Как найти нок своими словами

Наименьшее о́бщее кратное (HOK) двух целых чисел — это наименьшее натуральное число, которое делится на оба без остатка, то есть кратно им обоим. К примеру, для чисел 6 и 4, наименьшим общим кратным будет 12.

Как найти НОК?

Способов найти НОК несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОК при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Примеры нахождения наименьшего общего кратного

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОК 4 и 6

1. Раскладываем 6 и 4 на простые множители:

2. Возьмем первую группу множителей: 2 · 3.

3. Смотрим вторую группу (2 · 2) и видим, что из двух двоек, одна присутствует в первом разложении. Таким образом, берем только одну двойку. Добавляем к первому разложению и получаем: 2 · 3 · 2

4. Вычисляем произведение: 2 · 3 · 2 = 12.

Ответ: НОК (6; 4) = 12

Пример 2: найти НОК 32 и 20

1. Раскладываем 32 и 20 на простые множители:

2. Возьмем первую группу множителей: 2 · 2 · 2 · 2 · 2.

3. Смотрим вторую группу (2 · 2 · 5) и видим, что из двух двоек и пятерки, обе двойки присутствуют в первом разложении. Таким образом, берем только пятерку. Добавляем к первому разложению и получаем: 2 · 3 · 2

4. Вычисляем произведение: 2 · 2 · 2 · 2 · 2 · 5 = 160.

Ответ: НОК (32; 20) = 160

Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод. 

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.

Определение 1

Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК(a, b)=a·b:НОД(a, b).

Пример 1

Необходимо найти НОК чисел 126 и 70.

Решение

Начнем решать. Примем a=126, b=70. Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК(a, b)=a·b:НОД(a, b).

Найдем НОД чисел 70 и 126. Для этого нам понадобится алгоритм Евклида: 126=70·1+56, 70=56·1+14, 56=14·4, следовательно, NOD(126, 70)=14.

Вычислим НОК: НОК(126, 70)=126·70:НОД(126, 70)=126·70:14=630.

Ответ: NOC(126, 70)=630.

Пример 2

Найдите нок чисел 68 и 34.

Решение

Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34. Вычислим самое маленькое общее кратное по формуле: НОК(68, 34)=68·34:НОД(68, 34)=68·34:34=68.

Ответ: НОК(68, 34)=68.

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение. 

Определение 2

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК(a, b)=a·b:НОД(a, b). Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

Пример 3

У нас есть два числа 75 и 210. Мы можем разложить их на множители следующим образом: 75=3·5·5 и 210=2·3·5·7. Если составить произведение всех множителей двух исходных чисел, то получится: 2·3·3·5·5·5·7.

Если исключить общие для обоих чисел множители 3 и 5, мы получим произведение следующего вида: 2·3·5·5·7=1050. Это произведение и будет нашим НОК для чисел 75 и 210.

Пример 4

Найдите НОК чисел 441 и 700, разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

44114749713377

700350175357122557

Получаем две цепочки чисел: 441=3·3·7·7 и 700=2·2·5·5·7.

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2·2·3·3·5·5·7·7·7. Найдем общие множители. Это число 7. Исключим его из общего произведения: 2·2·3·3·5·5·7·7. Получается, что НОК(441, 700)=2·2·3·3·5·5·7·7=44 100.

Ответ: НОК(441, 700)= 44 100.

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Определение 3

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.
Пример 5

Вернемся к числам 75 и 210, для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75=3·5·5 и 210=2·3·5·7. К произведению множителей 3, 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210. Получаем: 2·3·5·5·7. Это и есть НОК чисел 75 и 210.

Пример 6

Необходимо вычислить НОК чисел 84 и 648.

Решение

Разложим числа из условия на простые множители: 84=2·2·3·7 и 648=2·2·2·3·3·3·3. Добавим к произведению множителей 2, 2, 3 и 7 числа 84 недостающие множители 2, 3, 3 и
3 числа 648. Получаем произведение 2·2·2·3·3·3·3·7=4536. Это и есть наименьшее общее кратное чисел 84 и 648​​​​​​ ​.

Ответ: НОК(84, 648)=4 536.

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теорема 1

Предположим, что у нас есть целые числа a1, a2, …, ak. НОК mk этих чисел находится при последовательном вычислении m2=НОК(a1, a2), m3=НОК(m2, a3), …, mk=НОК(mk−1, ak).

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Пример 7

Необходимо вычислить наименьшее общее кратное четырех чисел 140, 9, 54 и 250.

Решение задания

Введем обозначения: a1=140, a2=9, a3=54, a4=250.

Начнем с того, что вычислим m2=НОК(a1, a2)=НОК(140, 9). Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4. Получаем: НОД(140, 9)=1, НОК(140, 9)=140·9:НОД(140, 9)=140·9:1=1 260. Следовательно, m2=1 260.

Теперь вычислим по тому е алгоритму m3=НОК(m2, a3)=НОК(1 260, 54). В ходе вычислений получаем m3=3 780.

Нам осталось вычислить m4=НОК(m3, a4)=НОК(3 780, 250). Действуем по тому же алгоритму. Получаем m4=94 500.

НОК четырех чисел из условия примера равно 94500.

