8
первичного, то трансформатор называется понижающим, а если боль-
ше − повышающим.
В системах передачи и распределения энергии в ряде случаев применяют трехобмоточные трансформаторы, а в устройствах радиоэлектроники и автоматики – многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или более изолированных друг от друга обмоток, что дает возможность при подключении одной из обмоток к сети получать два или более различных напряжений для электроснабжения двух или более потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.
Номинальным режимом работы трансформатора называется режим, указанный на заводском щитке трансформатора.
Номинальные величины трансформатора– мощность, напря-
жения, токи, частота и т. д. – указываются на заводском щитке, который должен быть помещен так, чтобы к нему был обеспечен свободный доступ. Однако термин «номинальный» может применяться и к величинам, не указанным на щитке, но относящимся к номинальному режиму: номинальный КПД, номинальные температурные условия охлаждающей среды и т. д.
Номинальные параметры трансформатора:
– номинальное первичное линейное напряжение U1НОМ, В. Номинальным первичным напряжением называется напряжение, ука-
занное на щитке трансформатора; если первичная обмотка имеет ответвления, то ее номинальное напряжение отмечается особо;
– номинальное вторичное линейное напряжение U2НОМ, В. Номинальным вторичным напряжением называется напряжение на
выводах вторичной обмотки при холостом ходе трансформатора и при номинальном напряжении на первичной обмотке; если вторичная обмотка имеет ответвления, то ее номинальное напряжение отмечается особо;
– номинальная полная мощность SНОМ, кВ А. Номинальной
мощностью трансформатора называется мощность на зажимах вторичной обмотки, указываемая на щитке и выражаемая в киловольтамперах. Для однофазного трансформатора SНОМ = U1НОМ · I1НОМ, для трехфазно-
го – SНОМ = 3 · U1НОМ · I1НОМ. В связи с тем, что потери мощности в трансформаторах невелики, принято считать номинальную полную мощ-
ность в цепи первичной обмотки приблизительно равной номинальной полной мощности в цепи вторичной обмотки:
SНОМ = U1НОМ · I1НОМ ≈ U2НОМ · I2НОМ ;
I2НОМ
I1НОМ
9
– номинальные линейные токи в первичной и вторичной обмотках. Номинальными токами трансформатора – пер-
вичным и вторичным – называются токи, указываемые на щитке трансформатора и вычисленные по соответствующим значениям номинальной мощности и номинальных напряжений. При этом, имея в виду, что КПД трансформатора весьма велик, принимают, что номинальные мощности двух обмоток равны.
Номинальные линейные токи вычисляют по номинальной мощности
трансформатора: для трехфазного трансформатора |
|||||
I1НОМ = |
SНОМ · 103 |
, I2НОМ = |
SНОМ · 103 |
, |
|
3 · U1НОМ |
3 · U2НОМ |
||||
гдеSНОМ – номинальнаямощностьтрехфазноготрансформатора, кВА.
Номинальная частота тока в сети равна 50 Гц.
Каждый трансформатор рассчитан для включения в сеть переменного тока определенной частоты. В Беларуси трансформаторы общего назна-
чения рассчитаны на частоту f = 50 Гц (в некоторых других странах f = 60 Гц), в устройствах автоматики и связи применяют трансформаторы, рассчитанные на частоты 400 или 1 000 Гц.
Пример 1. Номинальные значения первичного и вторичного напряжений однофазного трансформатора U1НОМ = 110 кВ и U2НОМ = 6,3 кВ, номинальный первичный ток I1НОМ = 95,5 А. Определить номинальную мощность трансформатора SНОМ и номинальный вторичный ток I2НОМ.
Решение
Номинальнаямощностьтрансформатора
SНОМ = U1НОМ · I1НОМ = 110 · 95,5 = 10 505 кВ · А.
Номинальный вторичный ток
I2НОМ = SНОМ/U2НОМ = 10 505/6,3 = 1 667 А.
2.2 Устройство трансформаторов
Современный трансформатор состоит из различных конструктивных элементов: магнитопровода, обмоток, вводов, бака и др. Магнитопровод с
расположенными на его стержнях обмотками составляет активную часть трансформатора. Остальные элементы трансформатора называют неактивными (вспомогательными) частями.
10
Магнитопровод в трансформаторе выполняет две функции: во-первых, он составляет магнитную цепь, по которой замыкается основной магнитный поток трансформатора, а во-вторых, он предназначен для установки и крепления обмоток, отводов, переключателей.
Стержнем называют часть магнитопровода, на которой размещают обмотки. Часть магнитопровода, на которой обмотки отсутствуют, называют ярмом.
Силовые трансформаторы выполняют с магнитопроводами трех ти-
пов: стержневыми, броневыми и бронестержневыми.
В магнитопроводе стержневого типа (рисунок 2) вертикаль-
ные стержни 1, на которых расположены обмотки 2, сверху и снизу замкнуты ярмами 3. На каждом стержне расположены обмотки соответствующей фазы и проходит магнитный поток этой фазы: в крайних стержнях –
потоки ΦА и ΦС, а в среднем стержне – поток ΦB.
Рисунок 2 – Магнитопровод трехфазного трансформатора стержневого типа с обмотками
На рисунке 2, б показан внешний вид магнитопровода. При этом стержни имеют ступенчатое сечение, вписываемое в круг диаметром d (рисунок 3).
Стержни трансформаторов большой мощности имеют много ступеней, что обеспечивает лучшее заполнение сталью площади внутри обмотки.
11
а)
б)
а – малой и средней мощности; б – большой мощности
Рисунок 3 – Форма сечения стержней трансформаторов
Магнитопровод броневого типа представляет собой конструк-
цию со стержнем и ярмами, частично прикрывающими («бронирующими») обмотки (рисунок 4). Магнитный поток в стержне магнитопровода броневого типа в два раза больше, чем в ярмах, каждое из которых имеет сечение, вдвое меньшее сечения стержня. Из-за технологической сложности изготовления магнитопроводы броневого типа не получили широкого распространения, их применяют лишь в силовых трансформаторах весьма малой мощности (радиотрансформаторах). Силовые трансформаторы большой мощности броневого типа отечественная промышленность не выпускает. Но при значительных мощностях (более 80–100 MB·А на фазу) часто применяют бронестержневые трансформаторы, у которых крайние стержни имеют боковые ярма (рисунок 5, б). Трансформаторы большой и средней мощностей обычно выполняют стержневыми. Они имеют лучшие условия охлаждения и меньшую массу, чем броневые.
а) б)
Рисунок 4 – Однофазный трансформатор броневого типа
12
В трансформаторах большой мощности применяют бронестерж-
невую конструкцию магнитопровода (рисунок 5), которая хотя и тре-
бует несколько повышенного расхода электротехнической стали, но позволяет уменьшить высоту магнитопровода, а следовательно, и высоту трансформатора. Это имеет большое значение при транспортировке трансформаторов.
а – однофазный; б – трехфазный
Рисунок 5 – Магнитопроводы бронестержневых трансформаторов
Для уменьшения потерь от вихревых токов магнитопроводы трансформаторов (рисунок 6) собирают из изолированных листов электротехнической стали толщиной 0,28–0,5 мм при частоте 50 Гц. Обычно применяют анизотропную холоднокатаную сталь с ребровой структурой (марки 3412–3416) и содержанием кремния 2,8–3,8 %. Магнитные свойства этой стали резко улучшаются при совпадении направлений магнитного потока и прокатки: потери в стали на перемагничивание уменьшаются в дватри раза, а магнитная проницаемость и индукция насыщения возрастают. Однако использование холоднокатаной стали усложняет конструкцию и технологию изготовления магнитопроводов, так как при этом требуется исключить прохождение магнитного потока поперек направления прокатки или по крайней мере уменьшить длину участков, на которых это явление возникает.
По способу сборки различают стыковые и шихтованные маг-
нитопроводы.
а) б)
Рисунок 6 – Стыковая (а) и шихтованная (б) конструкции магнитопроводов
13
В стыковых магнитопроводах стержни и ярма собирают и скрепляют раздельно, а затем устанавливают в стык и соединяют между собой. В месте стыка во избежание замыкания листов устанавливают изоляционные прокладки. Стыковая конструкция хотя и облегчает сборку магнитопровода, но не получила распространения в силовых трансформаторах из-за громоздкости стяжных устройств и необходимости механической обработки стыкующихся поверхностей для уменьшения магнитного сопротивления в месте стыка.
Шихтованная конструкция магнитопроводов силовых трансформаторов показана на рисунке 6, б, когда стержни ярма собирают слоями в переплет. В шихтованных магнитопроводах ярма и стержни собирают как цельную конструкцию с взаимным перекрытием отдельных слоев в месте
стыка («впереплет»). Обычно слой содержит 2–3 листа. При сборке магнитопровода листы в двух смежных слоях перекрывают стык в листах предыдущего слоя, существенно уменьшая магнитное сопротивление в месте сочленения. После сборки магнитопровода листы верхнего ярма вынимают, на стержни устанавливают катушки и ярмо снова ставят на место. Шихтованные магнитопроводы имеют значительно меньшее магнитное сопротивление, чем стыковые, поэтому последние применяют сейчас только в микротрансформаторах.
Недостатком магнитопроводов шихтованной конструкции является некоторая сложность сборки, так как для насадки обмоток на стержни приходится расшихтовывать верхнее ярмо, а затем после насадки обмоток вновь его зашихтовывать.
В настоящее время магнитопроводы силовых трансформаторов изготовляют из холоднокатаной текстурованной электротехнической стали, у которой магнитные свойства вдоль направления прокатки листов лучше, чем поперек. Поэтому при шихтованной конструкции в местах поворота листов на 90° появляются «зоны несовпадения» направления прокатки с направлением магнитного потока. На этих участках наблюдаются увеличение магнитного сопротивления и рост магнитных потерь. С целью ослабления этого явления применяют для шихтовки пластины (полосы) со скошенными краями. В этом случае вместо прямого стыка применяют косой стык, у которого «зона несовпадения» гораздо меньше.
Стержни магнитопроводов во избежание распушения опрессовывают (скрепляют). Делают это обычно наложением на стержень бандажа из стеклоленты или стальной проволоки. Стальной бандаж выполняют с изолирующей пряжкой, что исключает создание замкнутых стальных витков на стержнях. Бандаж накладывают равномерно, с определенным натягом.
Для опрессовки ярм 3 и мест их сочленения со стержнями 1 используют ярмовые балки 2, которые в местах, выходящих за крайние стержни (рисунок 7), стягивают шпильками. Иногда между отдельными пакетами стержня оставляют воздушные зазоры шириной 5–65 мм, служащие вентиляционными каналами.
14
Рисунок 7 – Опрессовка ярма
Во избежание возникновения разности потенциалов между металлическими частями во время работы трансформатора, что может вызвать пробой изоляционных промежутков, разделяющих эти части, магнитопровод и детали его крепления обязательно заземляют. Заземление осуществляют медными лентами, вставляемыми между стальными пластинами магнитопровода одними концами и прикрепляемыми к ярмовым балкам другими.
Магнитопроводы трансформаторов малой мощности (обычно мощ-
ностью не более 1 кВ А) чаще всего изготовляют из узкой ленты электротехнической холоднокатаной стали путем навивки. Такие магнитопроводы делают разрезными, а после насадки обмоток собирают встык и стягивают специальными хомутами.
Обмотки трансформаторов средней и большой мощностей выполняют из обмоточных проводов круглого или прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой. Основой обмотки в большинстве случаев является бумажно-бакелитовый цилиндр, на котором крепятся элементы (рейки, угловые шайбы и т. п.), обеспечивающие обмотке механическую и электрическую прочность.
По взаимному расположению на стержне обмотки разделяют на концентрические и чередующиеся.
Концентрические обмотки выполняют в виде цилиндров, размещаемых на стержне концентрически: ближе к стержню обычно располагают обмотку НН (требующую меньшей изоляции от стержня), а снаружи – обмотку ВН (рисунок 8, а).
