Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод.
Вычисление наименьшего общего кратного (НОК) через НОД
Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.
Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК(a, b)=a·b:НОД(a, b).
Необходимо найти НОК чисел 126 и 70.
Решение
Начнем решать. Примем a=126, b=70. Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК(a, b)=a·b:НОД(a, b).
Найдем НОД чисел 70 и 126. Для этого нам понадобится алгоритм Евклида: 126=70·1+56, 70=56·1+14, 56=14·4, следовательно, NOD(126, 70)=14.
Вычислим НОК: НОК(126, 70)=126·70:НОД(126, 70)=126·70:14=630.
Ответ: NOC(126, 70)=630.
Найдите нок чисел 68 и 34.
Решение
Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34. Вычислим самое маленькое общее кратное по формуле: НОК(68, 34)=68·34:НОД(68, 34)=68·34:34=68.
Ответ: НОК(68, 34)=68.
В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.
Нахождение НОК с помощью разложения чисел на простые множители
Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение.
Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:
- составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
- исключаем их полученных произведений все простые множители;
- полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.
Этот способ нахождения наименьшего общего кратного основан на равенстве НОК(a, b)=a·b:НОД(a, b). Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.
У нас есть два числа 75 и 210. Мы можем разложить их на множители следующим образом: 75=3·5·5 и 210=2·3·5·7. Если составить произведение всех множителей двух исходных чисел, то получится: 2·3·3·5·5·5·7.
Если исключить общие для обоих чисел множители 3 и 5, мы получим произведение следующего вида: 2·3·5·5·7=1050. Это произведение и будет нашим НОК для чисел 75 и 210.
Найдите НОК чисел 441 и 700, разложив оба числа на простые множители.
Решение
Найдем все простые множители чисел, данных в условии:
44114749713377
700350175357122557
Получаем две цепочки чисел: 441=3·3·7·7 и 700=2·2·5·5·7.
Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2·2·3·3·5·5·7·7·7. Найдем общие множители. Это число 7. Исключим его из общего произведения: 2·2·3·3·5·5·7·7. Получается, что НОК(441, 700)=2·2·3·3·5·5·7·7=44 100.
Ответ: НОК(441, 700)= 44 100.
Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.
Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:
- разложим оба числа на простые множители:
- добавим к произведению простых множителей первого числа недостающие множители второго числа;
- получим произведение, которое и будет искомым НОК двух чисел.
Вернемся к числам 75 и 210, для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75=3·5·5 и 210=2·3·5·7. К произведению множителей 3, 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210. Получаем: 2·3·5·5·7. Это и есть НОК чисел 75 и 210.
Необходимо вычислить НОК чисел 84 и 648.
Решение
Разложим числа из условия на простые множители: 84=2·2·3·7 и 648=2·2·2·3·3·3·3. Добавим к произведению множителей 2, 2, 3 и 7 числа 84 недостающие множители 2, 3, 3 и
3 числа 648. Получаем произведение 2·2·2·3·3·3·3·7=4536. Это и есть наименьшее общее кратное чисел 84 и 648 .
Ответ: НОК(84, 648)=4 536.
Нахождение НОК трех и большего количества чисел
Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.
Предположим, что у нас есть целые числа a1, a2, …, ak. НОК mk этих чисел находится при последовательном вычислении m2=НОК(a1, a2), m3=НОК(m2, a3), …, mk=НОК(mk−1, ak).
Теперь рассмотрим, как можно применять теорему для решения конкретных задач.
Необходимо вычислить наименьшее общее кратное четырех чисел 140, 9, 54 и 250.
Решение задания
Введем обозначения: a1=140, a2=9, a3=54, a4=250.
Начнем с того, что вычислим m2=НОК(a1, a2)=НОК(140, 9). Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4. Получаем: НОД(140, 9)=1, НОК(140, 9)=140·9:НОД(140, 9)=140·9:1=1 260. Следовательно, m2=1 260.
Теперь вычислим по тому е алгоритму m3=НОК(m2, a3)=НОК(1 260, 54). В ходе вычислений получаем m3=3 780.
Нам осталось вычислить m4=НОК(m3, a4)=НОК(3 780, 250). Действуем по тому же алгоритму. Получаем m4=94 500.
НОК четырех чисел из условия примера равно 94500.
Ответ: НОК(140, 9, 54, 250)=94 500.
Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.
Предлагаем вам следующий алгоритм действий:
- раскладываем все числа на простые множители;
- к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
- к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
- полученное произведение будет наименьшим общим кратным всех чисел из условия.
Необходимо найти НОК пяти чисел 84, 6, 48, 7, 143.
Решение
Разложим все пять чисел на простые множители: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7, 143=11·13. Простые числа, которым является число 7, на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.
Теперь возьмем произведение простых множителей 2, 2, 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3. Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.
Продолжаем добавлять недостающие множители. Переходим к числу 48, из произведения простых множителей которого берем 2 и 2. Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2·2·2·2·3·7·11·13=48 048. Это и есть наименьшее общее кратное пяти исходных чисел.
Ответ: НОК(84, 6, 48, 7, 143)=48 048.
Нахождение наименьшего общего кратного отрицательных чисел
Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.
НОК(54, −34)=НОК(54, 34), а НОК(−622, −46, −54, −888)=НОК(622, 46, 54, 888).
