© 2007 – 2023 Сообщество учителей-предметников “Учительский портал”
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель / главный редактор: Никитенко Е.И.
Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание этих материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.
Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.
Фотографии предоставлены
леха Мышляков
Ученик
(226),
на голосовании
10 лет назад
Голосование за лучший ответ
Тугеус Владимир
Искусственный Интеллект
(175008)
10 лет назад
Сперва подставь х=4 в уравнение х² -3х+с=0 и найди с.
Потом подставь с, снова реши уравнение: один корень будет 4, а второй – искомый.
Вадим Шешунов
Профи
(742)
10 лет назад
x^2-3x+C – первообразная. x^2-3x+C=0 при х=4 – т. е. 4^2-12+C=0 => C=-4 => x^2-3x-4=0 – Решите это ур. и получите оба нуля
ganibal ganibal
Ученик
(112)
6 лет назад
У меня правильно
Похожие вопросы
Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$
Таблица первообразных
Первообразная нуля равна $С$
Функция | Первообразная |
$f(x)=k$ | $F(x)=kx+C$ |
$f(x)=x^m, m≠-1$ | $F(x)={x^{m+1}}/{m+1}+C$ |
$f(x)={1}/{x}$ | $F(x)=ln|x|+C$ |
$f(x)=e^x$ | $F(x)=e^x+C$ |
$f(x)=a^x$ | $F(x)={a^x}/{lna}+C$ |
$f(x)=sinx$ | $F(x)-cosx+C$ |
$f(x)=cosx$ | $F(x)=sinx+C$ |
$f(x)={1}/{sin^2x}$ | $F(x)=-ctgx+C$ |
$f(x)={1}/{cos^2x}$ | $F(x)=tgx+C$ |
$f(x)=√x$ | $F(x)={2x√x}/{3}+C$ |
$f(x)={1}/{√x}$ | $F(x)=2√x+C$ |
Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$
Правила вычисления первообразных:
- Первообразная суммы равна сумме первообразных. Если $F(x)$ – первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ – первообразная для $f(x)+g(x)$.
- Постоянный множитель выносится за знак первообразной. Если $F(x)$ – первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ – первообразная для $k$ $f(x)$.
- Если $F(x)$ – первообразная для $f(x)$, $а, k, b$ – постоянные величины, причем $k≠0$, то ${1}/{k}$ $F(kx+b)$ – это первообразная для $f(kx+b)$.
Пример:
Найти первообразную для функции $f(x)=2sinx+{4}/{x}-{cosx}/{3}$.
Решение:
Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого
$f(x)=2sinx+{4}/{x}-{cosx}/{3}=2∙sinx+4∙{1}/{x}-{1/3}∙cosx$
Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$
$f_1=sinx$
$f_2={1}/{x}$
$f_3=cosx$
Для $f_1=sinx$ первообразная равна $F_1=-cosx$
Для $f_2={1}/{x}$ первообразная равна $F_2=ln|x|$
Для $f_2=cosx$ первообразная равна $F_3=sinx$
По первому правилу вычисления первообразных получаем:
$F(x)=2F_1+4F_2-{1}/{3}F_3=2∙(-cosx)+4∙ln|x|-{1}/{3}∙sinx$
Итак, общий вид первообразной для заданной функции
$F(x)=-2cosx+4ln|x|-{sin x}/{3}+C$
Связь между графиками функции и ее первообразной:
- Если график функции $f (x) > 0$ на промежутке, то график ее первообразной $F(x)$ возрастает на этом промежутке.
- Если график функции $f (x) < 0$ на промежутке, то график ее первообразной $F(x)$ убывает на этом промежутке.
- Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий (или наоборот).
Пример:
На рисунке изображен график функции $y=F(x)$ – одной из первообразных некоторой функции $f(x)$, определенной на интервале $(-3;5)$. Пользуясь рисунком, определите количество решений $f(x)=0$ на отрезке $(-2;2]$
Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий(или наоборот).
Выделим отрезок $(-2;2]$ и отметим на нем экстремумы.
У нас получилось $6$ таких точек.
Ответ: $6$
Неопределенный интеграл
Если функция $у=f(x)$ имеет на промежутке $Х$ первообразную $у=F(x)$, то множество всех первообразных $у=F(x)+С$, называют неопределенным интегралом функции $у=f(x)$ и записывают:
$∫f(x)dx$
Определенный интеграл – это интеграл с пределами интегрирования (на отрезке)
$∫_a^bf(x)dx$, где $a,b$ – пределы интегрирования
Площадь криволинейной трапеции или геометрический смысл первообразной
Площадь $S$ фигуры, ограниченной осью $Oх$, прямыми $х=а$ и $х=b$ и графиком неотрицательной функции $у=f(x)$ на отрезке $[a;b]$, находится по формуле
$S=∫_a^bf(x)dx$
Формула Ньютона – Лейбница
Если функция $у=f(x)$ непрерывна на отрезке $[a;b]$, то справедливо равенство
$∫_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)$, где $F(x)$ – первообразная для $f(x)$
Пример:
На рисунке изображен график некоторой функции $у=f(x)$. Одна из первообразных этой функции равна $F(x)={2х^3}/{3}-2х^2-1$. Найдите площадь заштрихованной фигуры.
Решение:
Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках $1$ и $-2$
$S=F(1)-F(-2)$
Первообразная нам известна, следовательно, осталось только подставить в нее значения и вычислить
$F(1)={2∙1}/{3}-2∙1-1={2}/{3}-2-1={2}/{3}-3$
$F(-2)={2(-2)^3}/{3}-2(-2)^2-1={2∙(-8)}/{3}-8-1=-{16}/{3}-9$
$S={2}/{3}-3-(-{16}/{3}-9)={2}/{3}-3+{16}/{3}+9={18}/{3}+6=6+6=12$
Ответ: $12$
Как на графике первообразной найти нули функции?
Найдите правильный ответ на вопрос ✅ «Как на графике первообразной найти нули функции? …» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Алгебра,
вопрос задал Atapina,
8 лет назад
Ответы на вопрос
Ответил Ivanna2013
0
Найдем первообразную x^2 – 3x +c
Приравниваем к нулю и решаем , если известен один корень
х1*х2= с
х1+х2= 3
х2 = 3-4= -1
Предыдущий вопрос
Следующий вопрос
Новые вопросы
Информатика,
5 лет назад
Информатика 10 класс
ПОЖАЛУЙСТААААА…
Химия,
5 лет назад
16 грамм кальция прореагировали с водой и выделился водород. найдите массу водорода.
Алгебра,
8 лет назад
Найдите сумму корней уравнения:
Ответы:
3
Просьба поподробнее.
Алгебра,
8 лет назад
(2х+1) (4х в квадраті -2х+1)=2х(2х+3)+37
…
Химия,
8 лет назад
MnSO4+HNO3+PbO2=HMnO4+3Pb(NO3)2+2PbSO4+H2O уровняйте…
Химия,
8 лет назад
допишите уравнение протолитических реакций HNO3+H2O, NH3+H2SO4,HCO+OH,CH3COOH+C2H5OH…