Чередующиеся (дисковые) обмотки выполняют в виде отдельных секций (дисков) НН и ВН и располагают на стержне в чередующемся порядке. Их применяют крайне редко, лишь в некоторых трансформаторах специального назначения.
а – цилиндрическая; б – винтовая; в – непрерывная
Рисунок 8 – Конструкции концентрических обмоток
Концентрические обмотки по конструкции разделяют на несколько типов.
1 Цилиндрические однослойные или двухслойные обмотки из провода прямоугольного сечения (см. рисунок 8, а) используют, главным образом, в качестве обмоток НН на номинальный ток до 800 А.
2 Винтовые одно- и многоходовые обмотки выполняют из нескольких параллельных проводов прямоугольного сечения. При этом витки укладывают по винтовой линии, имеющей один или несколько ходов (рисунок 8, б). Для того, чтобы все параллельные проводники одинаково нагружались током, выполняют транспозицию (перекладку) этих проводников.
3 Непрерывные обмотки (рисунок 8, в) состоят из отдельных дисковых обмоток (секций), намотанных по спирали и соединенных между собой без пайки, т. е. выполненных «непрерывно». Если обмотка выполняется несколькими параллельными проводами, то в ней применяют транспозицию проводов. Непрерывные обмотки, несмотря на некоторую сложность изготовления, получили наибольшее применение в силовых транс-
форматорах в качестве обмоток ВН и НН. Это объясняется их большой механической прочностью и надежностью.
Во время работы трансформатора в его активных материалах – металле обмоток и стали магнитной системы – возникают потери энергии, выделяющиеся в виде тепла. В трансформаторах с масляным охлаждением магнитопровод с обмотками помещен в бак, наполненный трансформаторным маслом (рисунок 9). Трансформаторное масло, омывая обмотки 2 и 3 и магнитопровод 1, отбирает от них теплоту и, обладая более высокой теплопроводностью, чем воздух, через стенки бака 4 и трубы радиатора 5 отдает ее в окружающую среду.
16
Рисунок 9 – Устройство трансформатора с масляным охлаждением
Наличие трансформаторного масла обеспечивает более надежную работу высоковольтных трансформаторов, так как электрическая прочность масла намного выше, чем воздуха. Масляное охлаждение интенсивнее воздушного, поэтому габариты и масса масляных трансформаторов меньше, чем у сухих трансформаторов такой же мощности.
В трансформаторах мощностью до 30 кВ А применяют баки с гладкими стенками. У более мощных трансформаторов для увеличения охлаждаемой поверхности стенки бака делают ребристыми или применяют трубчатые баки. Масло, нагреваясь, поднимается вверх, а, охлаждаясь, опускается вниз. При этом масло циркулирует в трубах, что способствует более быстрому его охлаждению.
Для компенсации объема масла при изменении температуры, а также для защиты масла от окисления и увлажнения при контакте с воздухом в
трансформаторах применяют расширитель 9, представляющий собой цилиндрический сосуд, установленный на крышке бака и сообщающийся с ним. Колебания уровня масла с изменением его температуры происходят не в баке, который всегда заполнен маслом, а в расширителе, сообщающемся с атмосферой.
В процессе работы трансформаторов не исключена возможность возникновения в них явлений, сопровождающихся бурным выделением газов, что ведет к значительному увеличению давления внутри бака, поэтому во избежание повреждения баков трансформаторы мощностью
17
1 000 кВ А и выше снабжают выхлопной трубой, которую устанавливают на крышке бака. Нижним концом труба сообщается с баком, а ее верхний конец заканчивается фланцем, на котором укреплен стеклянный диск. При давлении, превышающем безопасное для бака, стеклянный диск лопается и газы выходят наружу.
В трубопровод, соединяющий бак масляного трансформатора с расширителем, помещено газовое реле. При возникновении в трансформаторе значительных повреждений, сопровождаемых обильным выделением газов (например, при коротком замыкании между витками обмоток), газовое реле срабатывает и замыкает контакты цепи управления выключателя, который отключает трансформатор от сети. Обмотки трансформатора с внеш-
ней цепью соединяют вводами 7 и 8. В масляных трансформаторах для вводов обычно используют проходные фарфоровые изоляторы. Такой ввод снабжен металлическим фланцем, посредством которого он крепится к крышке или стенке бака. К дну бака прикреплена тележка, позволяющая перемещать трансформатор в пределах подстанции. На крышке бака рас-
положена рукоятка переключателя напряжений 6.
2.3 Электрические соотношения в идеальном трансформаторе
Для выяснения сущности физических процессов, происходящих в
трансформаторе, рассмотрим идеализированный трансформатор, у
которого:
1)отсутствуют потери энергии в обмотках (сопротивления обмоток равны нулю);
2)магнитная проницаемость стали магнитопровода С = ∞ и в листах стали магнитопровода нет разъемов и стыков, поэтому потери в стали отсутствуют;
3)магнитный поток Φ полностью замыкается по стальному магнито-
проводу и сцеплен со всеми витками первичной w1 и вторичной w2 обмоток.
Рисунок 10 – Идеализированный однофазный трансформатор
18
К первичной обмотке 1 трансформатора подводится синусоидальное
напряжение u1 = U1max sin ωt, благодаря чему по этой обмотке проходит переменный ток i1, создающий переменный магнитный поток Φ, замыкающийся по магнитопроводу 3. Переменный поток наводит в обмотках
трансформатора ЭДС е1 и е2, пропорциональные, согласно закону Максвелла, числам витков w1 и w2 соответствующей обмотки и скорости изменения потока dΦ/dt. Таким образом, при синусоидальном магнитном
потоке Φ(t) = Φmaxsin ωt мгновенные значения ЭДС: в первичной обмотке – ЭДС самоиндукции:
dΦ(t) |
= ―w1 |
d(Φmaxsin ωt) |
; |
|
е1 = ―w1 dt |
dt |
(1) |
во вторичной обмотке – ЭДС взаимоиндукции:
dΦ(t) |
= ―w2 |
d(Φmaxsin ωt), |
(2) |
е2 = ―w2 dt |
dt |
где Φmax – амплитуда магнитного потока трансформатора. Продифференцировав, получим
е1 = ―ωw1Φmaxcos ωt = ωw1Φmaxsin (ωt ― π/2); |
(3) |
е2 = ―ωw2Φmaxcos ωt = ωw2Φmaxsin (ωt ― π/2). |
(4) |
Из (3) и (4) следует, что ЭДС е1 и е2 отстают по фазе от потока Φ на угол π/2.
Максимальное значение ЭДС
E1max = ωw1Φmax; E2max = ωw2Φmax. |
(5) |
|||||
Разделив Emax на |
2 и подставив ω = 2πf, получим действующие |
|||||
значения этих ЭДС: |
||||||
E1max |
2πfw1Φmax |
= 4,44fw1Φmax; |
||||
E1 = |
2 = |
2 |
(6) |
|||
E2max |
2πfw2Φmax |
= 4,44fw2Φmax. |
||||
E2 = |
2 = |
2 |
(7) |
19
Так как в идеальном трансформаторе падения напряжения в обмотках отсутствуют, то U1 = Е1 ; U2 = Е2.
Коэффициентом трансформации трансформатора называется
отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения:
Отметим, что в идеальном трансформаторе электромагнитная связь между первичной и вторичной цепями является полной.
Поскольку в идеальном трансформаторе потери активной и реактивной энергии отсутствуют, то полные мощности первичной и вторичной обмоток равны:
U1·I1 = U2·I2 ,
откуда
U1 |
I2 |
w1 |
|||
U2 |
= |
I1 |
= w2 |
=k, или I2 = k·I1. |
(9) |
Таким образом, в идеальном трансформаторе первичное и вторичное напряжения прямо пропорциональны, а первичный и вторичный токи обратно пропорциональны числам витков соответствующих обмоток. В реальном трансформаторе полученные соотношения несколько нарушаются, однако в трансформаторах с ферромагнитными магнитопроводами эти отклонения при нагрузках, близких к номинальным, относительно малы.
Из (8) и (9) видно, что ЭДС е1 и е2, наводимые в обмотках трансформатора, отличаются друг от друга лишь за счет разного числа витков w1 и w2 в обмотках, поэтому, применяя обмотки с требуемым соотношением витков, можно изготовить трансформатор практически на любое отношение напряжений.
Трансформаторы – это аппараты переменного тока, обладающие свойством обратимости: один и тот же трансформатор можно использовать в качестве повышающего и понижающего. Но обычно трансформатор имеет определенное назначение: либо он повышающий, либо – понижающий.
При практических расчетах коэффициент трансформации с некоторым допущением принимают равным отношению номинальных напряже-
ний обмоток ВН и НН:
20
Пример 2. Номинальные значения первичного и вторичного напряжений однофазного трансформатора мощностью SНОМ = 100 кВ · А со-
ставляют U1 НОМ = 6 000 В и U2 НОМ = 400 В при частоте тока 50 Гц; действующее значение напряжения, приходящееся на один виток обмоток,
UВИТ = 5 В. Определить число витков обмоток трансформатора w1 и w2; поперечное сечение обмоточных проводов первичной q1 и вторичной q2 обмоток, если плотность тока в этих проводах ∆ = 4,0 А/мм2; площадь поперечного сечения стержня магнитопровода QСТ, если максимальное значение магнитной индукции в стержне ВСТ = 1,4 Тл.
Решение
По номинальным значениям напряжений U1НОМ и U2НОМ определяем числа витков обмоток:
w1 = U1 НОМ/UВИТ = 6 000/5 = 1 200 вит.; w2 = U2 НОМ/UВИТ = 400/5 = 80 вит.
Номинальные значения токов в обмотках:
I1 НОМ = SНОМ/U1 НОМ = 100·103/6 000 = 16,7 А;
I2 НОМ = SНОМ/U2 НОМ = 100·103/400 = 250 А.
Поперечные сечения обмоточных проводов:
q1 = I1 НОМ/∆ = 16,7/4 = 4,175 мм2;
q2 = I2 НОМ/∆ = 250/4 = 62,5 мм2.
Основной магнитный поток в стержне определим, используя выражение (6) и учитывая, что номинальное первичное напряжение
U1 НОМ = Е1:
Φmax = Е1/4,44fw1 = 6 000/(4,44·50·1 200) = 0,0225 Вб.
Поперечное сечение стержня магнитопровода
QСТ = Φmax/(Кс·ВСТ) = 0,0225/(0,93·1,4) = 0,017 м2,
где Кс = 0,93 – коэффициент заполнения шихтованного стержня сталью, учитывающий увеличение сечения стержня прослойками изоляционного лака между стальными пластинами.
21
2.4 Векторные диаграммы идеального трансформатора
Уравнения трансформатора можно представить в векторной форме и по ним могут быть построены векторные диаграммы. Предположим, что трансформатор работает в режиме холостого хода (рисунок 11). Для на-
глядности первичная обмотка с числом витков w1 и вторичная обмотка с числом витков w2 расположены на разных стержнях.
Холостым ходом трансформатора называется такой режим
работы, когда к первичной обмотке подводится напряжение, а вторичная обмотка разомкнута и ток в ней равен нулю. Процессы, происходящие в однофазном трансформаторе, в основном, аналогичны процессам, происходящим в любой из фаз трехфазного трансформатора.
Рисунок 11 − Режимы холостого хода (а) и нагрузки (б) однофазного трансформатора
В режиме холостого хода цепь вторичной обмотки разомкнута, ток i2 = 0, а потребляемый из сети ток будет током холостого хода i1 = i0. При этом для контура первичной обмотки трансформатора действительно уравнение
u =i r +w |
dΦ |
. |
(11) |
1 1 1 1 |
dt |
Пренебрегая падением напряжения в активном сопротивлении первичной обмотки i1·r1 из-за его малости, получаем
dΦ |
||
u1 = w1 dt |
= –e1, |
(12) |
т. е. напряжение, приложенное к первичной обмотке, практически полностью уравновешивается индуцированной в этой обмотке ЭДС.