Такие действия допустимы в связи с тем, что если принять, что a и −a – противоположные числа,
то множество кратных числа a совпадает со множеством кратных числа −a.
Необходимо вычислить НОК отрицательных чисел −145 и −45.
Решение
Произведем замену чисел −145 и −45 на противоположные им числа 145 и 45. Теперь по алгоритму вычислим НОК(145, 45)=145·45:НОД(145, 45)=145·45:5=1 305, предварительно определив НОД по алгоритму Евклида.
Получим, что НОК чисел −145 и −45 равно 1 305.
Ответ: НОК(−145, −45)=1 305.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Для того, чтобы находить общий знаменатель
при
сложении
и
вычитании дробей с разными
знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).
Кратное числу «a» — это число, которое
само делится на число «a» без остатка.
Числа кратные 8
(то есть, эти числа разделятся на 8 без остатка):
это числа 16, 24, 32 …
Кратные 9: 18, 27, 36, 45 …
Чисел, кратных данному числу a бесконечно много, в отличии от делителей
этого же числа. Делителей —
конечное количество.
Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело.
Запомните!
Наименьшим общим кратным (НОК) двух и более натуральных
чисел называется наименьшее натуральное число, которое само
делится нацело на каждое из этих чисел.
Как найти НОК
НОК можно найти и записать двумя способами.
Первый способ нахождения НОК
Данный способ обычно применяется для небольших чисел.
- Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое
для обоих чисел. - Кратное числа «a»
обозначаем большой буквой «К».К (a) = {…, …}
Пример. Найти НОК 6 и 8.
К (6) = {12, 18, 24, 30, …}
К (8) = {8, 16, 24, 32, …}
НОК (6, 8) = 24
Второй способ нахождения НОК
Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.
- Разложить данные числа на простые множители.
Подробнее правила разложения на
простые множители вы можете прочитать в теме
как найти наибольший общий делитель (НОД).
- Выписать в строчку множители, входящие в разложение
самого большого из чисел, а под ним —
разложение остальных чисел.Запомните!
Количество одинаковых множителей в разложениях чисел может быть разное.
60 = 2 · 2 · 3 · 5
24 = 2 · 2 · 2 · 3
- Подчеркнуть в разложении
меньшего числа (меньших чисел) множители,
которые не вошли в разложение бóльшего числа
(в нашем примере это 2) и добавить эти множители в разложение бóльшего числа.
НОК (24, 60) = 2 · 2 · 3 · 5 · 2 - Полученное произведение записать в ответ.
Ответ: НОК (24, 60) = 120
Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24).
24 = 2 · 2 · 2 · 3
16 = 2 · 2 · 2 · 2
12 = 2 · 2 · 3
Как видим из разложения чисел, все множители 12 вошли в
разложение 24
(самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из
разложения числа 16.
НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48
Ответ: НОК (12, 16, 24) = 48
Особые случаи нахождения НОК
- Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.
Например, НОК (60, 15) = 60
- Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее
кратное равно произведению этих чисел.Пример.
НОК (8, 9) = 72
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
5 сентября 2020 в 15:37
Елена Елена
Профиль
Благодарили: 0
Сообщений: 1
Елена Елена
Профиль
Благодарили: 0
Сообщений: 1
НОК(360,102)
0
Спасибо
Ответить
6 сентября 2020 в 13:42
Ответ для Елена Елена
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
360 = 23 · 32 · 5; 102 = 2 · 3 · 17.
НОК(360; 102) = 23 · 32 · 5 · 17 = …
0
Спасибо
Ответить
30 мая 2018 в 17:34
Тамара Татарникова
Профиль
Благодарили: 0
Сообщений: 1
Тамара Татарникова
Профиль
Благодарили: 0
Сообщений: 1
Найдите четырёхзначное число, которое кратно 24, а произведение цифр этого числа равно 16, в ответ дайте какое-нибудь одно число.
Я написала 1242, но 1242 при делении на 24 дает в ответе 51,75 будет ли это верным ответом?
0
Спасибо
Ответить
3 июня 2018 в 1:58
Ответ для Тамара Татарникова
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
1128 1224 8112
0
Спасибо
Ответить
29 ноября 2016 в 14:47
Анвар Тынайбеков
Профиль
Благодарили: 0
Сообщений: 1
Анвар Тынайбеков
Профиль
Благодарили: 0
Сообщений: 1
НОК(344и170)=
0
Спасибо
Ответить
2 декабря 2016 в 8:23
Ответ для Анвар Тынайбеков
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
1
Спасибо
Ответить
15 февраля 2016 в 19:02
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
число 123 454 321 делится на 11 111. найдите нок этих чисел
1
Спасибо
Ответить
15 февраля 2016 в 19:08
Ответ для Кирилл Журавлёв
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
12132211
0
Спасибо
Ответить
19 сентября 2016 в 12:55
Ответ для Кирилл Журавлёв
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Здесь подробно описано нахождение НОК.
А в супер-решателе можно себя проверить.