Ответ: НОК(140, 9, 54, 250)=94 500.

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Определение 4

Предлагаем вам следующий алгоритм действий: 

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.
Пример 8

Необходимо найти НОК пяти чисел 84, 6, 48, 7, 143.

Решение

Разложим все пять чисел на простые множители: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7, 143=11·13. Простые числа, которым является число 7, на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2, 2, 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3. Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48, из произведения простых множителей которого берем 2 и 2. Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2·2·2·2·3·7·11·13=48 048. Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК(84, 6, 48, 7, 143)=48 048.

Нахождение наименьшего общего кратного отрицательных чисел

Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Пример 9

НОК(54, −34)=НОК(54, 34), а НОК(−622, −46, −54, −888)=НОК(622, 46, 54, 888).

Такие действия допустимы в связи с тем, что если принять, что a и −a – противоположные числа,
то  множество кратных числа a совпадает со множеством кратных числа −a.

Пример 10

Необходимо вычислить НОК отрицательных чисел −145 и −45.

Решение

Произведем замену чисел −145 и −45 на противоположные им числа 145 и 45. Теперь по алгоритму вычислим НОК(145, 45)=145·45:НОД(145, 45)=145·45:5=1 305, предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел −145 и −45 равно 1 305.

Ответ: НОК(−145, −45)=1 305.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Для того, чтобы находить общий знаменатель
при
сложении
и
вычитании дробей с разными
знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).

Кратное числу «a» — это число, которое
само делится на число «a» без остатка.

Числа кратные 8
(то есть, эти числа разделятся на 8 без остатка):
это числа 16, 24, 32

Кратные 9: 18, 27, 36, 45

Чисел, кратных данному числу a бесконечно много, в отличии от делителей
этого же числа. Делителей —
конечное количество.

кратные и делители числа

Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело.

Запомните!
!

Наименьшим общим кратным (НОК) двух и более натуральных
чисел называется наименьшее натуральное число, которое само
делится нацело на каждое из этих чисел.

Как найти НОК

НОК можно найти и записать двумя способами.

Первый способ нахождения НОК

Данный способ обычно применяется для небольших чисел.

  1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое
    для обоих чисел.
  2. Кратное числа «a»
    обозначаем большой буквой «К».

    К (a) = {…, …}

Пример. Найти НОК 6 и 8.

К (6) = {12, 18, 24, 30, …}

К (8) = {8, 16, 24, 32, …}

НОК (6, 8) = 24

Второй способ нахождения НОК

Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.

  1. Разложить данные числа на простые множители.
    Подробнее правила разложения на
    простые множители вы можете прочитать в теме
    как найти наибольший общий делитель (НОД).
    разложение чисел на простые множители
  2. Выписать в строчку множители, входящие в разложение
    самого большого из чисел, а под ним —
    разложение остальных чисел.

    Запомните!
    !

    Количество одинаковых множителей в разложениях чисел может быть разное.

    60 = 2 · 2 · 3 · 5

    24 = 2 · 2 · 2 · 3

  3. Подчеркнуть в разложении
    меньшего числа (меньших чисел) множители,
    которые не вошли в разложение бóльшего числа
    (в нашем примере это 2) и добавить эти множители в разложение бóльшего числа.

    НОК (24, 60) = 2 · 2 · 3 · 5 · 2
  4. Полученное произведение записать в ответ.

    Ответ: НОК (24, 60) = 120

Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24).

пример нахождения наименьшего общего кратного (НОК)
24 = 2 · 2 · 2 · 3

16 = 2 · 2 · 2 · 2

12 = 2 · 2 · 3

Как видим из разложения чисел, все множители 12 вошли в
разложение 24
(самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из
разложения числа 16.

НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48

Ответ: НОК (12, 16, 24) = 48

Особые случаи нахождения НОК

  1. Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.

    Например, НОК (60, 15) = 60

  2. Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее
    кратное равно произведению этих чисел.

    Пример.

    НОК (8, 9) = 72


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

5 сентября 2020 в 15:37

Елена Елена
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Елена Елена
Профиль
Благодарили: 0

Сообщений: 1

НОК(360,102)

0
Спасибоthanks
Ответить

6 сентября 2020 в 13:42
Ответ для Елена Елена

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


360 = 2· 3· 5;    102 = 2 · 3 · 17.
НОК(360; 102) = 2· 3· 5 · 17  = …

0
Спасибоthanks
Ответить

30 мая 2018 в 17:34

Тамара Татарникова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Тамара Татарникова
Профиль
Благодарили: 0

Сообщений: 1

Найдите четырёхзначное число, которое кратно 24, а произведение цифр этого числа равно 16, в ответ дайте какое-нибудь одно число.
Я написала 1242, но 1242 при делении на 24 дает в ответе 51,75 будет ли это верным ответом?