Поскольку питающее напряжение u1 изменяется по синусоидальному закону u1 = U1max sin ωt, то магнитный поток также изменяется сину-
22
соидально, отставая по фазе от приложенного напряжения на угол 90°:
∫ |
u (t) |
U |
1max |
∫ |
π |
. (13) |
|||||
Φ = |
1 |
dt = |
sinωtdt = −Φm cosωt =Φm sin |
ωt − |
|||||||
w1 |
w1 |
2 |
|||||||||
Будем считать также, что в идеальном трансформаторе нет потерь в стали, тогда потребляемый из сети ток I0 является чисто реактивным током
I0 = I0Р. Поскольку магнитный поток идеализированного трансформатора можно считать прямо пропорциональным току первичной обмотки, то,
следовательно, поток Φ создается реактивным намагничивающим током I0Р. В связи с этим на векторной диаграмме идеализированного трансфор-
матора в режиме холостого хода (рисунок 12) ток холостого хода I0 = I0Р изображен вектором, совпадающим по направлению с вектором магнитно-
го потока Φm. На этой же диаграмме векторы ЭДС E1 и напряжение U1 показаны в противофазе в соответствии с уравнением (12), а вектор маг-
нитного потока Φm отстает от вектора напряжения U1 на 90° и опережает вектор ЭДС E1 на 90°. Там же показан вектор ЭДС E2, совпадающий по фазе с вектором E1, так как ЭДС E2 индуцируется тем же самым магнитным потоком.
Рисунок 12 − Векторная диаграмма идеализированного трансформатора при холостом ходе
Реально при холостом ходе трансформатор потребляет из сети некоторую активную мощность Р0, которая идет на покрытие потерь в нем. Эти потери в трансформаторе имеют две составляющие: электрические потери в первичной обмотке РЭЛ и магнитные потери в стали магнитопровода РМ. Потери РМ возникают вследствие перемагничивания сердечника переменным магнитным потоком и состоят из потерь на гистерезис РГ и потерь от
23
вихревых токов РВТ. Потери РЭЛ при холостом ходе весьма малы, так как во вторичной обмотке тока нет, а по первичной обмотке протекает небольшой ток I0. Поскольку ток холостого хода относительно мал, то поте-
ри в меди обычно составляют менее 2 % от суммы потерь холостого хода. Поэтому считается, что мощность холостого хода практически расходуется только на потери в стали и с достаточной для практики точностью можно принять, что при холостом ходе в трансформаторе имеются только магнитные потери в магнитопроводе РМ. Поэтому активной мощности, потребляемой трансформатором при холостом ходе, будет соответствовать активная составляющая в токе I0а:
P0 |
PМ |
|
I0а = U1 |
= U1 . |
(14) |
В трехфазном трансформаторе под Р0 понимают магнитные потери во всем магнитопроводе, т. е. потери в трех фазах. Активную составляющую фазного значения тока I0а для этого случая определяют как
I0а = |
P0 |
. |
(15) |
3·U1 |
|||
Реактивную составляющую I0Р тока можно найти по формуле |
|||
I0Р = |
I02-I0а2. |
(16) |
|
Таким образом, кроме реактивной I0Р (намагничивающей) |
состав- |
ляющей, которая создает основной магнитный поток Φ, в токе холостого хода можно выделить активную составляющую I0а, совпадающую по фазе с напряжением U1 первичной обмотки. Из-за малого падения напряжения в первичной обмотке от тока I0 (рисунок 13, а) принято, что приложенное напряжение уравновешивается наведенной ЭДС (U1 ≈ E1). Так как обычно I0Р >> I0а, то ток холостого хода является, в основном, реактивным током, а cosϕ0 при холостом ходе имеет низкое значение. Угол ϕ0 близок к π/2, а
угол δ, на который поток Φ отстает от тока I0 и который часто называют углом магнитного запаздывания, невелик. На рисунке 13, б изображена векторная диаграмма трансформатора с учетом падения напряжения в первичной обмотке.
24 |
|||||
а) |
б) |
||||
jI1x1 |
|||||
–Е1 U1 |
–Е1 |
I1r1 |
|||
U1 |
|||||
φ0 |
I0 |
φ0 |
I1=I0 |
||
δ |
δ |
||||
I0a |
Φ |
I0a Φ |
|||
I0p |
I0p |
||||
Е2 |
Е2 |
Е1 Е1
а − с учетом магнитных потерь; б − с учетом магнитных потерь и падения напряжения в первичной обмотке
Рисунок 13 − Векторная диаграмма трансформатора при холостом ходе
Потери Р0 и ток I0 являются важными характеристиками трансформатора. В современных трансформаторах потери холостого хода составляют
0,1 2 % их номинальной мощности и ток холостого хода – 0,5 10 % номинального тока первичной обмотки. Большие числа относятся к трансформаторам малой мощности. Снижение этих величин уменьшает потери энергии и потребление реактивного тока. Это достигается путем применения электротехнической стали с улучшенными магнитными свойствами – низкими удельными потерями и низкой удельной намагничивающей мощностью. Снижению тока холостого хода способствует также применение шихтованных впереплет магнитопроводов, в которых исключаются в явном виде воздушные зазоры в контурах магнитных линий.
Мощность магнитных потерь практически можно определить через удельные магнитные потери, т. е. магнитные потери в 1 кг электротехнической стали. Для холоднокатаной текстурованной листовой электротехнической стали марки 3411 толщиной 0,5 мм, из которой изготавливается большинство сердечников трансформаторов общего назначения при частоте пе-
ременного тока 50 Гц и максимальной магнитной индукции Вmax = 1,5 Тл, удельные магнитные потери составляют P1,5/50 = 2,45 Вт/кг.
2.5 Работа трансформатора при нагрузке
Рассмотрим процессы, происходящие в трансформаторе при нагрузке, на примере однофазного трансформатора. Если трехфазный трансфор-
25
матор питает симметричную нагрузку, то токи во всех фазах будут равны, и процессы в каждой его фазе протекают так же, как и у однофазного трансформатора.
Предположим, что первичная обмотка трансформатора подсоединена к сети с U1 = const и к вторичной обмотке подключена нагрузка Zнг. То-
гда во вторичной обмотке под действием ЭДС Е2 потечет ток I2, при этом
ток в первичной обмотке увеличится и станет равным I1 (см. рисунок 11). Начнется передача электромагнитным путем энергии во вторичную цепь. Такой режим работы трансформатора называется режимом нагрузки.
Токи I1 и I2 , протекая по обмоткам, создадут свои магнитные потоки, которые накладываясь друг на друга, образуют результирующий маг-
нитный поток трансформатора Φ.
При работе под нагрузкой для первичной обмотки идеализированного трансформатора можно составить уравнение
U1 |
= w1 |
dΦ1 |
+ w1 |
dΦ2 |
= w1 |
d |
(Φ1 +Φ2 ), |
(17) |
|
dt |
dt |
dt |
|||||||
где Φ1 и Φ2 – потоки, создаваемые токами первичной и вторичной обмоток.
Обозначая, как и при холостом ходе, e1 =−w1 dtd (Φ1 +Φ2 ), получаем
u1 = − e1 , т. е. такое же соотношение, что и при холостом ходе. Очевидно, если первичное напряжение U1 при нагрузке идеализированного трансформатора остается неизменным, то величина ЭДС Е1 такая же, как и при холостом ходе. Следовательно, результирующий поток при нагрузке равен потоку при холостом ходе:
Φ1 + Φ2 = Φ0.
Неизменность магнитного потока при переходе от режима холостого хода к режиму нагрузки является важнейшим свойством идеализированного трансформатора. Из этого свойства следует
закон равновесия магнитодвижущих сил (МДС) в трансформаторе: I1·w1 + I2·w2 = I0·w1, где I1·w1 и I2·w2 – МДС, создаваемые первичной и
вторичной обмотками трансформатора при нагрузке; I0·w1 – МДС, создаваемая первичной обмоткой при холостом ходе. Как объяснить, что появление тока во вторичной обмотке и магнитного потока, связанного с ним, не меняет величины потока в сердечнике трансформатора? Из приведенного выше равенства видно, что поскольку МДС при нагрузке, равная сумме МДС обеих обмоток, должна оставаться неизменной и равной МДС пер-
вичной обмотки при холостом ходе I0·w1, то это может быть только в том
26
случае, если МДС I1·w1 и I2·w2 направлены навстречу. Поэтому при появлении тока I2 будет возрастать ток I1, и магнитное действие тока I2 будет компенсироваться магнитным действием от возрастания тока I1. Практика показывает, что при работе трансформатора в диапазоне от холостого хода до нагрузок, незначительно превышающих номинальную, магнитный поток трансформатора Φ остается практически неизменным.
Уравнение равновесия МДС I1w1 + I 2 w2 = I 0w1 можно записать
как I 1 = I 0 − I 2 |
w2 |
w2 |
|
. Здесь I2w |
– приведенный вторичный ток (состав- |
||
w |
|||
1 |
1 |
ляющая тока первичной обмотки, обусловленная действием нагрузки). Векторная диаграмма идеализированного трансформатора, рабо-
тающего под нагрузкой, показана на рисунке 14.
Рисунок 14 − Векторная диаграмма идеализированного трансформатора, работающего под нагрузкой
Основные закономерности работы идеализированного трансформатора справедливы и для реальных трансформаторов.
2.6 Индуктивности обмоток трансформатора и электромагнитное рассеяние
Исследования магнитного поля трансформатора показали, что кроме потока Φ, замыкающегося по стали и сцепленного со всеми обмотками трансформатора, ток первичной обмотки I1 создает также поток Φσ1 (ри-
сунок 15), силовые линии которого сцеплены только с первичной обмоткой и замыкаются частично по воздуху или через трансформаторное мас-
ло. Картина магнитного поля вторичной обмотки аналогична. Поток Φσ1
27
сцеплен с витками первичной обмотки, а поток Φσ2 − с витками вторич-
ной обмотки. Отдельные магнитные линии этих потоков сцепляются с неполными и разными числами витков первичной и вторичной обмоток, по-
этому поля потоков Φσ1 и Φσ2 имеют гораздо более сложный характер,
чем поле потока Φ. Потоки Φσ1 и Φσ2 не участвуют в передаче энергии
от одной обмотки в другую и называются потоками рассеяния первичной и вторичной обмоток соответственно.
Рисунок 15 – Магнитные потоки в однофазном трансформаторе
Если бы в трансформаторе отсутствовали потоки Φσ1 и Φσ2 , замы-
кающиеся по воздуху, то в этом случае электромагнитная связь между обмотками была бы полная. Этого можно было бы достигнуть только в том случае, если бы удалось полностью совместить первичную и вторичную обмотки, что фактически невозможно. Явление неполной электромагнитной связи между обмотками называется электромагнитным рассеянием.
Так как магнитные проницаемости воздуха и масла во много раз меньше, чем стали, то магнитные сопротивления этих участков будут большими. Вследствие большого магнитного сопротивления на пути потоков рассеяния в трансформаторе со стальным магнитопроводом потоки
Φσ1 и Φσ2 будут относительно небольшими. Поэтому электромагнитная
связь между обмотками в трансформаторах чрезвычайно высока, а рассеяние мало.
Для удобства расчетов обычно считают, что потоки рассеяния и главный поток существуют независимо друг от друга. Все три потока, изменяясь, будут наводить ЭДС в обмотках трансформатора. При составлении уравнений трансформатора первичная обмотка рассматривается как приемник электрической энергии из сети, а вторичная − как источник электрической энергии, и сами эти уравнения истолковываются следующим образом. Приложенное первичное напряжение U1 расходуется на падение напряжения I1·r1 и уравновешивание ЭДС первичной обмотки. Вторичное напряжение U2 возникает вследствие наведения во вторичной об-
28
мотке ЭДС и рассматривается как падение напряжения на сопротивлении
нагрузки ZНГ.