0
Спасибо
Ответить
15 февраля 2016 в 18:51
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
ЧИСЛО 123 454 321 ДЕЛИТСЯ 11 111. НАЙДИТЕ НОК ЭТИХ ЧИСЕЛ НЕ ВЫПОЛНЯЯ РАЗЛОЖЕНИЯ ЧИСЕЛ НА ПРОСТЫЕ МНОЖИТЕЛИ
0
Спасибо
Ответить
19 сентября 2016 в 12:56
Ответ для Кирилл Журавлёв
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
0
Спасибо
Ответить
27 января 2016 в 18:15
Lera Kuchinskaya
Профиль
Благодарили: 0
Сообщений: 1
Lera Kuchinskaya
Профиль
Благодарили: 0
Сообщений: 1
НОК 100 150 250
0
Спасибо
Ответить
27 января 2016 в 22:36
Ответ для Lera Kuchinskaya
Виктория Казимирова
Профиль
Благодарили: 0
Сообщений: 1
Виктория Казимирова
Профиль
Благодарили: 0
Сообщений: 1
А что за цифры!!!?
0
Спасибо
Ответить
28 января 2016 в 16:00
Ответ для Lera Kuchinskaya
Anton Wuckert
Профиль
Благодарили: 0
Сообщений: 1
Anton Wuckert
Профиль
Благодарили: 0
Сообщений: 1
НОК = 1500
0
Спасибо
Ответить
19 сентября 2016 в 11:42
Ответ для Lera Kuchinskaya
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Для решения можно воспользоваться решателем на сайте.
0
Спасибо
Ответить
22 января 2016 в 13:46
Андрей Алексеев
Профиль
Благодарили: 0
Сообщений: 1
Андрей Алексеев
Профиль
Благодарили: 0
Сообщений: 1
числа 4,5,6,7,10,12,15,16,20,50, которые являются делителями 24 и кратными 2
0
Спасибо
Ответить
23 января 2016 в 13:33
Ответ для Андрей Алексеев
Александра Сирота
Профиль
Благодарили: 0
Сообщений: 2
Александра Сирота
Профиль
Благодарили: 0
Сообщений: 2
ОТВЕТ: 4 и 12
0
Спасибо
Ответить
24 января 2016 в 13:41
Ответ для Андрей Алексеев
Инна Шабрашина
Профиль
Благодарили: 0
Сообщений: 5
Инна Шабрашина
Профиль
Благодарили: 0
Сообщений: 5
6 ,2, 12
0
Спасибо
Ответить
25 января 2016 в 19:52
Ответ для Андрей Алексеев
Нелия Ахмедова
Профиль
Благодарили: 0
Сообщений: 1
Нелия Ахмедова
Профиль
Благодарили: 0
Сообщений: 1
6,12.
0
Спасибо
Ответить
19 сентября 2016 в 10:59
Ответ для Андрей Алексеев
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Чтобы не запутаться, необходимо каждое из чисел проверить на оба условия:
1) 4 — 24/4=6 — делитель 24. 4/2=2 — кратно 2.
2) 5 — 24/5=не делится без остатка — не делитель. 5/2 — не делится без остатка — не кратно 2.
И так далее.
Ответ: 4,6,12.
0
Спасибо
Ответить
23 декабря 2015 в 17:00
Евгений Мухамедшин
Профиль
Благодарили: 0
Сообщений: 1
Евгений Мухамедшин
Профиль
Благодарили: 0
Сообщений: 1
1) (4/15+5/8)-3/5
2) (1/5+13/16)-9/20
0
Спасибо
Ответить
19 сентября 2016 в 10:01
Ответ для Евгений Мухамедшин
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Для нахождения НОК можно воспользоваться супер-решателем. Раскрываем скобки и приводим к общему знаменателю.
1) ===0
2) ===
0
Спасибо
Ответить
17 ноября 2015 в 6:29
Светлана Каблучко
Профиль
Благодарили: 0
Сообщений: 1
Светлана Каблучко
Профиль
Благодарили: 0
Сообщений: 1
запишите числа удовлетворяющие двойное неравенство 354<х<361 если известно что они кратны 2,5,10
0
Спасибо
Ответить
24 ноября 2015 в 17:56
Ответ для Светлана Каблучко
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
360
0
Спасибо
Ответить
Наименьшее общее кратное
- Общее кратное
- Наименьшее общее кратное
- Как найти НОК
- С помощью разложения на простые множители
- Нахождение НОК через НОД
- Калькулятор НОК
Общее кратное
Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.
Пример.
Числу 3 кратны числа: 6, 9, 12, 15 и т. д.
Числу 4 кратны числа: 8, 12, 16, 20 и т. д.
Можно заметить, что одно и тоже число (12) делится нацело сразу на оба числа 3 и 4. Следовательно, число 12 есть общее кратное чисел 3 и 4.
Общее кратное чисел — это любое число, которое делится без остатка на каждое из данных чисел.
Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.
Пример. Найти общее кратное для чисел 2, 3, 4, 6.
Решение:
2 · 3 · 4 · 6 = 144.
Число 144 — общее кратное чисел 2, 3, 4 и 6.
Для любого количества натуральных чисел существует бесконечно много кратных.
Пример. Для чисел 12 и 20 кратными будут числа: 60, 120, 180, 240 и т. д. Все они являются общими кратными для чисел 12 и 20.
Наименьшее общее кратное
Наименьшее общее кратное (НОК) нескольких чисел — это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.
Пример. Наименьшим общим кратным чисел 3, 4 и 9 является число 36, никакое другое число меньше 36 не делится одновременно на 3, 4 и 9 без остатка.