0
Спасибоthanks
Ответить

3 июня 2018 в 1:58
Ответ для Тамара Татарникова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


1128  1224  8112

0
Спасибоthanks
Ответить

29 ноября 2016 в 14:47

Анвар Тынайбеков
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Анвар Тынайбеков
Профиль
Благодарили: 0

Сообщений: 1

НОК(344и170)=

0
Спасибоthanks
Ответить

2 декабря 2016 в 8:23
Ответ для Анвар Тынайбеков

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197

1
Спасибоthanks
Ответить

15 февраля 2016 в 19:02

Кирилл Журавлёв
(^-^)
Профиль
Благодарили: 1

Сообщений: 3

(^-^)
Кирилл Журавлёв
Профиль
Благодарили: 1

Сообщений: 3

число 123 454 321 делится на 11 111. найдите нок этих чисел 

1
Спасибоthanks
Ответить

15 февраля 2016 в 19:08
Ответ для Кирилл Журавлёв

Кирилл Журавлёв
(^-^)
Профиль
Благодарили: 1

Сообщений: 3

(^-^)
Кирилл Журавлёв
Профиль
Благодарили: 1

Сообщений: 3


12132211

0
Спасибоthanks
Ответить

19 сентября 2016 в 12:55
Ответ для Кирилл Журавлёв

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Здесь подробно описано нахождение НОК.

А в супер-решателе можно себя проверить.

0
Спасибоthanks
Ответить

15 февраля 2016 в 18:51

Кирилл Журавлёв
(^-^)
Профиль
Благодарили: 1

Сообщений: 3

(^-^)
Кирилл Журавлёв
Профиль
Благодарили: 1

Сообщений: 3

ЧИСЛО 123 454 321 ДЕЛИТСЯ 11 111. НАЙДИТЕ НОК ЭТИХ ЧИСЕЛ НЕ ВЫПОЛНЯЯ РАЗЛОЖЕНИЯ ЧИСЕЛ НА ПРОСТЫЕ МНОЖИТЕЛИ

0
Спасибоthanks
Ответить

19 сентября 2016 в 12:56
Ответ для Кирилл Журавлёв

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197

0
Спасибоthanks
Ответить

27 января 2016 в 18:15

Lera Kuchinskaya
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Lera Kuchinskaya
Профиль
Благодарили: 0

Сообщений: 1

НОК 100 150 250cry

0
Спасибоthanks
Ответить

27 января 2016 в 22:36
Ответ для Lera Kuchinskaya

Виктория Казимирова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Виктория Казимирова
Профиль
Благодарили: 0

Сообщений: 1


А что за цифры!!!? 

0
Спасибоthanks
Ответить

28 января 2016 в 16:00
Ответ для Lera Kuchinskaya

Anton Wuckert
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Anton Wuckert
Профиль
Благодарили: 0

Сообщений: 1


НОК = 1500

0
Спасибоthanks
Ответить

19 сентября 2016 в 11:42
Ответ для Lera Kuchinskaya

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Для решения можно воспользоваться решателем на сайте.

0
Спасибоthanks
Ответить

22 января 2016 в 13:46

Андрей Алексеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Андрей Алексеев
Профиль
Благодарили: 0

Сообщений: 1

числа 4,5,6,7,10,12,15,16,20,50, которые являются делителями 24 и кратными 2

0
Спасибоthanks
Ответить

23 января 2016 в 13:33
Ответ для Андрей Алексеев

Александра Сирота
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Александра Сирота
Профиль
Благодарили: 0

Сообщений: 2


ОТВЕТ: 4 и 12

0
Спасибоthanks
Ответить

24 января 2016 в 13:41
Ответ для Андрей Алексеев

Инна Шабрашина
(^-^)
Профиль
Благодарили: 0

Сообщений: 5

(^-^)
Инна Шабрашина
Профиль
Благодарили: 0

Сообщений: 5


6 ,2,  12

0
Спасибоthanks
Ответить

25 января 2016 в 19:52
Ответ для Андрей Алексеев

Нелия Ахмедова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Нелия Ахмедова
Профиль
Благодарили: 0

Сообщений: 1


6,12.

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:59
Ответ для Андрей Алексеев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Чтобы не запутаться, необходимо каждое из чисел проверить на оба условия: 
1) 4 — 24/4=6 — делитель 24. 4/2=2 — кратно 2.
2) 5 — 24/5=не делится без остатка — не делитель. 5/2 — не делится без остатка — не кратно 2.
И так далее.
Ответ: 4,6,12.

0
Спасибоthanks
Ответить

23 декабря 2015 в 17:00

Евгений Мухамедшин
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Евгений Мухамедшин
Профиль
Благодарили: 0

Сообщений: 1

1) (4/15+5/8)-3/5

2)  (1/5+13/16)-9/20

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:01
Ответ для Евгений Мухамедшин

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Для нахождения НОК можно воспользоваться супер-решателем. Раскрываем скобки и приводим к общему знаменателю.
1) ===0
2) ===   

0
Спасибоthanks
Ответить

17 ноября 2015 в 6:29

Светлана Каблучко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Светлана Каблучко
Профиль
Благодарили: 0

Сообщений: 1

запишите числа удовлетворяющие двойное неравенство 354<х<361 если известно что они кратны 2,5,10

0
Спасибоthanks
Ответить

24 ноября 2015 в 17:56
Ответ для Светлана Каблучко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


360

0
Спасибоthanks
Ответить


Продолжаем изучать деление. В данном уроке мы рассмотрим такие понятия, как НОД и НОК.