Полагая, что все электрические и магнитные величины изменяются по синусоидальному закону, запишем по второму закону Кирхгофа уравнение для первичной и вторичной обмоток в комплексной форме:
U1 |
= I1·r1 |
−E1 |
−Eσ1; |
(18) |
−U2 |
= I2·r2 |
−E2 |
−Eσ2. |
(19) |
Таким образом, в каждой из обмоток трансформатора индуцируются по две ЭДС: ЭДС от основного потока Φ и ЭДС от потока рассеяния ( Φσ1
в первичной обмотке и Φσ2 во вторичной обмотке).
Поскольку магнитная проницаемость воздуха и масла µ0 = const постоянна, то принимается, что потоки рассеяния будут пропорциональны
соответствующему току. Поэтому соответствующие ЭДС Еσ1 и Еσ2 так-
же будут пропорциональны этим токам, то есть: Еσ1 = I1·x1 и
Еσ2 = I2·x2, здесь x1 и x2 являются коэффициентами пропорциональности
между ЭДС и токами и носят название индуктивных сопротивлений
рассеяния первичной и вторичной обмотоксоответственно.
Переходя к комплексной форме записи уравнений следует иметь ввиду, что векторы ЭДС отстают от соответствующих токов и потоков на
угол 90°: Еσ1 = −jI1·x1; Еσ2 = −jI2·x2.
При этом комплексные уравнения трансформатора примут вид:
U1 |
= −E1 |
+ I1·r1 |
+ j |
I |
1·x1; |
(20) |
||
−U2 |
= −E2 |
+ I2·r2 |
+ j |
I |
2·x2. |
(21) |
||
Или |
||||||||
U1 |
= −E1 |
+ I1·Z1; |
(22) |
|||||
−U2 |
= −E2 |
+ I2·Z2; |
(23) |
|||||
I1 |
= I0 − I2w2 , |
(24) |
||||||
w1 |
||||||||
где Z1 = r1 + jx1 и Z2 = r2 |
+ jx2 − комплексные сопротивления пер- |
вичной и вторичной обмоток трансформатора.
29
Данные уравнения являются основными уравнениями трансформатора и описывают рабочий процесс в трансформаторе при нагрузке. Они
носят название уравнений электрического равновесия. По этим урав-
нениям построены векторные диаграммы для цепи нагрузки (рисунок 16, а) и первичной цепи (рисунок 16, б).
Рисунок 16 − Векторные диаграммы обмоток трансформатора при активноиндуктивной нагрузке
Построение диаграммы начинают с вектора потока Φm, который создается током холостого хода I0, этот ток опережает вектор потока Φm на угол δ = 5÷10°. Вектор ЭДС E1, как и E2, отстает от потока Φm на угол
90°. Ток в первичной обмотке трансформатора I1 = I0 − I2w2, поэтому на
w1
рисунке 16 показан и вектор тока I2, сдвинутый на угол ψ2 относительно вектора E1 (поскольку векторы E1 и E2 совпадают по направлению). Зная
I2, можно изобразить вектор − I2w2 и получить вектор I1 как сумму векто-
w1
ров I0 и − I2w2.
w1
Найдя вектор тока I1, можно определить значения векторов I1·r1 + j I1·x1 и построить искомый вектор напряжения U1 как сумму трех
составляющих: векторов −E1 и падений напряжений в обмотках I1·r1 и
j I1·x1.
Напряжение на вторичной обмотке определим согласно U2 = E2 − I2·r2 − j I2·x2, если из E2 вычтем векторы падений напряжения
30
I2·r2 и j I2·x2 (−I2·r2 находится в противофазе с током I2, а −j I2·x2 отстает от тока I2 на угол 90°). Угол сдвига между напряжением U1 и током I1 обозначен ϕ1 , а угол между U2 и I2 − ϕ2.
2.7 Приведение величин вторичной обмотки к числу витков первичной обмотки
При больших коэффициентах трансформации k численные значения токов, напряжений, ЭДС и сопротивлений первичной и вторичной обмоток сильно отличаются друг от друга. Это в ряде случаев затрудняет количественный анализ работы трансформатора. Например, при больших коэффициентах трансформации практически невозможно на векторной диаграмме изобразить в одном масштабе величины первичной и вторичной обмоток.
Эти затруднения можно устранить, если реальный трансформатор, имеющий различные числа витков у первичной w1 и вторичной w2 обмоток, заменить эквивалентным трансформатором, у которого обе обмотки будут иметь одинаковые числа витков (w2 = w1). Эквивалентный трансформатор, у которого w2 = w1 называется приведенным(рисунок 17). Однако приведение вторичных параметров трансформатора не должно отразиться на его энергетических показателях: все мощности и фазовые сдвиги во вторичной обмотке должныостаться такими, какивреальномтрансформаторе.
Рисунок 17 − Электрические величины в реальном (а) и приведенном (б) трансформаторе
Вторичные величины приведенного трансформатора (ток, напряжение, ЭДС, сопротивления) называются приведенными и обозначаются
соответственно: I2′, U2′, E2′, r2′, x2′. Эти величины называются приведенными к числу витков первичной обмотки и могут быть выражены через действительные. Так как w2 = w1, то
w1 |
w1 |
||
Е2′ = Е1 = E2 w2 |
= Е2·k, аналогично U2′ = U2 w2 |
= U2·k. |
(25) |
МДС вторичной обмотки приведенного трансформатора должна
31
быть равна МДС вторичной обмотки реального трансформатора, т. е.
w2 |
1 |
, |
|
I2′·w1 = I2·w2, откуда I2′ = I2 w1 |
= I2 k |
(26) |
при этом полная мощность вторичной обмотки остается неизменной:
1 |
||
U2′·I2′ = U2·k·I2k |
= U2·I2. |
(27) |
Потери во вторичной обмотке этих трансформаторов должны быть одинаковыми:
(I 2 ‘)2 r 2 ‘ =(I 2 )2 r 2 . |
(28) |
|||||||||
Отсюда получим |
||||||||||
2 |
w |
2 |
||||||||
r2′ = r2 |
I2 |
1 |
2 |
|||||||
I2′2 |
= r2 |
w2 |
= r2·k . |
(29) |
Для того чтобы отношения между активными и индуктивными сопротивлениями рассеяния у трансформаторов сохранились, необходимо, чтобы выполнялось равенство
Откуда следует, что сопротивление Z2′ вторичной обмотки приведенного трансформатора равно:
Z2′ = Z2·k2. |
(31) |
Если сопротивление цепи нагрузки ZНГ, то по аналогии |
|
ZНГ′ = ZНГ·k2. |
(32) |
Для приведенного трансформатора уравнения, описывающие рабочий процесс в нем, приобретают вид
U1 |
= −E1 + I1·Z1; |
(33) |
−U2′ = −E2′ + I2′·Z2′; |
(34) |
|
I1 |
= I0 − I2′ . |
(35) |
32
Приведение величин вторичной обмотки позволяет также построить удобную для расчетов схему замещения трансформатора.
3 Электрическая схема замещения приведенного трансформатора
3.1 Получение Т−образной схемы замещения трансформатора
Еще одним средством, облегчающим исследование электромагнитных процессов и расчет трансформаторов, является применение электри-
ческой схемы замещения приведенного трансформатора.
В трансформаторах первичная и вторичная обмотки связаны между собой только магнитным потоком. Электрической связи между обмотками нет. Исключение составляют автотрансформаторы, т. е. трансформаторы, в которых обмотки, кроме индуктивной связи, имеют и электрическую связь.
Передача энергии из одной обмотки в другую осуществляется «индуктивным» или «трансформаторным» путем, посредством магнитного поля. Для удобства расчета магнитную связь заменяют электрической. Такая электрическая схема называется схемой замещения трансформатора.
Физически переход от реального трансформатора к имитирующей его электрической схеме замещения можно наглядно представить состоящим из четырех этапов.
Рисунок 18 − Эквивалентные схемы для получения Т−образной схемы замещения трансформатора
33
Окончание рисунка 18
Этап 1. Реальный трансформатор заменяют идеализированным трансформатором Тр, в цепь первичной обмотки которого включают сопротивления r1 и x1, a в цепь вторичной обмотки – r2 и x2 (рисунок 18, а).
Этап 2. Параметры вторичной обмотки приводят к параметрам первичной, в результате чего ЭДС обмоток оказываются равными (Е1 = Е2′).
Этап 3. Так как в приведенном трансформаторе Е1 = Е2′, то цепи первичной и вторичной обмоток трансформатора можно объединить, как это сделано на рисунке 18. Поэтому соединяют эквипотенциальные точки
а и а′; б и б′ (рисунок 18, б).
Этап 4. Первичную обмотку заменяют намагничивающим контуром, по которому проходит составляющая I0 = I1 + I2′ первичного тока. Поскольку ЭДС Е1 = Е2′ индуцируются потоком Φ, который в свою очередь создается током I0, поэтому можно положить, что ЭДС Е1 и Е2′ создаются током I0, протекающим по некоторому сопротивлению Zm:
Е1 = I0·Zm = I0·rm + jxm . |
(36) |
Комплексный коэффициент пропорциональности Zm = rm + j xm называется полным сопротивлением намагничивающей ветви.
В результате получается так называемая Т−образная схема замещения приведенного трансформатора, показанная на рисунке 18, в. Данная схема удовлетворяет всем уравнениям ЭДС и токов приведенного трансформатора и представляет совокупность трех ветвей: первичной − сопротивлением Z1 = r1 + j x1 и током I1; намагничивающей − сопротивлением Zm = rm + j xm и током I0; вторичной − с двумя сопротивлениями (со-
противлением собственно вторичной обмотки Z2′ = r2′ + j x2′ и сопротивлением нагрузки ZНГ′ = rНГ′ + j xНГ′ и током I2′). Изменением сопротив-
34
ления нагрузки ZНГ′ на схеме замещения могут быть воспроизведены все режимы работы трансформатора.
Параметры ветви намагничивания Zm = rm + j xm определяются режимом холостого хода. При этом сопротивление хm представляет реактив-
ность, обусловленную потоком взаимоиндукции Φ, и называется индуктивным сопротивлением взаимной индукции обмоток трансформатора. Сопротивление rm учитывает магнитные потери РM в трансформаторе и численно равно:
rm = |
РМ |
, |
(37) |
2 |
|||
m·I0 |
где m − число фаз.
Сопротивления Z1, Z2′, Zm, а также их индуктивные и активные составляющие называются параметрами схемы замещения. При сопоставлении параметров различных трансформаторов удобно выражать их в относительных единицах. Для этого нужно соответствующее сопротивление, выраженное в Омах, поделить на базисную величину, за которую в трансформаторах принимается отношение номинальных значений напряжения и
тока первичной обмотки: ZНОМ = U1НОМ (в трехфазных трансформаторах
I1НОМ
U1НОМ и I1НОМ – фазные величины). Параметры в относительных единицах принято обозначать дополнительным индексом « ». Например, сопро-
тивление Zm в относительных единицах будет равно Zm = ZZm . Одина-
НОМ
ковые параметры в относительных единицах для различных трансформаторов будут отличаться в значительно меньшей мере, чем их значения в абсолютных единицах.
Для современных силовых трансформаторов параметры в относительных единицах имеют следующие численные значения:
xm ≈ Zm = 10÷300; rm = 5÷60;
Z1 ≈ Z2′ = 0,015÷0,07; r1 ≈ r2′ =0,0012÷0,012; x1 ≈ x2′ = 0,015÷0,07.
Из приведенных данных видно, что параметры намагничивающей ветви во много раз больше, чем параметры первичной и вторичной обмоток.
При расчетах по схеме замещения ее параметры должны быть из-
35
вестны. Параметры схемы замещения могут быть найдены расчетным или опытным путем. В последнем случае обращаются к данным опытов холостого хода и короткого замыкания.