Наименьшее общее кратное записывается так:
НОК (a, b, …) = x.
Числа в круглых скобках могут быть указаны в любом порядке.
Пример. Запишем наименьшее общее кратное чисел 3, 4 и 9:
НОК (3, 4, 9) = 36.
Как найти НОК
Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.
С помощью разложения на простые множители
Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.
Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.
Решение: разложим каждое из этих чисел на простые множители:
99 = 3 · 3 · 11 = 32 · 11,
54 = 2 · 3 · 3 · 3 = 2 · 33.
Наименьшее общее кратное должно делиться на 99, значит, в его состав должны входить все множители числа 99. Далее НОК должно делиться и на 54, т. е. в его состав должны входить множители и этого числа.
Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:
2 · 33 · 11 = 594.
Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше 594 не делится нацело на 99 и 54.
Ответ: НОК (99, 54) = 594.
Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.
Пример. Найдите наименьшее общее кратное двух чисел 12 и 49.
Решение: разложим каждое из этих чисел на простые множители:
12 = 2 · 2 · 3 = 22 · 3,
49 = 7 · 7 = 72.
Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:
22 · 3 · 72 = 12 · 49 = 588.
Ответ: НОК (12, 49) = 588.
Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.
Пример. Найдите наименьшее общее кратное чисел 5, 7 и 13.
Решение: так как данные числа являются простыми, то просто перемножим их:
5 · 7 · 13 = 45.
Ответ: НОК (5, 7, 13) = 455.
Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.
Пример. Найдите наименьшее общее кратное чисел 24, 12 и 4.
Решение: разложим каждое из этих чисел на простые множители:
24 = 2 · 2 · 2 · 3 = 23 · 3,
12 = 2 · 2 · 3 = 22 · 3,
4 = 2 · 2 = 22.
Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:
23 · 3 = 24.
Ответ: НОК (24, 12, 4) = 24.
Нахождение НОК через НОД
НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.
Правило в общем виде:
НОК (m, n) = m · n : НОД (m, n)
Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.
Решение: сначала находим наибольший общий делитель:
НОД (99, 54) = 9.
Теперь мы можем вычислить НОК этих чисел по формуле:
НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594.
Ответ: НОК (99, 54) = 594.
Чтобы найти НОК трёх или более чисел используется следующий порядок действий:
- Находят НОК любых двух из данных чисел.
- Затем находят наименьшее общее кратное найденного НОК и третьего числа и т. д.
- Таким образом поиск НОК продолжается до тех пор, пока есть числа.
Пример. Найдите наименьшее общее кратное чисел 8, 12 и 9.
Решение: сначала находим наибольший общий делитель любых двух из этих чисел, например, 12 и 8:
НОД (12, 8) = 4.
Вычисляем их НОК по формуле:
НОК (12, 8) = 12 · 8 : НОД (12, 8) = 96 : 4 = 24.
Теперь найдём НОК числа 24 и оставшегося числа 9. Их НОД:
НОД (24, 9) = 3.
Вычисляем НОК по формуле:
НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72.
Ответ: НОК (8, 12, 9) = 72.
Калькулятор НОК
Данный калькулятор поможет вам найти наименьшее общее кратное чисел. Просто введите числа через пробел или запятую и нажмите кнопку Вычислить НОК
.
Продолжаем изучать деление. В данном уроке мы рассмотрим такие понятия, как НОД и НОК.
НОД — это наибольший общий делитель.
НОК — это наименьшее общее кратное.
Тема довольно скучная, но разобраться в ней нужно обязательно. Не понимая этой темы, не получится эффективно работать с дробями, которые являются настоящей преградой в математике.
Наибольший общий делитель
Определение. Наибольшим общим делителем чисел a и b называется наибольшее число, на которое a и b делятся без остатка.
Чтобы хорошо понять это определение, подставим вместо переменных a и b любые два числа. Например, вместо переменной a подставим число 12, а вместо переменной b — число 9. Теперь попробуем прочитать это определение:
Наибольшим общим делителем чисел 12 и 9 называется наибольшее число, на которое 12 и 9 делятся без остатка.
Из определения понятно, что речь идёт об общем делителе чисел 12 и 9. Причем делитель является наибольшим из всех существующих делителей. Этот наибольший общий делитель (НОД) нужно найти.
Для нахождения наибольшего общего делителя двух чисел, используется три способа. Первый способ довольно трудоёмкий, но зато позволяет хорошо понять суть темы и прочувствовать весь ее смысл.
Второй и третий способы довольны просты и дают возможность быстро найти НОД. Рассмотрим все три способа. А какой применять на практике — выбирать вам.
Первый способ заключается в поиске всех возможных делителей двух чисел и в выборе наибольшего из них. Рассмотрим этот способ на следующем примере: найти наибольший общий делитель чисел 12 и 9.
Сначала найдём все возможные делители числа 12. Для этого разделим 12 на все делители в диапазоне от 1 до 12. Если делитель позволит разделить 12 без остатка, то мы будем выделять его синим цветом и в скобках делать соответствующее пояснение.
