, 36)=6.

А теперь давайте рассмотрим еще один способ вычисления НОД для тех и большего количества чисел. Мы можем найти НОД, перемножив все общие простые множители чисел.

Пример 7

Вычислите НОД чисел 78, 294, 570 и 36.

Решение

Произведем разложение данных чисел на простые множители: 78=2·3·13, 294=2·3·7·7, 570=2·3·5·19, 36=2·2·3·3.

Для всех четырех чисел общими простыми множителями будут числа 2 и 3.

Получается, что НОД(78, 294, 570, 36)=2·3=6.

Ответ: НОД(78, 294, 570, 36)=6.

Нахождение НОД отрицательных чисел

Если нам приходится иметь дело с отрицательными числами, то для нахождения наибольшего общего делителя мы можем воспользоваться модулями этих чисел. Мы можем так поступить, зная свойство чисел с противоположными знаками: числа n и -n имеют одинаковые делители.

Пример 8

Найдите НОД отрицательных целых чисел −231 и −140.

Решение

Для выполнения вычислений возьмем модули чисел, данных в условии. Это будут числа 231 и 140. Запишем это кратко: НОД(−231, −140)=НОД(231, 140). Теперь применим алгоритм Евклида для нахождения простых множителей двух чисел: 231=140·1+91; 140=91·1+49; 91=49·1+42; 49=42·1+7 и 42=7·6. Получаем, что НОД(231, 140)=7.

А так как НОД(−231, −140)=НОД(231, 140), то НОД чисел −231 и −140 равен 7.

Ответ: НОД(−231, −140)=7.

Пример 9

Определите НОД трех чисел −585, 81 и −189.

Решение

Заменим отрицательные числа в приведенном перечне на их абсолютные величины, получим  НОД(−585, 81, −189)=НОД(585, 81, 189). Затем разложим все данные числа на простые множители: 585=3·3·5·13, 81=3·3·3·3 и 189=3·3·3·7. Общими для трех чисел являются простые множители 3 и 3. Получается , что НОД(585, 81, 189)=НОД(−585, 81, −189)=9.

Ответ: НОД(−585, 81, −189)=9.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Для этого термина существует аббревиатура «НОД», которая имеет и другие значения, см. Нод.

Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей[1]. Пример: для чисел 54 и 24 наибольший общий делитель равен 6.

Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не равно нулю.

Возможные обозначения наибольшего общего делителя чисел m и n:

Понятие наибольшего общего делителя естественным образом обобщается на наборы из более чем двух целых чисел.

Связанные определения[править | править код]

Наименьшее общее кратное[править | править код]

Наименьшее общее кратное (НОК) двух целых чисел m и n — это наименьшее натуральное число, которое делится на m и n (без остатка). Обозначается НОК(m,n) или [m,n], а в английской литературе {mathrm  {lcm}}(m,n).

НОК для ненулевых чисел m и n всегда существует и связан с НОД следующим соотношением:

(m,n)cdot [m,n]=mcdot n

Это частный случай более общей теоремы: если a_{1},a_{2},dots ,a_{n} — ненулевые числа, D — какое-либо их общее кратное, то имеет место формула:

D=[a_{1},a_{2},dots ,a_{n}]cdot left({frac  {D}{a_{1}}},{frac  {D}{a_{2}}},dots ,{frac  {D}{a_{n}}}right)

Взаимно простые числа[править | править код]

Числа m и n называются взаимно простыми, если у них нет общих делителей, кроме pm 1. Для таких чисел НОД{displaystyle (m,n)=1}. Обратно, если НОД{displaystyle (m,n)=1,} то числа взаимно просты.

Аналогично, целые числа a_{1},a_{2},dots a_{k}, где kgeq 2, называются взаимно простыми, если их наибольший общий делитель равен единице.

Следует различать понятия взаимной простоты, когда НОД набора чисел равен 1, и попарной взаимной простоты, когда НОД равен 1 для каждой пары чисел из набора. Из попарной простоты вытекает взаимная простота, но не наоборот. Например, НОД(6,10,15) = 1, но любые пары из этого набора не взаимно просты.

Способы вычисления[править | править код]

Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм.

Кроме того, значение НОД(m,n) можно легко вычислить, если известно каноническое разложение чисел m и n на простые множители:

n=p_{1}^{{d_{1}}}cdot dots cdot p_{k}^{{d_{k}}},
m=p_{1}^{{e_{1}}}cdot dots cdot p_{k}^{{e_{k}}},

где p_{1},dots ,p_{k} — различные простые числа, а d_{1},dots ,d_{k} и e_{1},dots ,e_{k} — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД(n,m) и НОК[n,m] выражаются формулами:

(n,m)=p_{1}^{{min(d_{1},e_{1})}}cdot dots cdot p_{k}^{{min(d_{k},e_{k})}},
[n,m]=p_{1}^{{max(d_{1},e_{1})}}cdot dots cdot p_{k}^{{max(d_{k},e_{k})}}.