3.2 Экспериментальное определение параметров схемы замещения трансформатора
Опыт холостого хода. Холостым ходом называют режим рабо-
ты трансформатора, при котором первичная обмотка включена в сеть переменного тока, а вторичная обмотка разомкнута и I2 = 0. Обычно при проведении опыта холостого хода напряжение на первичной обмотке U1 постепенно повышают с помощью регулятора напряжения РН от нуля до U1 = (1,1÷1,2) U1 НОМ, где U1 НОМ – номинальное значение первичного напряжения. Схемы опытов для однофазного и трехфазного трансформаторов приведены на рисунке 19. Опыт холостого хода проводится для экспериментального определения потерь холостого хода P0, тока холостого хода I0, cosϕ0 и коэффициента трансформации k.
Рисунок 19 − Схема соединения однофазного (а) и трехфазного (б) трансформаторов при опыте холостого хода
В цепь первичной обмотки включаются амперметры, вольтметры и ваттметры. К вторичной обмотке при опыте подключается вольтметр, при этом записывают показания всех приборов. По данным измерений этих
приборов строят зависимости I0 = f(U0), P0 = f(U0), которые называют характеристиками холостого хода (рисунок 20).
По характеристикам холостого хода устанавливаются значения соответствующих величин для U0 = UНОМ.
36
Рисунок 20 − Характеристики холостого хода трехфазного трансформатора 100 кВ·А, 6 300/220 В с соединением обмоток Y/Y, замеренные со стороны низшего напряжения
Коэффициент мощности холостого хода находится расчетным путем:
P0 |
P0 |
||||
cosϕ0 = |
. Для трехфазного трансформатора cosϕ0 |
= |
, а значе- |
||
U0·I0 |
3 U0·I0 |
ния напряжений и токов для построения характеристики cosϕ0 = f(U0) берут средними для трех фаз.
Из данных опыта холостого хода определяют полное, активное и индуктивное сопротивления холостого хода и строят зависимости Z0 = f(U0), r0 = f(U0). Из схемы замещения трансформатора (рисунок 21) при I‘2 = 0 следует, что параметры холостого хода Z0, r0, x0 представляют собой суммы следующих сопротивлений: Z0 = Z1 + Zm ; r0 = r1 + rm ; x0 = x1 + xm:
U0 |
||
Z0 = Z1 + Zm = I0 ; |
||
P0 |
= Z0·cosϕ0; |
|
r0 = r1 + rm = I02 |
||
x0 = x1 + xm = |
Z02−r02. |
(38) |
37
Рисунок 21 – Схема замещения трансформатора в режиме холостого хода
Коэффициент трансформации равен отношению первичного и вторичного напряжений:
w1 |
U10 |
|
k = w2 |
= U20 . |
(39) |
Целесообразно определять относительные значения перечисленных сопротивлений:
Z0 = |
Z0 |
; r0 = |
r0 |
; x0 = |
x0 |
; i0 = |
I0 |
. |
(40) |
ZНОМ |
ZНОМ |
ZНОМ |
IНОМ |
Всовременных силовых трансформаторах при U0 = UНОМ обычно Z0 ≈ x0 = 25÷200 и x0 = 5÷25. Вторые числа относятся к мощным трансформаторам.
Всиловых трансформаторах сопротивления r1 и x1 в десятки и сотни
раз меньше rm и xm соответственно. Поэтому с большой точностью можно считать, что параметры холостого хода равны параметрам намагничивающей цепи:
Z0 ≈ Zm ; r0 ≈ rm ; x0 ≈ xm . |
(41) |
По этой же причине можно сказать, что мощность холостого хода P0
с весьма большой точностью равна магнитным потерям PM в магнитопроводе трансформатора.
При холостом ходе, согласно схеме замещения,
U0 = I0Z1 + I0Zm = I0Z1 + (−E1). |
(42) |
Данному уравнению напряжения холостого хода соответствует векторная диаграмма холостого хода на рисунке 22.
трехфазного трансформатора с но-
(I0НОМ
38
jI0x1
–Е1 I0r1
U0
Е1 = Е2‘
Рисунок 22 − Векторная диаграмма трансформатора при холостом ходе
На этой диаграмме для ее ясности падения напряжения I0·r1 и j·I0x1 изображены весьма большими. В действительности они составляют доли
процента от U0, так как Z1 << Zm, поэтому ими можно пренебречь и положить, что U0 = −E1. Вследствие преобладания индуктивного сопротивления при U0 = UНОМ угол ϕ0 близок к 90º и коэффициент мощности
cosϕ0 ≤ 0,1.
Так как r1 << rm, то потери холостого хода практически представляют собой потери в стали магнитопровода, включая потери от вихревых токов в стенках бака в режиме холостого хода.
Пример 3. На рисунке 20 приведены характеристики холостого хода
= 20,5 A; cos φ0НOМ = 0,08)
минальными данными: SНОМ = 100 кВ · А; U1НОМ/U2НОМ = 6,3/0,22 кВ;
соединение обмоток Y/Y. Определить параметры ветви намагничивания схемы замещения трансформатора Zm, rm и хm и ток холостого хода при номинальном фазном напряжении на стороне обмоток НН U2ф = 127 В.
Решение
Полное сопротивление ветви намагничивания (уравнение (38))
Zm = U0/I0 = 127/20,5 = 6,2 Ом;
активное сопротивление ветви намагничивания (см. уравнение (38))
39
rm = Zm·cosϕ0ном = 6,2·0,08 = 0,49 Ом;
индуктивное сопротивление ветви намагничивания (см. уравнение (38))
xm = Zm2−rm2 = 6,22−0,492 = 6,18 Ом.
Ток холостого хода (уравнение (40))
i0 = I0/I2НОМ·100 = (20,5/264)·100 = 7,8 %,
где номинальное значение тока в обмотке НН
I2НОМ = SНОМ/( 3·U2НОМ) = 100·103/( 3·220) = 264 А,
где U2НОМ – линейное значение вторичного напряжения.
Опыт короткого замыкания. Короткое замыкание трансформатора представляет собой такой режим его работы, когда вторичная обмотка замкнута на себя, следовательно, вторичное напряжение U2 равно нулю. Опыт короткого замыкания производится по схемам, изображенными на рисунке 23.
Рисунок 23 − Схемы опытов короткого замыкания однофазного (а) и трехфазного (б) двухобмоточных трансформаторов
При опыте короткого замыкания обмотку низшего напряжения трансформатора замыкают накоротко (рисунок 23), а к обмотке высшего напряжения подводят пониженное напряжение, постепенно повышая его регулятором
напряжения РН до некоторого значения UК НОМ, при котором токи короткого замыкания в обмотках трансформатора становятся равными номинальным
токам в первичной (I1К = I1 НОМ) и вторичной (I2К = I2 НОМ) обмотках. При этом снимают показания приборов и строят характеристики короткого замы-
кания, представляющие собой зависимость тока короткого замыкания I1К, мощности короткого замыкания РК и коэффициента мощности cosϕK от напряжения короткого замыкания UК (см. рисунок 24).
40
Если при коротком замыкании трансформатора к зажимам его первичной обмотки подвести номинальное или близкое к нему напряжение, то токи в обмотках трансформатора достигают величины, превышающей но-
минальные токи обмоток в 10÷20 и более раз, так как сопротивления обмоток относительно невелики. Поэтому во время опыта короткого замыкания к первичным обмоткам во избежание перегрева и повреждения трансформатора подводится пониженное напряжение с таким расчетом, чтобы ток находился в пределах номинального. В случае трехфазного трансформатора опыт проводят по схеме, показанной на рисунке 23, б, а значения напряжения короткого замыкания и тока короткого замыкания определяют как средние для трех фаз:
UK = |
UK А + UK В + UK С; I1К = IK А + IK В + IK С . |
(43) |
||
3 |
3 |
|||
Коэффициент мощности при опыте короткого замыкания |
||||
cos ϕK = |
PK |
. |
(44) |
|
3·UK·IK |
||||
Характеристики короткого замыкания |
трансформатора |
IК = f(UК), |
PК = f(UК), cosϕK = f(UК) приведены на рисунке 24.
Рисунок 24 − Характеристики короткого замыкания трансформатора с соединением обмоток Y/Y0, 240 кВ·А, 3150/380 В, измеренные со стороны ВН
41
Полное ZК, активное rК и реактивное xК сопротивления короткого замыкания рассчитываются по формулам, аналогичным для случая холо-
стого хода. Однако при опыте короткого замыкания основной поток Φкm составляет всего лишь несколько процентов от номинального, поэтому магнитными потерями, вызываемыми этим потоком, можно пренебречь.
Для однофазного трансформатора
UК |
PК |
2 |
2 |
||||
ZК = |
IК |
; |
rК = |
IК2; xк = |
ZК |
−rК . |
(45) |
Как видно из схемы замещения на рисунке 21, сопротивление короткого замыкания
ZM·Z2′ |
|
ZK = Z1 + ZM+Z2′. |
(46) |
Так как ZM в сотни раз больше Z2′, то в знаменателе можно пренебречь Z2′ по сравнению с ZM. Поэтому с большой точностью
ZK = Z1 + Z2′; rK = r1 + r2′; xK = x1 + x2′ . |
(47) |
Так как x1 и x2′ определяются потоками, замыкающимися по воздуху, то их значения, а также ZK не зависят от UK и IK.
Напряжение UK = UK HОМ, при котором ток короткого замыкания равен номинальному (IK = IНОМ), носит название напряжения корот-
кого замыкания и обозначается UK.
Величина UK в относительных единицах равна сопротивлению короткого замыкания в относительных единицах:
UK = UK НОМ = ZK |
IНОМ |
= |
ZK |
= ZK . |
(48) |
UHОМ |
UHОМ |
ZHОМ |
|||
Величина UK выражается на практике также в процентах: |
|||||
UK НОМ |
|||||
UK % = UHОМ ·100 % = 100·UK = 100·ZK . |
(49) |
3.3 Векторная диаграмма короткого замыкания приведенного трансформатора
Пусть Φкm – вектор основного потока при коротком замыкании (рисунок 25, а). Этот поток создает в первичной и вторичной обмотках транс-
42
форматора ЭДС Е1К и Е2К, а потоки рассеяния – ЭДС Еσ1 = −jI1x1 и
Еσ2 = −jI2′x2′. Так как U1 К составляет 5−10 % от номинального напряжения, то намагничивающим током можно пренебречь. Тогда при коротком
замыкании приведенного трансформатора I1 + I2′ = 0 или I1 =− I2′ . Создаваемые потоком Φкm ЭДС Е1К и Е′2К = Е1К =0F отстают от потока
Φкm на угол 90°. К вектору Е′2К под углом ψ2K = arctgx2′′ проводится
r2
вектор тока I2′. Вектор ЭДС Е′σ2К = −jI2′x2′ отстает от вектора тока I2′ на угол 90°; вектор −I2′r2′ находится с вектором тока I2′ в противофазе. Складывая геометрически вторичные ЭДС Е′σ2К = −jI2′x2′ и −I2′r2′ соответственно уравнению Е2К = I2′ Z2′, получаем прямоугольный треугольник OFD. Вектор первичного напряжения строится по уравнению
U1K = −E1K + I1 Z1 = −E1K + I1 r1 + jI1x1.
Рисунок 25 − Векторные диаграммы трансформатора при коротком замыкании
Векторная диаграмма трансформатора при коротком замыкании с IK = IНОМ на рисунке 25 изображена для двух обмоток и вторичной обмотки отдельно (рисунок 25, б).
Треугольник OFD на рисунке 25, б называется треугольником короткого замыкания. Его катеты представляют собой активную и реактивную составляющие напряжения короткого замыкания:
UK A = UK·cosϕK; UK R = UK·sinϕK.
В трансформаторах мощностью SНОМ = 10 кВ·А обычно cosϕK ≈ 0,65, а в трансформаторах мощностью более SНОМ = 60 MВ·А обычно cosϕK ≈ 0,05. Таким образом, в мощных трансформаторах преоб-
43
ладают составляющие UK R и xK по сравнению с UK A и rK. Очевидно, что
UK A = rK , UK R = xK . Значение UK A приводится к температуре обмоток, равной +75 °С.