НОД — это наибольший общий делитель.

НОК — это наименьшее общее кратное.

Тема довольно скучная, но разобраться в ней нужно обязательно. Не понимая этой темы, не получится эффективно работать с дробями, которые являются настоящей преградой в математике.

Наибольший общий делитель

Определение. Наибольшим общим делителем чисел a и b называется наибольшее число, на которое a и b делятся без остатка.

Чтобы хорошо понять это определение, подставим вместо переменных a и b любые два числа. Например, вместо переменной a подставим число 12, а вместо переменной b — число 9. Теперь попробуем прочитать это определение:

Наибольшим общим делителем чисел 12 и 9 называется наибольшее число, на которое 12 и 9 делятся без остатка.

Из определения понятно, что речь идёт об общем делителе чисел 12 и 9. Причем делитель является наибольшим из всех существующих делителей. Этот наибольший общий делитель (НОД) нужно найти.

Для нахождения наибольшего общего делителя двух чисел, используется три способа. Первый способ довольно трудоёмкий, но зато позволяет хорошо понять суть темы и прочувствовать весь ее смысл.

Второй и третий способы довольны просты и дают возможность быстро найти НОД. Рассмотрим все три способа. А какой применять на практике — выбирать вам.

Первый способ заключается в поиске всех возможных делителей двух чисел и в выборе наибольшего из них. Рассмотрим этот способ на следующем примере: найти наибольший общий делитель чисел 12 и 9.

Сначала найдём все возможные делители числа 12. Для этого разделим 12 на все делители в диапазоне от 1 до 12. Если делитель позволит разделить 12 без остатка, то мы будем выделять его синим цветом и в скобках делать соответствующее пояснение.

12 : 1 = 12
(12 разделилось на 1 без остатка, значит 1 является делителем числа 12)

12 : 2 = 6
(12 разделилось на 2 без остатка, значит 2 является делителем числа 12)

12 : 3 = 4
(12 разделилось на 3 без остатка, значит 3 является делителем числа 12)

12 : 4 = 3
(12 разделилось на 4 без остатка, значит 4 является делителем числа 12)

12 : 5 = 2 (2 в остатке)
(12 не разделилось на 5 без остатка, значит 5 не является делителем числа 12)

12 : 6 = 2
(12 разделилось на 6 без остатка, значит 6 является делителем числа 12)

12 : 7 = 1 (5 в остатке)
(12 не разделилось на 7 без остатка, значит 7 не является делителем числа 12)

12 : 8 = 1 (4 в остатке)
(12 не разделилось на 8 без остатка, значит 8 не является делителем числа 12)

12 : 9 = 1 (3 в остатке)
(12 не разделилось на 9 без остатка, значит 9 не является делителем числа 12)

12 : 10 = 1 (2 в остатке)
(12 не разделилось на 10 без остатка, значит 10 не является делителем числа 12)

12 : 11 = 1 (1 в остатке)
(12 не разделилось на 11 без остатка, значит 11 не является делителем числа 12)

12 : 12 = 1
(12 разделилось на 12 без остатка, значит 12 является делителем числа 12)

Теперь найдём делители числа 9. Для этого проверим все делители от 1 до 9

9 : 1 = 9
(9 разделилось на 1 без остатка, значит 1 является делителем числа 9)

9 : 2 = 4 (1 в остатке)
(9 не разделилось на 2 без остатка, значит 2 не является делителем числа 9)

9 : 3 = 3
(9 разделилось на 3 без остатка, значит 3 является делителем числа 9)

9 : 4 = 2 (1 в остатке)
(9 не разделилось на 4 без остатка, значит 4 не является делителем числа 9)

9 : 5 = 1 (4 в остатке)
(9 не разделилось на 5 без остатка, значит 5 не является делителем числа 9)

9 : 6 = 1 (3 в остатке)
(9 не разделилось на 6 без остатка, значит 6 не является делителем числа 9)

9 : 7 = 1 (2 в остатке)
(9 не разделилось на 7 без остатка, значит 7 не является делителем числа 9)

9 : 8 = 1 (1 в остатке)
(9 не разделилось на 8 без остатка, значит 8 не является делителем числа 9)

9 : 9 = 1
(9 разделилось на 9 без остатка, значит 9 является делителем числа 9)

Теперь выпишем делители обоих чисел. Числа выделенные синим цветом и являются делителями. Их и выпишем:

делители числа 12 и 9

Выписав делители, можно сразу определить какой является наибольшим и общим.

Согласно определению, наибольшим общим делителем чисел 12 и 9, является число, на которое 12 и 9 делятся без остатка. Наибольшим и общим делителем чисел 12 и 9 является число 3

делители числа 12 и 9 определение НОД

И число 12 и число 9 делятся на 3 без остатка:

12 : 3 = 4

9  : 3 = 3

Значит НОД (12 и 9) = 3


Второй способ нахождения НОД

Теперь рассмотрим второй способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, чтобы разложить оба числа на простые множители и перемножить общие из них.

Пример 1. Найти НОД чисел 24 и 18

Сначала разложим оба числа на простые множители:

разложение 24 и 18 на простые множители

Теперь перемножим их общие множители. Чтобы не запутаться, общие множители можно подчеркнуть.