12 : 1 = 12
(12 разделилось на 1 без остатка, значит 1 является делителем числа 12)
12 : 2 = 6
(12 разделилось на 2 без остатка, значит 2 является делителем числа 12)
12 : 3 = 4
(12 разделилось на 3 без остатка, значит 3 является делителем числа 12)
12 : 4 = 3
(12 разделилось на 4 без остатка, значит 4 является делителем числа 12)
12 : 5 = 2 (2 в остатке)
(12 не разделилось на 5 без остатка, значит 5 не является делителем числа 12)
12 : 6 = 2
(12 разделилось на 6 без остатка, значит 6 является делителем числа 12)
12 : 7 = 1 (5 в остатке)
(12 не разделилось на 7 без остатка, значит 7 не является делителем числа 12)
12 : 8 = 1 (4 в остатке)
(12 не разделилось на 8 без остатка, значит 8 не является делителем числа 12)
12 : 9 = 1 (3 в остатке)
(12 не разделилось на 9 без остатка, значит 9 не является делителем числа 12)
12 : 10 = 1 (2 в остатке)
(12 не разделилось на 10 без остатка, значит 10 не является делителем числа 12)
12 : 11 = 1 (1 в остатке)
(12 не разделилось на 11 без остатка, значит 11 не является делителем числа 12)
12 : 12 = 1
(12 разделилось на 12 без остатка, значит 12 является делителем числа 12)
Теперь найдём делители числа 9. Для этого проверим все делители от 1 до 9
9 : 1 = 9
(9 разделилось на 1 без остатка, значит 1 является делителем числа 9)
9 : 2 = 4 (1 в остатке)
(9 не разделилось на 2 без остатка, значит 2 не является делителем числа 9)
9 : 3 = 3
(9 разделилось на 3 без остатка, значит 3 является делителем числа 9)
9 : 4 = 2 (1 в остатке)
(9 не разделилось на 4 без остатка, значит 4 не является делителем числа 9)
9 : 5 = 1 (4 в остатке)
(9 не разделилось на 5 без остатка, значит 5 не является делителем числа 9)
9 : 6 = 1 (3 в остатке)
(9 не разделилось на 6 без остатка, значит 6 не является делителем числа 9)
9 : 7 = 1 (2 в остатке)
(9 не разделилось на 7 без остатка, значит 7 не является делителем числа 9)
9 : 8 = 1 (1 в остатке)
(9 не разделилось на 8 без остатка, значит 8 не является делителем числа 9)
9 : 9 = 1
(9 разделилось на 9 без остатка, значит 9 является делителем числа 9)
Теперь выпишем делители обоих чисел. Числа выделенные синим цветом и являются делителями. Их и выпишем:
Выписав делители, можно сразу определить какой является наибольшим и общим.
Согласно определению, наибольшим общим делителем чисел 12 и 9, является число, на которое 12 и 9 делятся без остатка. Наибольшим и общим делителем чисел 12 и 9 является число 3
И число 12 и число 9 делятся на 3 без остатка:
12 : 3 = 4
9 : 3 = 3
Значит НОД (12 и 9) = 3
Второй способ нахождения НОД
Теперь рассмотрим второй способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, чтобы разложить оба числа на простые множители и перемножить общие из них.
Пример 1. Найти НОД чисел 24 и 18
Сначала разложим оба числа на простые множители:
Теперь перемножим их общие множители. Чтобы не запутаться, общие множители можно подчеркнуть.
Смотрим на разложение числа 24. Первый его множитель это 2. Ищем такой же множитель в разложении числа 18 и видим, что он там тоже есть. Подчеркиваем обе двойки:
Снова смотрим на разложение числа 24. Второй его множитель тоже 2. Ищем такой же множитель в разложении числа 18 и видим, что его там второй раз уже нет. Тогда ничего не подчёркиваем.
Следующая двойка в разложении числа 24 также отсутствует в разложении числа 18.
Переходим к последнему множителю в разложении числа 24. Это множитель 3. Ищем такой же множитель в разложении числа 18 и видим, что там он тоже есть. Подчеркиваем обе тройки:
Итак, общими множителями чисел 24 и 18 являются множители 2 и 3. Чтобы получить НОД, эти множители необходимо перемножить:
2 × 3 = 6
Значит НОД (24 и 18) = 6
Третий способ нахождения НОД
Теперь рассмотрим третий способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, что числа подлежащие поиску наибольшего общего делителя раскладывают на простые множители. Затем из разложения первого числа вычеркивают множители, которые не входят в разложение второго числа. Оставшиеся числа в первом разложении перемножают и получают НОД.
Пример 1. Найти НОД чисел 28 и 16.
В первую очередь, раскладываем числа 28 и 16 на простые множители:
Получили два разложения: и
Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит семёрка. Её и вычеркнем из первого разложения:
Теперь перемножаем оставшиеся множители и получаем НОД:
Число 4 является наибольшим общим делителем чисел 28 и 16. Оба этих числа делятся на 4 без остатка:
28 : 4 = 7
16 : 4 = 4
НОД (28 и 16) = 4
Пример 2. Найти НОД чисел 100 и 40
Раскладываем на множители число 100
Раскладываем на множители число 40
Получили два разложения: 2 × 2 × 5 × 5 и 2 × 2 × 2 × 5
Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит одна пятерка (там только одна пятёрка). Её и вычеркнем из первого разложения
Перемножим оставшиеся числа:
Получили ответ 20. Значит число 20 является наибольшим общим делителем чисел 100 и 40. Эти два числа делятся на 20 без остатка:
100 : 20 = 5
40 : 20 = 2
НОД (100 и 40) = 20.