Согласно изложенному, напряжение короткого замыкания характеризует значение активных сопротивлений и индуктивных сопротивлений рассеяния трансформатора и поэтому является важной характеристикой трансформа-
тора. Значение UK% указывается в паспортной табличке трансформатора. В силовых трансформаторах UK% = 4,5÷15. Первая цифра относится к трансформаторам с номинальным линейным напряжением UЛНОМ ≤ 10 кВ, а вто-
рая – к трансформаторам с UЛНОМ = 500 кВ, которые обладают большим рассеяниемвследствиебольшогорасстояниямеждуобмотками.
Значение ЭДС Е1 в опыте короткого замыкания при IK = IНОМ в 15÷40 раз меньше UHОМ. При этом магнитные потери в 225÷1600 раз меньше, чем в случае U = UНОМ, и весьма малы. Поэтому мощность короткого замыкания PK с большой точностью представляет собой мощность электрических потерь в обмотках, включая добавочные потери в стенках бака и в крепежных деталях от потоков рассеяния трансформатора. Следо-
вательно, и rK = r1 + r2′, определенное из опыта короткого замыкания, является эквивалентным сопротивлением с учетом этих потерь.
Разделить ZK на составляющие Z1 и Z2′ довольно трудно. Обычно
принимают схему замещения симметричной, полагая: |
||||||||||||
Z1 |
≈ Z2′ = |
ZK |
; |
r1 |
≈ r2′ = |
rK |
; |
x1 |
≈ x2′ = |
xK |
. |
(50) |
2 |
2 |
2 |
Это допущение близко к действительности и не вносит ощутимых погрешностей в расчеты.
Если короткое замыкание происходит при номинальном первичном напряжении, то ток короткого замыкания будет весьма велик:
IK = |
UНОМ |
(51) |
||||
ZK |
||||||
или в относительных единицах |
||||||
IK = |
1 |
= |
100 |
. |
(52) |
|
ZK |
UK% |
Если, например, UK% = 10 %, то IK = 10·IHОМ.
44
Пример 4. Результаты измерений при опыте короткого замыкания трехфазного трансформатора мощностью SНОМ = 100 кВ·А, линейными напряжениями U1НОМ/U2НОМ = 6,3/0,22 кВ, соединением обмоток Y/Y приведены в таблице 1 (напряжение подводилось со стороны ВН). Построить характеристики короткого замыкания: зависимость тока короткого замыкания IК, мощности короткого замыкания РК и коэффициента мощности
cosϕК от напряжения короткого замыкания UК.
Таблица 1 – Результаты измерений при опыте короткого замыкания
Номер измерения |
UкА, В |
UкВ, В |
UкС, В |
IкА, A |
IкB, A |
IкC, A |
Pк, Вт |
1 |
64 |
63 |
62 |
2,9 |
3,0 |
3,1 |
109 |
2 |
105 |
105 |
103 |
5,1 |
5,0 |
5,0 |
513 |
3 |
147 |
146 |
146 |
7,2 |
7,0 |
7,2 |
1040 |
4 |
191 |
189 |
190 |
9,2 |
9,2 |
9,1 |
1780 |
Решение
Опыт короткого замыкания, соответствующий номинальному (фазному) напряжению короткого замыкания UК НОМ = 190 В соответствует измерению 4 в таблице 1. При этом ток короткого замыкания равен номинальному
I1 К = I1 НОМ = SНОМ/( 3·U1НОМ) = 100·103/( 3·6,3·103) ≈ 9,15 А.
Среднее (для трех фаз) значение фазного напряжения короткого замыкания по (43):
UК НОМ = (191 + 189 + 190)/3 = 190 В.
Среднее (для трех фаз) значение тока короткого замыкания по (43):
I1 К = (9,2 + 9,2 + 9,1)/3 = 9,15 А.
Параметры схемы замещения трансформатора при опыте короткого замыкания:
– полное сопротивление короткого замыкания по (45)
ZК = UК НОМ/I1 НОМ = 190/9,15 = 20,8 Ом;
из выражения мощности короткого замыкания PК = 3·I1 К2·rК определим активное сопротивление короткого замыкания:
rК = PК/(3·I1 НОМ2) = 1780/(3·9,152) = 7,1 Ом;
Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами. Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи.
Содержание
- Принцип работы
- Конструкция
- Особенности
- Формулы расчета силового трансформатора
- Мощность вторичной обмотки
- Общая мощность
- Сечение сердечника
- Количество витков
- Выбор пластин для сердечника
- Определение толщины набора сердечника
- Как рассчитать габаритную мощность
- Правильный расчет по сечению сердечника
- Как определить число витков обмотки
- Упрощенный расчет 220/36 Вольт
- 1 этап
- 2 этап
- 3 этап
- 4 этап
- 5 этап
- 6 этап
- Как рассчитать Ш-образный трансформатор
- Определение параметров ТТ
- Особенности расчета сетевого трансформатора
- Выбор магнитопровода
- Технология изготовления
- Формы серденичков
- Варианты размещения катушек
- Краткая справка о материалах магнитопровода
- Исходные данные
- Как посчитать магнитопровод
- 1 шаг
- 2 шаг
- 3 шаг
- Определение параметров обмоток
- Мощность потерь
- Особенности расчета автотрансформатора
- Как посчитать пленочный трансформатор
- Обзор онлайн сервисов
- Примеры расчета
- Расчет силового трансформатора, который должен запитывать N-оборудование
- Условия и исходные данные для расчета
- Расчет силового трансформатора пошагово
Принцип работы
Любая энергосистема, установка, особенно в сети трехфазного (3ф) тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор. В высоковольтных сетях он производит повышение напряжения, получая его непосредственного из недр генератора и направляя в высоковольтные линии электропередач. На том конце линий тоже стоят трансформаторы высокого напряжения, которые уже производят процесс понижения его величины для подачи на объекты, которыми являются обычные потребители.
Трансформаторы тока в тех же мощных электроустановках производят преобразования первоначальной токовой величины в номинальные его значения, допустимые для питания контрольных и измерительных приборов, защит, учетных систем и прочих энергетических элементов.
В бытовых нуждах, однофазного тока и напряжения широко используют различные трансформаторы, которые преобразуя электрические величины обеспечивают питанием многие бытовые приборы, являются источником различного освещения, питают системы электроники и мультимедиа. В целом, без таких преобразователей в электричестве никуда.
Конструкция
На примере простейшего однофазного трансформатора возможно подробно рассмотреть его основные конструктивные элементы и узнать основы принципа его работы. Конструктивно такой трансформатор состоит из трех главных элементов:
- Первичная обмотка – катушка с изолированными проводниками, намотанная в определенном порядке, выводы которой являются принимающим определенную величину электроэнергии. Проводники первичной обмотки передают электроэнергию дальше, для проведения ее трансформации;
- Магнитопровод или сердечник – выполненный из специальной шихтованной (слоенной) электротехнической стали, различной конструкции и формы. На его части с одной и другой стороны наматываются проводники обмоток и именно в нем происходит бесконтактное явление трансформации величины электроэнергии;
- Вторичная обмотка – изолированные проводники, с намоткой на вторую часть сердечника в определенном количестве, с конкретной толщиной. Выводы вторичных проводников передают выходную величину энергии к потребителю или другому энерго устройству, в цепь которого был установлен преобразователь.
Особенности
Принцип работы любого трансформатора основан на явлении электромагнитной индукции, в замкнутом контуре магнитопровода, сквозь намотанные на него проводники первичной и вторичной обмотки. Подключенная к сети переменного тока первичная обмотка создает в замкнутом контуре магнитное поле с движущимся по кольцу магнитопровода магнитным потоком. Его движение проходит, через обе намотки обмоток и согласно закону индукции, создает в них электродвижущую силу (ЭДС).
Величина ЭДС напрямую зависит от количества витков в обмотках, сечения проводников и отличительными особенностями между первичной и вторичной обмотками. ЭДС, в системе трансформатора, это и есть выходное напряжение на выводах преобразователя. Чтобы ее величина стала меньше входного сигнала – количество витков вторичной обмотки должно быть меньше первичной катушки трансформатора.
Проектирование функций устройств преобразования, точное определение способности преобразования электровеличины – мощности трансформатора, количества витков обмоток, формы их намотки, выбор материала магнитопровода, его форма и размеры как раз и определяется в процессе расчета трансформатора.
Формулы расчета силового трансформатора
В силовой энерго установки при проектировании модели и типа трансформатора применяются основные формулы расчета его главных параметров и конструктивных величин. Как выполнить в некоторых подробностях стоит разобрать ниже.
Мощность вторичной обмотки
В зависимости от того, в какой сети (однофазной или трехфазной) участвует трансформатор, какой по типу трансформации – повышающей или понижающей, будет являться его вторичная обмотка, а так же при наличии конкретных данных указанных величин возможно произвести расчет мощности вторичной обмотки, согласно известной формулы электротехники.
Формула 1. Мощность вторичной обмотки трансформатора:
P2 = U2 X I2, где
P2 – величина электрической мощности вторичной обмотки, единицы измерения – Вт;
U2 – напряжение сети вторичной обмотки, на выходе трансформатора, единицы измерения – В;
I2 – ток вторичной обмотки, возникшей на выходе трансформатора, и предназначенный для питания подключенного к нему потребителя и другого энергоустройства.
Общая мощность
Для силовых трансформаторов, особенно повышающего типа, всегда стоит учитывать потери, возникающие в проводниках обмоток, стали магнитопровода, которые влияют на коэффициент полезного действия устройства. Поданная мощность на первичную обмотку трансформатора, за счет электрических потерь в устройстве преобразователя всегда будет больше ее вторичного выходного сигнала. Отсюда КПД силового трансформатора будет равен 0,8-0,85 от ее величины.
При расчете общей мощности трансформатора потери и оставшееся полезное действие на выходе электроагрегата стоит учитывать в виде произведения полученной мощности вторичной обмотки P2 и КПД устройства.
Формула 2. Полная мощность с учетом КПД:
Pрасч2 = P2 х КПД
Это будет более реальная величина мощности выходной обмотки трансформатора. Остальные параметры в расчетных формулах будут зависеть от количества витков первичной и вторичной обмоток, их сечения, материала проводников. Строение, материал и форма сердечников в свою очередь тоже имеет немаловажное значение в проведении точных и верных расчетов силовых трансформаторов.
Понятие полной мощности трансформатора так же включает в себя более широкое понятие мощностных характеристик в зависимости от типа устройства. Если трансформатор имеет несколько вторичных обмоток, то его полная мощность (Sполн.) будет равна сумме активных мощностей этих обмоток (P2.1+P2.2+….+P2.N), умноженных на коэффициент мощности (Км).
Формула 3. Полная мощность с коэффициентом мощности:
Sполн. = (P2.1+P2.2+…. +P2.N) * Км
В любом случае в ее расчет всегда закладывают величины активной мощности – энергии, которая продуктивно потратится на питание электро потребителей или других электро систем в составе установки, а так же реактивную составляющую мощности, выраженную в простейших расчетах в виде КПД трансформатора, а боле детальных формулах представляющих собой коэффициент мощности. Так в общей мощности участвуют активная и реактивные составляющие трансформатора, единицы измерения ее представлены в вольтамперном произведении – ВА.
Это значение реактивной составляющей является справочным табличным значением в зависимости от трансформатора, строения, сечения и материала его сердечника.
Сечение сердечника
Строение сердечника в любом трансформаторе в зависимости от его назначения имеет несколько основных видовых особенностей. Магнитопроводы преобразователей электро энергетических величин всегда выполняются из прессованных (шихтованных) железных или стальных пластин. Отказ в применении монолитного сердечника в трансформаторе, выбор в пользу пластинчато-прессованного его строения связан, с уменьшением потерь выходных величин трансформатора, уменьшением вихревых токов в магнитопроводе, а значит повышением его КПД.