Смотрим на разложение числа 24. Первый его множитель это 2. Ищем такой же множитель в разложении числа 18 и видим, что он там тоже есть. Подчеркиваем обе двойки:

нод 24 и 18 на простые множители шаг 2

Снова смотрим на разложение числа 24. Второй его множитель тоже 2. Ищем такой же множитель в разложении числа 18 и видим, что его там второй раз уже нет. Тогда ничего не подчёркиваем.

Следующая двойка в разложении числа 24 также отсутствует в разложении числа 18.

Переходим к последнему множителю в разложении числа 24. Это множитель 3. Ищем такой же множитель в разложении числа 18 и видим, что там он тоже есть. Подчеркиваем обе тройки:

нод 24 и 18 на простые множители шаг 3

Итак, общими множителями чисел 24 и 18 являются множители 2 и 3. Чтобы получить НОД, эти множители необходимо перемножить:

2 × 3 = 6

Значит НОД (24 и 18) = 6


Третий способ нахождения НОД

Теперь рассмотрим третий способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, что числа подлежащие поиску наибольшего общего делителя раскладывают на простые множители. Затем из разложения первого числа вычеркивают множители, которые не входят в разложение второго числа. Оставшиеся числа в первом разложении перемножают и получают НОД.

Пример 1. Найти НОД чисел 28 и 16.

В первую очередь, раскладываем числа 28 и 16 на простые множители:

разложение чисел 28 и 16

Получили два разложения: 2 на 2 на 7 и 2 на 2 на 2 на 2

Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит семёрка. Её и вычеркнем из первого разложения:

2 на 2 на 7 без 7

Теперь перемножаем оставшиеся множители и получаем НОД:

2 на 2 равно 4

Число 4 является наибольшим общим делителем чисел 28 и 16. Оба этих числа делятся на 4 без остатка:

28 : 4 = 7

16 : 4 = 4

 НОД (28 и 16) = 4


Пример 2. Найти НОД чисел 100 и 40

Раскладываем на множители число 100

разложение числа 100 на множители

Раскладываем на множители число 40

разложение числа 40 на множители

Получили два разложения: 2 × 2 × 5 × 5 и 2 × 2 × 2 × 5

Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит одна пятерка (там только одна пятёрка). Её и вычеркнем из первого разложения

2 на 2 на 5 на 5

Перемножим оставшиеся числа:

2 на 2 на 5 равно 20

Получили ответ 20. Значит число 20 является наибольшим общим делителем чисел 100 и 40. Эти два числа делятся на 20 без остатка:

100 : 20 = 5

40 : 20 = 2

 НОД (100 и 40) = 20.


Пример 3. Найти НОД чисел 72 и 128

Раскладываем на множители число 72

разложение числа 72 на множители

Раскладываем на множители число 128

разложение числа 128 на множителиПолучили два разложения: 2 × 2 × 2 × 3 × 3 и 2 × 2 × 2 × 2 × 2 × 2 × 2.

Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входят две тройки (там их вообще нет). Их и вычеркнем из первого разложения:

2 на 2 на 2 на 3 на 3

Перемножим оставшиеся числа:

2 на 2 на 2 равно 8

Получили ответ 8. Значит число 8 является наибольшим общим делителем чисел 72 и 128. Эти два числа делятся на 8 без остатка:

72 : 8 = 9

128 : 8 = 16

 НОД (72 и 128) = 8


Нахождение НОД для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел.

Например, найдём НОД для чисел 18,  24  и  36

Разложим на множители число 18

разложение числа 18 на множители

Разложим на множители число 24

разложение числа 24 на множители

Разложим на множители число 36

разложение числа 36 на множители

Получили три разложения:

разложения чисел 18 24 и 36

Теперь найдём и подчеркнём общие множители:

разложения чисел 18 24 и 36 шаг 2

Мы видим, что общие множители для чисел 18, 24 и 36 это множители 2 и 3. Эти множители входят во все три разложения. Перемножив эти множители, мы получим НОД, который ищем:

2 × 3 = 6

Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 18, 24 и 36. Эти три числа делятся на 6 без остатка:

18 : 6 = 3

24 : 6 = 4

36 : 6 = 6

 НОД (18, 24 и 36) = 6


Пример 2. Найти НОД для чисел 12, 24, 36 и 42

Разложим на простые множители каждое число. Затем найдём произведение общих простых множителей.

Разложим на множители число 12

разложение числа 12 на множители

Разложим на множители число 24

разложение числа 24 на множители

Разложим на множители число 36

разложение числа 36 на множители

Разложим на множители число 42

разложение числа 42 на множители

Получили четыре разложения:

разложения чисел 42 36 24 12 шаг 1

Теперь найдём и подчеркнём общие множители:

разложения чисел 42 36 24 12 шаг 2

Мы видим, что общие множители для чисел 12, 24, 36, и 42 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

2 × 3 = 6

Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 12, 24, 36 и 42. Эти числа делятся на 6 без остатка:

12 : 6 = 2

24 : 6 = 4

36 : 6 = 6

42 : 6 = 7

 НОД (12, 24 , 36 и 42) = 6


Наименьшее общее кратное

Из предыдущего урока мы знаем, что если какое-то число без остатка разделилось на другое, его называют кратным этого числа.