Пример 3. Найти НОД чисел 72 и 128
Раскладываем на множители число 72
Раскладываем на множители число 128
Получили два разложения: 2 × 2 × 2 × 3 × 3 и 2 × 2 × 2 × 2 × 2 × 2 × 2.
Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входят две тройки (там их вообще нет). Их и вычеркнем из первого разложения:
Перемножим оставшиеся числа:
Получили ответ 8. Значит число 8 является наибольшим общим делителем чисел 72 и 128. Эти два числа делятся на 8 без остатка:
72 : 8 = 9
128 : 8 = 16
НОД (72 и 128) = 8
Нахождение НОД для нескольких чисел
Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел.
Например, найдём НОД для чисел 18, 24 и 36
Разложим на множители число 18
Разложим на множители число 24
Разложим на множители число 36
Получили три разложения:
Теперь найдём и подчеркнём общие множители:
Мы видим, что общие множители для чисел 18, 24 и 36 это множители 2 и 3. Эти множители входят во все три разложения. Перемножив эти множители, мы получим НОД, который ищем:
2 × 3 = 6
Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 18, 24 и 36. Эти три числа делятся на 6 без остатка:
18 : 6 = 3
24 : 6 = 4
36 : 6 = 6
НОД (18, 24 и 36) = 6
Пример 2. Найти НОД для чисел 12, 24, 36 и 42
Разложим на простые множители каждое число. Затем найдём произведение общих простых множителей.
Разложим на множители число 12
Разложим на множители число 24
Разложим на множители число 36
Разложим на множители число 42
Получили четыре разложения:
Теперь найдём и подчеркнём общие множители:
Мы видим, что общие множители для чисел 12, 24, 36, и 42 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:
2 × 3 = 6
Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 12, 24, 36 и 42. Эти числа делятся на 6 без остатка:
12 : 6 = 2
24 : 6 = 4
36 : 6 = 6
42 : 6 = 7
НОД (12, 24 , 36 и 42) = 6
Наименьшее общее кратное
Из предыдущего урока мы знаем, что если какое-то число без остатка разделилось на другое, его называют кратным этого числа.
Оказывается, кратное может быть общим у нескольких чисел. И сейчас нас будет интересовать кратное двух чисел, причем оно должно быть максимально маленьким.
Определение. Наименьшее общее кратное (НОК) чисел a и b — это наименьшее число, которое кратно a и b. Другими словами, это такое маленькое число, которое делится без остатка на число a и число b.
Определение содержит две переменные a и b. Давайте подставим вместо этих переменных любые два числа. Например, вместо переменной a подставим число 9, а вместо переменной b подставим число 12. Теперь попробуем прочитать определение:
Наименьшее общее кратное (НОК) чисел 9 и 12 — это наименьшее число, которое кратно 9 и 12. Другими словами, это такое маленькое число, которое делится без остатка на число 9 и на число 12.
Из определения понятно, что наименьшее общее кратное это наименьшее число, которое делится без остатка на 9 и на 12. Это наименьшее общее кратное требуется найти.
Для нахождения наименьшего общего кратного (НОК) можно пользоваться тремя способами. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди этих кратных такое число, которое будет общим для обоих чисел и маленьким. Давайте применим этот способ.
В первую очередь, найдем первые кратные для числа 9. Чтобы найти кратные для 9, нужно эту девятку поочерёдно умножить на числа от 1 до 9. Получаемые ответы будут кратными для числа 9.
Итак, начнём. Кратные будем выделять синим цветом:
Теперь находим кратные для числа 12. Для этого поочерёдно умножим число 12 на все числа 1 до 12:
Теперь выпишем кратные обоих чисел:
Теперь найдём общие кратные обоих чисел. Найдя, сразу подчеркнём их:
Общими кратными для чисел 9 и 12 являются кратные 36 и 72. Наименьшим же из них является 36.
Значит наименьшее общее кратное для чисел 9 и 12 это число 36. Данное число делится на 9 и 12 без остатка:
36 : 9 = 4
36 : 12 = 3
НОК (9 и 12) = 36
Второй способ нахождения НОК
Второй способ заключается в том, что числа для которых ищется наименьшее общее кратное раскладываются на простые множители. Затем выписываются множители, входящие в первое разложение, и добавляют недостающие множители из второго разложения. Полученные множители перемножают и получают НОК.
Применим данный способ для предыдущей задачи. Найдём НОК для чисел 9 и 12.
Разложим на множители число 9
Разложим на множители число 12
Выпишем первое разложение:
Теперь допишем множители из второго разложения, которых нет в первом разложении. В первом разложении нет двух двоек. Их и допишем:
Теперь перемножаем эти множители:
Получили ответ 36. Значит наименьшее общее кратное чисел 9 и 12 это число 36. Данное число делится на 9 и 12 без остатка:
36 : 9 = 4
36 : 12 = 3
НОК (9 и 12) = 36
Говоря простым языком, всё сводится к тому, чтобы организовать новое разложение куда входят оба разложения сразу. Разложением первого числа 9 являлись множители 3 и 3, а разложением второго числа 12 являлись множители 2, 2 и 3.