От того, где преимущественно будет использован трансформатор, применяют три основных конструктивных формы строения его сердечника:
- броневые – на Рис. 1 модели «1» и «4»;
- стержневые – на Рис. 1 модели «2» и «5»;
- кольцевые. – на Рис. 1 модели «3» и «6»;
Методы изготовления каждого из них в зависимости от детальных форм и различий выполняют производственными процессами типа штамповки или навивания стальной проволоки.
Рисунок 1. Типы сердечников и параметры расчета сечения магнитопровода
На Рис. 1 подробно представлены формы каждого из строений сердечника, обозначены два параметра (A и B), измеряемые в сантиметрах, посредством которых производят расчет сечение конкретного магнитопровода.
Формула 4. Площадь сечения сердечника трансформатора:
S = A x B
Единицы измерения – сантиметры в квадрате см2
Произведением этих двух величин можно получить значение сечения магнитопровода, которое будет крайне необходимо для проведения остальных расчетов трансформатора.
Количество витков
Первоначальный этап расчета трансформатора электроэнергии. От значения зависят величины трансформации энергии оборудования, а также изменения выходных номиналов на клеммах вторичных обмоток.
Вычисления количества витков в намотке первичной и вторичной обмотки тесно связаны с предыдущем понятием – сечения магнитопровода. Производится по двум формулам: начальной и конечной. В состав расчета начальной формулы входит выяснения расчетного значения витков обмоток трансформаторов на единицу напряжения, равную 1В. Формула в составе имеет справочный коэффициент сердечника.
Формула 5. Количество витков в обмотке на 1В:
N1v = K / S, где
N1v – количество витков обмотки на единицу напряжения равную 1 В;
K – технический коэффициент формы магнитопровода: для Ш-образного сердечника значение принято – 60; П-образного из пластин – 50; кольцевого – 40.
S – сечение сердечника, полученного из расчета, выполненного ранее и описанного выше.
Конечная формула расчета сводится к применению следующей формулы, из которой можно получить значение количества витков в полном объеме.
Формула 6. Количество витков обмоток трансформаторов:
Wv = N х U, где
Wv -значение количества витков в обмотке;
N – количество витков на 1В полученное в начальной формуле;
U – величина напряжения обмотки без нагрузки (на холостом ходу).
После применения подобного расчета количества витков в обмотках, особенно в проектировании трансформаторов минимальной мощности, применяют 5% компенсационный коэффициент падений напряжения на обмотках. Тем самым расчетные значения увеличивают на 5% от их расчетной величины.
Выбор пластин для сердечника
Зависимость применения различных материалов самих магнитопроводов, их форм, конструкции и производству пластин сердечника трансформаторов, строится на уменьшении потерь различного рода в результате преобразовательных процессов работы устройства, уменьшении значения вихревых токов на сердечнике, по средствам увеличения электрического сопротивления сердечника.
Для производства, создания сердечников силовых трансформаторов применяются разнообразные типы электротехнической стали. Из нее производят пластины, которые после изолировании между собой производят сборку определенных форм магнитопровода. Самые распространенные виды сердечников выполняются из:
- Ш-образных стальных пластин – тип сердечника трансформатора, выполненного по технологии штамповки пластин между собой, предварительно качественно изолировав их друг от друга. Имеют два отличия соединения стержней с ярмом сердечника. Могут собираться встык или вперемешку. По форме пластины такого рода напоминают букву «Ш», от которой и получили свое название.
- П – образных пластин – так же штампованный тип сердечника, по форме напоминающий букву «П». Несколько мене распространен в производстве магнитопровода, так как имеет хуже магнитные характеристики.
- «Торро» или кольцевая форма – сердечник выполнен не штамповкой, а навиванием стальной проволоки. По магнитным характеристикам имеют самые лучшие показатели, но на практике не смогли получить широкого распространения в связи с сложным процессом их производства и включения в состав трансформатора, как готового устройства.
Оценивая при расчете параметры напряжения, тока, мощности в значениях активной и реактивной энергии, выяснив количество витков обмотки и сечение магнитопровода стоит обратится к детальному выбору пластин сердечника и его оптимальной формы в конкретике расчетного проекта конкретного преобразователя.
Определение толщины набора сердечника
Один из окончательных расчетов геометрии сердечника, который выполняется в большинстве случаев, обращаясь к справочной технической литературе, где указаны табличные значения геометрии шаблонных форматов сердечников разного вида пластин и их материала.
Формулы расчета этого параметра существуют, исходят из показателей диаметра стержня магнитопровода, толщины листа пластин при их сборке, специальных коэффициентов заполнения в зависимости от толщины листа и прочих технически сложных параметров.
Формула 7. Площадь сечения Ш-образного сердечника:
S ш = 1,2 , где
S ш – значение площади сечение Ш-образного магнитопровода;
Полная мощность трансформатора, если имеет место двух катушечный тип устройства рассчитывается по Формуле 2, если вторичных обмоток много – рассчитывается по Формуле 3.
А уже после возможно определить значение толщины пластин сердечника по формуле.
Формула 8. Толщина пластин Ш-образного сердечника:
Tш = 100 х S ш / А, где
Tш – толщина пластин сердечника, мм;
S ш – площадь сечения Ш-образного сердечника, см2;
A – ширина среднего лепестка Ш-образного сердечника, мм.
Для сборки в заводских условиях подобные расчеты имеют автоматизированный характер, если значения необходимы радиолюбителям или начинающим электронщикам – проще обратится к стандартным базовым шаблонам того или иного сердечника. Получить такие параметры из справочника возможно, зная значение диаметр стержня сердечника.
Как рассчитать габаритную мощность
Окончательный геометрический параметр трансформатора зависит от комплекса всех ранее рассчитанных величин магнитопровода, добавляя к ним электромагнитные справочные значения, а также значения проводников первичной и вторичной обмоток, их сечения, материал и остальное.
Существует вариант определения мощности, на которую максимально рассчитан трансформаторный материал сердечника, его сталь, по величине сечения магнитопровода. Такой вариант расчета мощности магнитопровода является крайне наглядным. Ошибки в нем могут составлять до 50%. Поэтому лучше, воспользовавшись несколькими основными геометрическими величинами и справочными данными произвести расчет геометрической мощности по формуле.
Формула 9. Габаритная мощность трансформатора:
Pгеом. = B x S2 / 1.69, где
Pгеом. – величина геометрической мощности для понижающего или повышающего типа трансформатора;
B – справочное значение и параметр индукции, наводящейся в конкретном магнитопроводе, измеряется в Тесла;
S – сечение магнитопровода, расчет которой по Формуле 4;
1,69 – постоянный поправочный коэффициент из технических справочников.
Зная параметры геометрии проектируемого трансформатора, используя приведенную формулу достаточно легко рассчитать геометрическую мощность трансформаторного изделия, с целью понимания его максимальных значений и возможностей в размерном эквиваленте.
Главный фактор в расчете параметра мощности геометрии трансформатора – превышение ее расчетной величины над значением электрической мощности.
Этот электромеханический параметр очень важный при дальнейшем определении параметров проводников в обмотках. Зная геометрическую мощность проекта преобразователя, уже точно нельзя будет ошибиться с диаметром проводника в расчетах обмоточных данных устройства.
Правильный расчет по сечению сердечника
Из электротехнических научных опытов, практики работы с трансформаторами известно, что стержневые сердечники в преобразователях энергии целиком носят обе обмотки на стержнях конструкций магнитопроводов, броневые конструкции лишь частично охватываются намоткой первичных и вторичных проводников катушек, и наиболее равномерное распределение, а значит и самые лучшие магнитные свойства устройства имеют кольцевые сердечники энергоагрегатов преобразования энергии, но они в связи со многими сложными пунктами своего строения, а главное тяжести сборки все меньше и меньше участвуют в реальной работе.
Электротехническая сталь тонкими пластинами, изолированными между друг другом различными диэлектриками образуют строение наиболее популярных сердечников стержневого и броневого типа. Площадь поперечного сечения для таких сердечников оказывает громадное влияние на электрическую мощность трансформатора.
Рассматривая стандартный Ш-образный магнитопровод, зная, что сечение его сердечника рассчитывается по Формула 4, и не имея других электрических параметров, таких как допустимый ток первичной или вторичной обмотки, напряжение на обоих выводах, вполне точно и правильно возможно вычислить электрическую мощность устройства.
Формула 10. Расчет электрической мощности по сечению сердечника:
Pтр-р = (S)2, где
Pтр-р – электрическая мощность расчетного сердечника, Вт;
S – площадь сечения магнитопровода оборудования, см2.
Зависимость двух мощностей в расчетном проекте преобразователя энергии видно из формулы достаточно наглядно.
Учет площади сечения сердечника к тому же еще необходим для недопущения попадания стали магнитопровода в большую зону магнитного насыщения. Неправильный расчет площади может привезти именно к этому. Создать режим трансформатора от микроволновки, но обеспечения кратковременного режима работы. А это значит получение режима перегрузки в работе, износ, потери на выходе вторичной обмотки.
Окончательный показатель, оценивающий важность верного расчета площади сечения сердечника, называется коэффициентом заполняемости окна сердечника проводниковой медью первичной и вторичных обмоток. Если сравнивать по этому параметру кольцевой трансформатор с броневым или стержневым – значения конечно же сильно будут разница в пользу тороидального трансформатора, но для двух последних этот коэффициент как раз можно улучшить вышеприведенным расчетом.
Как определить число витков обмотки
В Формула 5 и Формула 6 приведены расчетные способы в начальной и конечной технологии, для математического определения необходимого количества витков на вторичной обмотке трансформатора.
Первичная намотка проводников оборудования тоже имеет определенное количество витков в своем номинале. Чем больше витков на этой обмотке – тем больше электрическое сопротивление ввода, а значит меньше нагрев. Определить количество витков обоих обмоток в процессе проекта расчета трансформатора возможно по отношению следующих равенств.
Формула 11. Расчет количества витков первичной обмотки:
N1 / U1 = N2 / U2, где
N1, N2 – количество витков намотки первичной и вторичной катушек трансформатора;
U1, U2 – номинальные напряжение обмоток трансформатора.
Из такого равенства отношений, особенно, когда уже успешно посчитано количество витков вторичной обмотки, используя математику, можно вывести формулу расчета витков обмотки на вводе трансформатора.
Формула 12. Количество витков в намотке первичной обмотки:
N1 = U1 x N2 / U2
Если проект имеет не только теоретическое обоснование, но и практическую составляющую в виде реального трансформатора, то с помощью медного проводника в изоляции (если позволяет конструкция устройства) и мультиметра возможно измерениями получить это же значение витков трансформатора на вводной обмотке, отталкиваясь от количества витков на 1В, и разматывая старую или наматывая новую первичную обмотку.
Упрощенный расчет 220/36 Вольт
Всю теорию легко показывать и пояснять на практическом примере ведения расчета трансформаторного устройства.
Итак, в качестве примера поставлена следующая задача: необходимо рассчитать самый простой понижающий трансформатор двухкатушечного типа с номинальным значением напряжений 220/36В.
Трансформатор будет использоваться в качестве источника слаботочного освещения мощностью 75Вт, напряжения 36В:
1 этап
По Формуле 1 известно, что электрическая мощность вторичной цепи: P2 = 75Вт;
Отсюда, воспользовавшись справочником по трансформаторам возьмем значение КПД, исходя из значения до 100 Вт, которое равно 0,8;
Следовательно, можем определить электрическую мощность P1 вводной обмотки трансформатора по формуле.
Формула 13. Расчет мощности первичной обмотки:
P1 = P2 / КПД
P1 = 75Вт / 0,8 = 94 Вт
2 этап
Теперь рассмотрим электромеханические характеристики, исходя из того, что сердечник расчетного трансформатора имеет Ш-образную форму. На его поверхности с двух сторон будут располагаться первичная и вторичные обмотки оборудования.