Оказывается, кратное может быть общим у нескольких чисел. И сейчас нас будет интересовать кратное двух чисел, причем оно должно быть максимально маленьким.

Определение. Наименьшее общее кратное (НОК) чисел a и b — это наименьшее число, которое кратно a и b. Другими словами, это такое маленькое число, которое делится без остатка на число a и число b.

Определение содержит две переменные a и b. Давайте подставим вместо этих переменных любые два числа. Например, вместо переменной a подставим число 9, а вместо переменной b подставим число 12. Теперь попробуем прочитать определение:

Наименьшее общее кратное (НОК) чисел 9 и 12 — это наименьшее число, которое кратно 9 и 12. Другими словами, это такое маленькое число, которое делится без остатка на число 9 и на число 12.

Из определения понятно, что наименьшее общее кратное это наименьшее число, которое делится без остатка на 9 и на 12. Это наименьшее общее кратное требуется найти.

Для нахождения наименьшего общего кратного (НОК) можно пользоваться тремя способами. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди этих кратных такое число, которое будет общим для обоих чисел и маленьким. Давайте применим этот способ.

В первую очередь, найдем первые кратные для числа 9. Чтобы найти кратные для 9, нужно эту девятку поочерёдно умножить на числа от 1 до 9. Получаемые ответы будут кратными для числа 9.

Итак, начнём. Кратные будем выделять синим цветом:

нахождение кратных числа 9 вручную

Теперь находим кратные для числа 12. Для этого поочерёдно умножим число 12 на все числа 1 до 12:

нахождение кратных числа 12 вручную

Теперь выпишем кратные обоих чисел:

-5 -1 i 4 на кп

Теперь найдём общие кратные обоих чисел. Найдя, сразу подчеркнём их:

кратные чисел 9 и 12 подчеркивание

Общими кратными для чисел 9 и 12 являются кратные 36 и 72. Наименьшим же из них является 36.

Значит наименьшее общее кратное для чисел 9 и 12 это число 36. Данное число делится на 9 и 12 без остатка:

36 : 9 = 4

36 : 12 = 3

НОК (9 и 12) = 36


Второй способ нахождения НОК

Второй способ заключается в том, что числа для которых ищется наименьшее общее кратное раскладываются на простые множители. Затем выписываются множители, входящие в первое разложение, и добавляют недостающие множители из второго разложения. Полученные множители перемножают и получают НОК.

Применим данный способ для предыдущей задачи. Найдём НОК для чисел 9 и 12.

Разложим на множители число 9

разложение числа 9 на множители

Разложим на множители число 12

Выпишем первое разложение:

3 на 3 на 2 на 2 шаг 1

Теперь допишем множители из второго разложения, которых нет в первом разложении. В первом разложении нет двух двоек. Их и допишем:

3 на 3 на 2 на 2 шаг 2

Теперь перемножаем эти множители:

3 на 3 на 2 на 2 шаг 3

Получили ответ 36. Значит наименьшее общее кратное чисел 9 и 12 это число 36. Данное число делится на 9 и 12 без остатка:

36 : 9 = 4

36 : 12 = 3

НОК (9 и 12) = 36

Говоря простым языком, всё сводится к тому, чтобы организовать новое разложение куда входят оба разложения сразу. Разложением первого числа 9 являлись множители 3 и 3, а разложением второго числа 12 являлись множители 2, 2 и 3.

Наша задача состояла в том, чтобы организовать новое разложение куда входило бы разложение числа 9 и разложение числа 12 одновременно. Для этого мы выписали разложение первого числа и дописали туда множители из второго разложения, которых не было в первом разложении. В результате получили новое разложение 3 × 3 × 2 × 2. Нетрудно увидеть воочию, что в него одновременно входят разложение числа 9 и разложение числа 12

Разложение чисел 9 и 12


Пример 2. Найти НОК чисел 50 и 180

Разложим на множители число 50

разложение числа 50 на множители

Разложим на множители число 180

разложение числа 180 на множители

Выпишем первое разложение:

255233 шаг 1

Теперь допишем множители из второго разложения, которых нет первом разложении. В первом разложении нет ещё одной двойки и двух троек. Их и допишем:

255233 шаг 2

Теперь перемножаем эти множители:

255233 шаг 3

Получили ответ 900. Значит наименьшее общее кратное чисел 50 и 180 это число 900. Данное число делится на 50 и 180 без остатка:

900 : 50 = 18

900 : 180 = 5

НОК (50 и 180) = 900


Пример 3. Найти НОК чисел 8, 15 и 33

Разложим на множители число 8

разложение числа 8 на множители

Разложим на множители число 15

разложение числа 15 на множители

Разложим на множители число 33

разложение числа 33 на множители

Выпишем первое разложение:

2223511 шаг 1

Теперь допишем множители из второго и третьего разложения, которых нет первом разложении. Допишем множители 3 и 5 из второго разложения, и множитель 11 из третьего разложения:

2223511 шаг 2

Теперь перемножаем эти множители:

2223511 шаг 3

Получили ответ 1320. Значит наименьшее общее кратное чисел 8, 15 и 33 это число 1320. Данное число делится на 8, 15 и 33 без остатка:

1320 : 8 = 165

1320 : 15 = 88

1320 : 33 = 40

НОК (8, 15 и 33) = 1320


Третий способ нахождения НОК

Есть и третий способ нахождения наименьшего общего кратного. Он работает при условии, что его ищут для двух чисел и при условии, что уже найден наибольший общий делитель этих чисел.