Наша задача состояла в том, чтобы организовать новое разложение куда входило бы разложение числа 9 и разложение числа 12 одновременно. Для этого мы выписали разложение первого числа и дописали туда множители из второго разложения, которых не было в первом разложении. В результате получили новое разложение 3 × 3 × 2 × 2. Нетрудно увидеть воочию, что в него одновременно входят разложение числа 9 и разложение числа 12
Пример 2. Найти НОК чисел 50 и 180
Разложим на множители число 50
Разложим на множители число 180
Выпишем первое разложение:
Теперь допишем множители из второго разложения, которых нет первом разложении. В первом разложении нет ещё одной двойки и двух троек. Их и допишем:
Теперь перемножаем эти множители:
Получили ответ 900. Значит наименьшее общее кратное чисел 50 и 180 это число 900. Данное число делится на 50 и 180 без остатка:
900 : 50 = 18
900 : 180 = 5
НОК (50 и 180) = 900
Пример 3. Найти НОК чисел 8, 15 и 33
Разложим на множители число 8
Разложим на множители число 15
Разложим на множители число 33
Выпишем первое разложение:
Теперь допишем множители из второго и третьего разложения, которых нет первом разложении. Допишем множители 3 и 5 из второго разложения, и множитель 11 из третьего разложения:
Теперь перемножаем эти множители:
Получили ответ 1320. Значит наименьшее общее кратное чисел 8, 15 и 33 это число 1320. Данное число делится на 8, 15 и 33 без остатка:
1320 : 8 = 165
1320 : 15 = 88
1320 : 33 = 40
НОК (8, 15 и 33) = 1320
Третий способ нахождения НОК
Есть и третий способ нахождения наименьшего общего кратного. Он работает при условии, что его ищут для двух чисел и при условии, что уже найден наибольший общий делитель этих чисел.
Данный способ разумнее использовать, когда одновременно нужно найти НОД и НОК двух чисел.
К примеру, пусть требуется найти НОД и НОК чисел 24 и 12. Сначала найдем НОД этих чисел:
Теперь для нахождения наименьшего общего кратного чисел 24 и 12, нужно перемножить эти два числа и полученный результат разделить на их наибольший общий делитель.
Итак, перемножим числа 24 и 12
Разделим полученное число 288 на НОД чисел 24 и 12
Получили ответ 24. Значит наименьшее общее кратное чисел 24 и 12 равно 24
НОК (24 и 12) = 24
Пример 2. Найти НОД и НОК чисел 36 и 48
Найдем НОД чисел 36 и 48
Перемножим числа 36 и 48
Разделим 1728 на НОД чисел 36 и 48
Получили 144. Значит наименьшее общее кратное чисел 36 и 48 равно 144
НОК (36 и 48) = 144
Для проверки можно найти НОК обычным вторым способом, которым мы пользовались ранее. Если мы всё сделали правильно, то должны получить 144
Не расстраивайтесь, если сразу не научитесь находить НОД и НОК. Главное понимать, что это такое и как оно работает. А ошибки вполне естественны на первых порах. Как говорят: «На ошибках учимся».
Задания для самостоятельного решения
Задание 1. Найдите НОД чисел 12 и 16
Решение:
Задание 2. Найдите НОК чисел 12 и 16
Решение:
Задание 3. Найдите НОД чисел 40 и 32
Решение:
Задание 4. Найдите НОК чисел 40 и 32
Решение:
Задание 5. Найдите НОД чисел 54 и 86
Решение:
Задание 6. Найдите НОК чисел 54 и 86
Решение:
Задание 7. Найдите НОД чисел 98 и 35
Решение:
Задание 8. Найдите НОК чисел 98 и 35
Решение:
Задание 9. Найдите НОД чисел 112 и 82
Решение:
Задание 10. Найдите НОК чисел 112 и 82
Решение:
Задание 11. Найдите НОД чисел 24, 48, 64
Решение:
Задание 12. Найдите НОК чисел 24, 48, 64
Решение:
Задание 13. Найдите НОД чисел 18, 48, 96
Решение:
Задание 14. Найдите НОК чисел 18, 48, 96
Решение:
Задание 15. Найдите НОД чисел 28, 24, 76
Решение:
Задание 16. Найдите НОК чисел 28, 24, 76
Решение:
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Наименьшее общее кратное (сокр. НОК) в математике определяется для нескольких чисел. Это наименьшее натуральное число, делящееся на каждое их данных чисел без остатка. Для того, чтобы найти наименьшее общее кратное нужно: 1) Разложить каждое число на простые множители. 2) Домножить одно из чисел на те множители, которые не входят в его разложение, но входят в разложение других чисел. Пример Требуется найти наименьшее общее кратное для трёх чисел: 6, 10 и 15. 1) Разложим числа на простые множители. 6 = 2 * 3. 10 = 2 * 5. 15 = 3 * 5. 2) Возьмём число 6. Множитель, который не входит в разложение данного числа, но входит в разложение чисел 10 и 15 – это число 5. Домножаем число 6 на число 5 – получаем 30. Следовательно, НОК (6, 10, 15) = 30. Другой способ Если требуется найти наименьшее общее кратное двух чисел, то можно поступить таким образом: 1) Умножить одно число на другое. 