Если чисел более двух: a_{1},a_{2},dots a_{n}, их НОД находится по следующему алгоритму:

d_{2}=(a_{1},a_{2})
d_{3}=(d_{2},a_{3})

………
d_{n}=(d_{{n-1}},a_{n}) — это и есть искомый НОД.

Свойства[править | править код]

  • Основное свойство: наибольший общий делитель m и n делится на любой общий делитель этих чисел. Пример: для чисел 12 и 18 наибольший общий делитель равен 6; он делится на все общие делители этих чисел: 1, 2, 3, 6.
  • Если m делится на n, то НОД(m, n) = n. В частности, НОД(n, n) = n.
  • {displaystyle (a,b)=(a-b,b)}. В общем случае, если {displaystyle a=b*q+c}, где {displaystyle a,b,c,q} – целые числа, то {displaystyle (a,b)=(b,c)}.
  • (acdot m,acdot n)=|a|cdot (m,n) — общий множитель можно выносить за знак НОД.
  • Если D=(m,n), то после деления на D числа становятся взаимно простыми, то есть, left({{frac  {m}{D}},{frac  {n}{D}}}right)=1. Это означает, в частности, что для приведения дроби к несократимому виду надо разделить её числитель и знаменатель на их НОД.
  • Мультипликативность: если a_{1},a_{2} взаимно просты, то:
(a_{1}cdot a_{2},b)=(a_{1},b)cdot (a_{2},b)
left{acdot m+bcdot nmid a,bin mathbb{Z } right}
и поэтому (m,n) представим в виде линейной комбинации чисел m и n:

(m,n)=ucdot m+vcdot n.
Это соотношение называется соотношением Безу, а коэффициенты u и v — коэффициентами Безу. Коэффициенты Безу эффективно вычисляются расширенным алгоритмом Евклида. Это утверждение обобщается на наборы натуральных чисел — его смысл в том, что подгруппа группы mathbb {Z} , порождённая набором {a_{1},a_{2},dots ,a_{n}}, — циклическая и порождается одним элементом: НОД(a1, a2, … , an).

Вариации и обобщения[править | править код]

Понятие делимости целых чисел естественно обобщается на произвольные коммутативные кольца, такие, как кольцо многочленов или гауссовы целые числа. Однако, определить НОД(a, b) как наибольший из общих делителей a, b нельзя, так как в таких кольцах, вообще говоря, не определено отношение порядка. Поэтому в качестве определения НОД берётся его основное свойство:

Наибольшим общим делителем НОД(a, b) называется тот общий делитель, который делится на все остальные общие делители a и b.

Для натуральных чисел новое определение эквивалентно старому. Для целых чисел НОД в новом смысле уже не однозначен: противоположное ему число тоже будет НОД. Для гауссовых чисел число различных НОД возрастает до 4.

НОД двух элементов коммутативного кольца, вообще говоря, не обязан существовать. Например, для нижеследующих элементов a и b кольца {mathbb  {Z}}left[{sqrt  {-3}}right] не существует наибольшего общего делителя:

a=4=2cdot 2=left(1+{sqrt  {-3}}right)left(1-{sqrt  {-3}}right),qquad b=left(1+{sqrt  {-3}}right)cdot 2.

В евклидовых кольцах наибольший общий делитель всегда существует и определён с точностью до делителей единицы, то есть количество НОД равно числу делителей единицы в кольце.

См. также[править | править код]

  • Бинарный алгоритм вычисления НОД
  • Делимость
  • Алгоритм Евклида
  • Наименьшее общее кратное

Литература[править | править код]

  • Виноградов И. М. Основы теории чисел. М.-Л.: Гос. изд. технико-теоретической литературы, 1952, 180 с.

Примечания[править | править код]

  1. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. страница 857

Наибольшим общим делителем (НОД) двух целых чисел называется наибольший из их общих делителей. К примеру для чисел 12 и 8, наибольшим общим делителем будет 4.

Как найти НОД?

Способов найти НОД несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОД при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители (подробнее о разложении чисел на простые множители смотрите тут);
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Примеры нахождения наибольшего общего делителя

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОД 12 и 8

1. Раскладываем 12 и 8 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 2 и 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (8; 12) = 2 · 2 = 4.

Пример 2: найти НОД 75 и 150

Этот пример, как и предыдущий с легкостью можно высчитать в уме и вывести ответ 75, но для лучшего понимания работы алгоритма, проделаем все шаги:

1. Раскладываем 75 и 150 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 3, 5 и 5

3. Перемножаем эти множители и получаем: 3 · 5 · 5 = 75

Ответ: НОД (75; 150) = 3 · 5 · 5 = 75.

Частный случай или взаимно простые числа

Нередко встречаются ситуации, когда оба числа взаимно простые, т.е. общий делитель равен единице. В этом случае, алгоритм будет выглядеть следующим образом:

Пример 3: найти НОД 9 и 5

1. Раскладываем 5 и 9 на простые множители:

Видим, что одинаковых множителей нет, а значит, что это частный случай (взаимно простые числа). Общий делитель — единица.

Добавить комментарий