Данный способ разумнее использовать, когда одновременно нужно найти НОД и НОК двух чисел.

К примеру, пусть требуется найти НОД и НОК чисел 24 и 12. Сначала найдем НОД этих чисел:

нок для 24 и 12 для второго способа нахождения НОК step 1

Теперь для нахождения наименьшего общего кратного чисел 24 и 12, нужно перемножить эти два числа и полученный результат разделить на их наибольший общий делитель.

Итак, перемножим числа 24 и 12

нок для 24 и 12 для второго способа нахождения НОК step 2

Разделим полученное число 288 на НОД чисел 24 и 12

нок для 24 и 12 для второго способа нахождения НОК step 3

Получили ответ 24. Значит наименьшее общее кратное чисел 24 и 12 равно 24

НОК (24 и 12) = 24


Пример 2. Найти НОД и НОК чисел 36 и 48

Найдем НОД чисел 36 и 48

нок для 36 и 48 для второго способа нахождения НОК step 1

Перемножим числа 36 и 48

нок для 36 и 48 для второго способа нахождения НОК step 2

Разделим 1728 на НОД чисел 36 и 48

нок для 36 и 48 для второго способа нахождения НОК step 3

Получили 144. Значит наименьшее общее кратное чисел 36 и 48 равно 144

НОК (36 и 48) = 144

Для проверки можно найти НОК обычным вторым способом, которым мы пользовались ранее. Если мы всё сделали правильно, то должны получить 144

нок для 36 и 48 для второго способа нахождения НОК step 4

Не расстраивайтесь, если сразу не научитесь находить НОД и НОК. Главное понимать, что это такое и как оно работает. А ошибки вполне естественны на первых порах. Как говорят: «На ошибках учимся».


Задания для самостоятельного решения

Задание 1. Найдите НОД чисел 12 и 16

Решение:

Задание 2. Найдите НОК чисел 12 и 16

Решение:

Задание 3. Найдите НОД чисел 40 и 32

Решение:

Задание 4. Найдите НОК чисел 40 и 32

Решение:

Задание 5. Найдите НОД чисел 54 и 86

Решение:

Задание 6. Найдите НОК чисел 54 и 86

Решение:

Задание 7. Найдите НОД чисел 98 и 35

Решение:

Задание 8. Найдите НОК чисел 98 и 35

Решение:

Задание 9. Найдите НОД чисел 112 и 82

Решение:

Задание 10. Найдите НОК чисел 112 и 82

Решение:

Задание 11. Найдите НОД чисел 24, 48, 64

Решение:

Задание 12. Найдите НОК чисел 24, 48, 64

Решение:

Задание 13. Найдите НОД чисел 18, 48, 96

Решение:

Задание 14. Найдите НОК чисел 18, 48, 96

Решение:

Задание 15. Найдите НОД чисел 28, 24, 76

Решение:

Задание 16. Найдите НОК чисел 28, 24, 76

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Наименьшее общее кратное: как найти

Содержание:

  • Наименьшее общее кратное — что это такое
  • Вычисление НОК, правила в математике
  • Как найти НОК через НОД
  • Как найти НОК через разложение чисел
  • Нахождение НОК трех и большего количества чисел

Наименьшее общее кратное — что это такое

Определение

Число, которое можно без остатка разделить на выбранные числа, является их общим кратным. Наименьшее из таких чисел — наименьшее общее кратное или сокращенно «нок».

Действия с дробями, имеющими различный знаменатель, можно значительно облегчить, если найти наименьшее общее кратное (НОК). Это такое число, например, кратное числу а, которое можно разделить на это а целиком, без остатка.

Пример

К числам, кратным 8, относятся 16, 24, 32, 40 и т.п. Кратными 9-ти являются 9, 18, 27, 36 и т.п.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Существует бесчисленное множество чисел, делящихся на а без остатка, т.е. кратных ему. В то же время, этого нельзя сказать о числе делителей. Так, делителями для 9-ти являются 9, 3, 1.

Если для двух или более натуральных чисел существует число, делящееся на оба без остатка, то оно является наименьшим общим кратным. А то из, них, которое самое маленькое, является нок.

Вычисление НОК, правила в математике

Для нахождения нок в математике существует несколько правил или алгоритмов. Самый простой вариант — вычисление НОК для двух чисел-участников. Способ легкий, но приемлем для маленьких натуральных чисел.

Нужно составить ряды чисел, кратных каждому из выбранных значений.

Пример

К (4) — 4, 8, 12, 16, 20, 24;

К (6) — 6, 12, 18, 24, 30.

Из рядов видно, что в обоих рядах встречаются числа 12 и 24. Это общие кратные. Однако 12 из них — меньшее число.

Поэтому НОК (4, 6) — 12.