2) Разделить полученное произведение на НОД (наибольший общий делитель). Найдём наименьшее общее кратное чисел 8 и 6. 1) 8 * 6 = 48. 2) 8 = 2 * 2 * 2 и 6 = 2 * 3 -> НОД (8, 6) = 2. НОК (8, 6) = 48 / 2 = 24. автор вопроса выбрал этот ответ лучшим дольфаника 8 лет назад Складывать, умножать, делить, приводить к общему знаменателю и другие арифметические действия очень увлекательное занятие, особенно восхищают примеры, занимающие целый лист. Итак найти общее кратное для двух чисел, которое будет являться самым маленьким числом на которое делятся два числа. Хочу заметить, что не обязательно в дальнейшем прибегать к формулам, чтобы найти искомое, если можешь считать в уме (а это можно натренировать), то цифры сами всплывают в голове и потом дроби щелкаются как орешки. Для начала усвоим, что можно умножить два числа друг на друга, а потом эту цифру уменьшать и делить поочередно на данные два числа, так мы найдем наименьшее кратное. Например, два числа 15 и 6. Умножаем и получаем 90. Это явно больше число. Причем 15 делится на 3 и 6 делится на 3, значит 90 тоже делим на 3. Получаем 30. Пробуем 30 разделить 15 равно 2. И 30 делим 6 равно 5. Так как 2 это предел, то получается, что наименьшее кратное для чисел 15 и 6 будет 30. С цифрами побольше будет немного трудней. но если знать, какие цифры дают нулевой остаток при делении или умножении, то трудностей, в принципе, больших нет. НОК, или наименьшее общее кратное, – это наименьшее натуральное число двух и более чисел, которое делится на каждое из данных чисел без остатка. Вот пример того, как найти наименьшее общее кратное 30 и 42.
Для 30 – это 2 х 3 х 5. Для 42 – это 2 х 3 х 7. Так как 2 и 3 имеются в разложении числа 30, то вычеркиваем их.
В итоге получаем, что НОК чисел 30 и 42 равен 210. CooLWarK 9 лет назад Представляю ещё один способ нахождения наименьшего общего кратного. Рассмотрим его на наглядном примере. Необходимо найти НОК сразу трёх чисел: 16, 20 и 28.
16 = 2·2·4 20 = 2·2·5 28 = 2·2·7
16 = 2·2·4 = 2^2·4^1 20 = 2·2·5 = 2^2·5^1 28 = 2·2·7 = 2^2·7^1
НОК = 2^2·4^1·5^1·7^1 = 4·4·5·7 = 560. НОК(16, 20, 28) = 560. Таким образом, в итоге расчета получилось число 560. Оно является наименьшим общим кратным, то есть делится на каждое из трёх чисел без остатка. Матвей628 9 лет назад Чтобы найти наименьшее общее кратное, нужно выполнить последовательно несколько простых действий. Рассмотрим это на примере двух чисел: 8 и 12
Проверяя, убеждаемся, что 24 делится и на 8 и на 12, причем это наименьшее натуральное число, которое делится на каждое из этих чисел. Вот мы и нашли наименьшее общее кратное. иришенька 8 лет назад Попробую объяснить на примере цифр 6 и 8. Наименьшее общее кратное – это число, которое можно разделить на эти числа(в нашем случае 6 и 8) и остатка не будет. Итак, начинаем умножать сначала 6 на 1, 2, 3 и т. д и 8 на 1, 2, 3 и т. д. Получается: Умножаем на 6 – 6-12-18-24-30-36-42-48-54-60 Умножаем не 8 – 8-16-24-32-40-48…. Как видим, и там и там есть 48, следовательно у чисел 6 и 8 наименьшее общее кратное – 48. ЯнаМарина 8 лет назад Наименьшее общее кратное число – это такая цифра, которая разделится на несколько предложенных чисел без остатка. Для того, чтобы такую цифру высчитать, надо взять каждое число и разложить его на простые множители. Те цифры, которые совпадают, убираем. Оставляет всех по одной, перемножаем их между собой по очереди и получаем искомое – наименьшее общее кратное. Например у нас есть числа 3 и 5 и нам надо найти НОК(наименьшее общее кратное). Нам надо умножать и тройку и пятёрку на все числа начиная с 1 2 3 … и т д пока мы не увидим одинаковое число и там и там. Множим тройку и получаем: 3, 6, 9, 12, 15 Множим пятёрку и получаем: 5, 10, 15 НОК = 15 Infiltrator 11 лет назад Нужно найти каждый множитель каждого из двух чисел, у которых находим наименьшее общее кратное, а потом перемножить друг на друга множители, которые совпали у первого и второго числа. Результатом произведения будет искомое кратное. Azamatik 5 лет назад Первым делом нужно разложить числа (для которых ищем наименьшее общее кратное) на множители. После чего остается домножить одно из чисел на тот множитель или на те множители, которые не входят в его разложение, но при этом входят в разложение других чисел (другого числа). Итак, пример: нужно найти наименьшее общее кратное чисел 24 и 36. Разложим на множители оба числа: 24 это 3 х 4 х 2; 36 это 3 х 4 х 3. Сокращаем одинаковые множители и остается одна 3. Умножаем 3 х 4 х 2 х 3 и получаем 72. Ответ: 72 это НОК для чисел 24 и 36. Знаете ответ? |