Как найти НОК через НОД

Определение НОК можно провести с использованием НОД (наибольшего общего делителя).

В этом блоке изложения материала следует уточнить некоторые понятия.

Определение

Простым называется такое натуральное число, которое целиком можно разделить только само на себя либо на единицу.

Наименьшим простым числом является двойка. Она же — единственное четное натуральное простое число. Все остальные — нечетные.

Множество чисел делятся не только на 1 и на себя, но и на другие целые натуральные числа:

8 делится на 1, 2, 4, 8;

36 — на 1, 2, 3, 4, 6, 8 и т.д.

Эти числа — делители восьми и тридцати шести (делимых). Именно они могут разделить 8 и 36 без остатка. В обоих приведенных примерах делимые (8, 36) являются составными числами, поскольку имеют более двух делителей.

В приведенных рядах существуют одинаковые делители. Это 1, 2, 4, 8.

Самое большое число — 8. Оно и является наибольшим общим делителем.

Определение

Наибольший общий делитель (НОД) — число, на которое без остатка делится выбранная пара (либо больше) чисел.

Пример

НОД (9, 45)=9

НОД (12, 48)=12

Бывают пары чисел, которые из общих делителей имеют только единицу. Тогда они называются взаимно простыми: НОД (9, 8)=1, НОД (12, 10)=1.

На следующем примере показаны пары чисел со значениями их НОД и НОК.

Нок

 

Решение задачи по нахождению НОК через НОД сводится к следующей формуле:

НОК чисел a,b равняется частному произведения a и b на наибольший общий делитель чисел a и b (по-другому НОД (a, b).

Исходя из этого заключения получается, что НОК и НОД взаимосвязаны друг с другом. Наименьшее общее кратное можно легко найти через наибольший общий делитель для двух или более натуральных чисел.

Как найти НОК через разложение чисел

Кроме составления рядов значений, кратных каждому из двух выбранных натуральных чисел, для правильного определения НОК пользуются методом разложения на множители.

Найденные простые множители первого разложения сравниваются с аналогичными из второго разложения, после чего они перемножаются.

Пример

После разложения числа 9 на простые множители получается ряд:

1, 3, 9.

После разложения 12-ти получается ряд:

1, 2, 3, 4, 6, 12.

После разложения на множители числа 9 получаем: 3*3. После разложения на множители 12-ти получаем: 2*2*3. Объединяя множители обеих вариантов, получаем произведение: 3*3*2*2=36.

Наименьшее общее кратное чисел 9 и 12 — 36.

В качестве проверки произведем действия:

  1. 36/12=3
  2. 9/3=3

На практике записывают: НОК (9, 12)=36.

Такими действиями можно найти НОК более сложных чисел.

Пример

Найти НОК чисел 50 и 180.

Число 50 делится на 1, 2, 5, 10, 25, 50.

Число 180 на: 1, 5, 15, 30, 45, 90, 180.

Разложив на множители 50, получаем: 2, 5, 5.

Разложив 180, получаем: 2, 2, 3, 3, 5.

Из первого разложения выписываем: 2*5*5. Сравнивая со вторым разложением, описываем одну двойку и две тройки. После перемножения полученного ряда получается произведение: 2*5*5*2*3*3=900. Это и есть наименьшее общее кратное чисел 50 и 180.

Следовательно, НОК (50, 180)=900.

Существует еще один быстрый способ находить НОК. Он приемлем для вариантов, когда одно число нацело делится на другое. Например: НОК (15, 30)=30, НОК (20, 80)=80, НОК (16, 48)=48.

Для случаев, когда у двух чисел не имеется общих делителей, их можно просто перемножить и получить НОК. Например, НОК (7, 8)=56, НОК (4, 9)=36, НОК (7, 9)=63.

Нахождение НОК трех и большего количества чисел

Если предстоит найти НОК для большего, чем 2, количества чисел, их нужно разложить на простые множители. Например,

32=2*2*2*2*2;

40=2*2*2*5;

80=2*2*2*2*5

Сравнивая множители в каждом случае разложения натуральных чисел и выстраивая их в один ряд для умножения, получаем, что НОК (32, 40, 80) = 2*2*2*2*2*5 = 160.

В математике принято для нахождения НОК трех и более чисел применять следующую теорему:

Если имеется ряд чисел (а1, а2, а3…аk), можно найти НОК mk этих чисел производя последовательные вычисления: m2=НОК (а1, а2), m3=НОК (а2, а3)… mk=НОК (mk-1, аk)

Пример

Дано задание вычислить НОК для чисел 140 (a1), 9 (a2), 54 (а3), 250 (а4).

Тогда m2=НОК (a1, a2)=НОК (140, 9).

Для нахождения НОК (140, 9) производим действия. 140=15*9+5; 9=5*1+4.

Последующее разложение: 5=4*1+1, 4=4*1.

Следовательно, НОД (140, 9)=1. НОК (140, 9)=140*9/НОД (140, 9)=140*9/1=1260.

Ответ: m2=1260

По аналогии вычисляем m3 (=3780) и m4 (=94500). Это и есть ответ решения задачи по нахождению НОК чисел 140, 9, 54, 250.

Добавить комментарий