Поэтому расчет площади сечения магнитопровода Sсерд. необходимы в обязательном порядке. Ее значение имеет квадратичную зависимость от мощности первичной обмотки , исходя из принципа работы трансформатора, как электротехнического устройства.
Формула 14. Расчет площади сечения исходя из мощности первичной обмотки:
Sсерд. = 1,2 х
Sсерд. = 1,2 х = 1,2 х 9,7 = 11.63 см2
3 этап
Следующий шаг так же направлен на просчет параметров первичной обмотки – количество витков в ней на единицу напряжения 1В по Формуле 5:
N1v = 60 / 11,63 = 5,16 витка
На единицу напряжения количество витков получено. Используя его значение по Формула 6 найдем значение витков на вводной обмотке оборудования преобразования всего:
Wv1 = 5.16 x 220 = 1135 витков – первичная обмотка посчитана по количеству витков, аналогичные действия проведем для вторички, используя тоже количество витков на 1В и Формуле 6:
Wv2 = 5.16 x 36 = 186 витков – намотка вторичной обмотки по виткам тоже стала известна.
4 этап
Номинальные токи нагрузки трансформатора тоже необходимо узнать, чтобы провести проверку трансформатора согласно методике испытаний. Исходя из Форм. 1 можно вывести формулу токового значения.
Формула 15. Расчет номинального тока обмоток трансформатора:
I1 = P1 / U1
I2 = P2 / U2, где
I1, I2 – номинальные токи трансформаторных обмоток;
P1, P2 – электрические мощности ввода и вывода устройства;
U1, U2 – номинальные напряжения первичной и вторичной стороны трансформатора.
I1 = 94 / 220 = 0,43А;
I2 = 75 / 36 = 2,08А.
5 этап
Новые параметр, которые не рассматривался ранее – это диаметр проводника обмоток трансформатора (зависит от номинального тока на каждой обмотке).
Формула 16. Расчет диаметра проводника обмоток трансформатора:
D1 = 0,8
D2 = 0,8 , где
D1, D2 – диаметр проводника первичной и вторичной обмоток;
I1, I2 – номинальные токи обмоток первичной и вторичной намотки;
0,8 – постоянный поправочный коэффициент расчетов диаметров.
D1 = 0,8 = 0,8*0,66 = 0,5 мм.
Для проводников первичной и для проводника вторичной обмоток:
D2 = 0,8 = 0,8*1,44 = 1,15 мм.
6 этап
В электротехнике кабельно-проводниковая продукция всегда представлена в значения площади поперечного сечения жилы, а значит, чтобы не возникало проблем с реальным подбором проводника требуется перевести полученные диаметры в площадь поперечного сечения с помощью электронных конвекторов по Формуле 17. Перевод из диаметра в сечение провода:
SКПП= D2 * 0.8
Отсюда для каждого из диаметров получаем:
- SКПП1= (0,5)2 * 0.8 = 0,2 мм2 – провод для первичной обмотки;
- SКПП2= (1,15)2 * 0.8 = 1,0 мм2 – провод для вторичной обмотки.
Далее получив все расчетные значения по трансформатору из примера, приступают к практической части намотки витков с обеих сторон одновременно, коммутации их выводов и другим работам.
Как рассчитать Ш-образный трансформатор
Универсальность конструкции Ш-образного магнитопровода позволяет одинаково эффективно использовать, закладывать форму сердечника в проекты расчета, как импульсных– современных трансформаторов, участвующих в процессах обеспечения питания электронной бытовой и мультимедийной техники, так и проводить серьезные проектные расчеты силовых трансформаторов напряжения, находящийся в составе высоковольтных подстанций, основного и аварийного питания значительного количества потребителей (в случае двух трансформаторной структуры энергоснабжения).
Расчеты Ш-образного трансформатора по своим характеристикам ничем особенным не может отличаться от основных пунктов упрощенного или детального расчета преобразователей энергии. Для него могут использоваться формулы нахождения параметрических величин или применяться расчеты онлайн автоматизации проектов. Второй метод несколько универсален и быстротечен, в том плане, что для его использования достаточно знать исходную геометрию и номинальные значения выходных величин, что авто программа расчетов смогла предоставить необходимые значения для оборудования.
Единственным нюансом для Ш-образного магнитопровода может быть расчет номинальной мощности вторичных обмоток, если у него она не одна, тогда расчет мощности можно выполнить по Формуле 3. И расчет толщины набора сердечника будет зависеть от расчетов и данных Ш-образного магнитопровода по Формула 8
В остальном в зависимости от параметров можно применять все вышеуказанные формулы, исходя из конкретных электрических величин Ш-образного сердечника.
Определение параметров ТТ
Измерительный преобразователь тока, в основном принципе своей работы имеет некоторые важные отличительные особенности по сравнению с силовыми трансформаторами питания электропотребителей или трансформаторов напряжения.
Отличия заключаются в токовой величине его вторичной обмотки. Ток «вторички» ТТ независим от нагрузки цепей в ней, и имеет сопротивление, которое всегда соответствует количеству витков первичной обмотки с минимальным значением по величине в сравнении с сопротивлением силовых цепей первичного подключения.
Рисунок 2. Принципиальная схема трансформатора тока.
К тому же протекающий ток I2 через цепь вторичной обмотки имеет постоянное направление, при помощи которого производится размагничивание сердечника данного устройства. I1 обозначено направление тока первичной обмотки ТТ.
В связи с условием что верхний конец первичной обмотки находится там же, где и верхний конец первичной обмотки, учитывая из физики равенства магнитных потоков его обмоток можно составить определенный алгоритм расчета такого оборудования преобразования тока с учетом нюансов изделия:
- Определяется номинальное напряжение первичного обмотки ТТ – величина выбор которой производится из стандартных паспортных значений таблиц и измеряется в киловольтах: 0,66/ 3/6/10/15/20/24/ 27/ 35/ 110/ 150/ 220/ 330/ 750.
- Второй важный параметр токового устройство – определение номинального тока первичной обмотки – учитывая перегрузочные способности, данная величина рассчитывается большей или равной (> =) номинального тока первичной цепи электроустановки. Его токовый ряд первичной обмотки выбирается из ГОСТ значений: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. Измеряется в амперах и кило амперах. В случае выбора ТТ на пусковое, генераторное оборудование к его номинальному току прибавляется 10% значение и от полученной суммы выбирается первичный ток ТТ.
- Ведут проверки преобразователя по термической и электродинамической стойкости согласно формулам из паспортных формуляров проверок.
- Выбирается и проверяется ТТ по мощности вторичных нагрузок – учитывая формулу 18:
Sном2 > Sнагр2, где
Sном2 – номинальная мощность вторичной обмотки;
Sнагр2 – мощность вторичной нагрузки, где будет установлен ТТ.
Кроме основных параметров выбора ТТ – это измерительное оборудование, учитывая значение номинала класса точности выбирается для питания и защиты цепей РЗиА, а так же преобразователи с завышенным коэффициентом трансформации и повышенным классом точности подбирают для питания токовых обмоток энергоучета.
Трансформаторы тока подключаются по каждому изделию на каждую фазу для включения в состав защитных, измерительных или учетных цепей.
Важное для расчета ТТ должно выполняться равенство по форм. 19:
(I1*N1) – (I2*N2) = 0, где
I1, I2 – значения токов первичной и вторичной обмотки;
N1, N2 – количество витков в обмотках ТТ.
Отсюда для вычисления количество витков в обмотке вторичного подключения определяется его токовое значение, совместно с основными понятиями магнитных характеристик:
- Lind – значения индуктивности ТТ;
- XLreac – сопротивления реактивной мощности ТТ;
- Rc – сопротивления нагрузки вторичной цепи.
Вычисления значений по формулам достаточно трудоемкий факт работы, поэтому в большинстве случаев, чтобы получить понимание выбора определенного трансформатора тока пользуются или целиком справочно-паспортными значениями их выбора или калькуляторами расчета параметров устройств.
Сердечники трансформаторов могут изготавливаться из ферромагнитных материалов или пластин Ш-образной формы электротехнической стали. Возможны кольцевые магнитопроводы из ленточно-проволочных материалов производства.
Особенности расчета сетевого трансформатора
Трансформаторы типа сетевой являют собой преобразователи напряжения, участвующие в цепях питания различных маломощных, относительно электроустановок силовых трансформаторов, энергопотребителей, приборов и устройств автоматики, контроля, телемеханики. Они очень популярны и широко распространены в мире подобного оборудования.
В связи с этим их выбор должен обладать определенными критериями по мимо основных номинальных электрических величин:
- номинальные токи первичной и вторичной обмотки;
- номинальные напряжения первичной и вторичной обмотки;
- мощности первичной и вторичной обмотки;
- полной мощности трансформатора;
Их выбор может варьироваться от отличий параметров конструкции и их различных типов. Главные из которых выделено рассматриваются ниже.
Выбор магнитопровода
Этот центральный элемент устройства обладает сразу несколькими характеристиками выбора.
Прежде всего, в зависимости от места установки и сферы применения сердечник трансформатора должен отвечать параметрам прочности, износостойкости, электрической прочности, экономичности.
Технология изготовления
Следующий параметр выбора зависит от его электромагнитных свойств. Технология изготовления делит магнитопроводы на два типа:
- Пластинчатые – выполненные из пластин электротехнической стали, изолированных и спрессованных между собой в определенные формы, габаритные размеры.
- Ленточные – выполнение из навивки стальной проволоки (менее распространены).
Формы серденичков
Каждый из двух видов в свою очередь подразделяется на формы и конструктивные различия стержней, окон для намотки проводников обмоток, диаметры которых зависят от электрических параметров оборудования. Формы сердечников бывают:
- Стержневые – в пластинчатом исполнении производятся из пластин П-образной формы одинаковой ширины. Имеют одно окно с определенным размером прохода намотки обмоток. Замыкаются прямоугольными пластинами.
- Броневые – Ш-образные пластины собираются в двух оконный магнитопровод, который замыкается прямоугольными пластинами из стали. Набираются переплетом для уменьшения магнитного сопротивления в местах стыка. С целью уменьшения вихревых токов производятся методом прессования.
Что касается таких же форм ленточных сердечников – набираются прямоугольной формы с разрезами вдоль и поперек. Для уменьшения магнитного сопротивления их сердечники подвергаются шлифовки.
Существуют еще кольцевые формы сердечников, которые обладают отличными магнитными свойствами в работе, но трудоемки в своем изготовлении. Некоторое время их производили в виде трансформаторов для питания освещения, но в настоящее время используют редко.
Самыми популярными в зависимости от токовых и мощностных характеристик выступают Ш-образные и П-образные сердечники при изготовлении сетевых трансформаторов. Для вторичных цепей много катушечного характера используют стержневой тип сердечников. Броневое исполнение содержит на каждой стороне только по одной катушке, что является его ограничительным фактором применения.
Варианты размещения катушек
С учетом конструктивных исполнений магнитопровода, электромагнитных характеристик устройства, его механики, следует различать несколько основных типов размещения обмоток:
- прямоугольный провод класс «Цилиндр – 1-2слоя» – преимущества – имеет хорошее охлаждение при эксплуатации, простота изготовления. К недостаткам относится малая прочность;
- прямоугольный провод класс «Цилиндр – многослой» – достоинства имеет в отличных магнитных свойствах системы, простоте изготовления. Минусы вида обмотки в плохом охлаждении в момент работы;
- круглый провод класс «Цилиндр – многослой» – плюсы варианта в простоте изготовления, минусы в плохой теплоотдаче, возможности перегрева;
- прямоугольный провод класс «Винтовая на 1-2 или многоход» – достоинства состоят в высокой прочности отличной изоляции, хорошем охлаждении. Минус в дороговизне при производстве;
- прямоугольный провод класс «Непрерывный» – механическая и электрическая прочность, хорошее охлаждение придают этому варианту положительных характеристик, но неудобство при обслуживании относят к недостаткам;
- алюминиевая фольга класс «Катушечный многослой или цилиндр» – достоинства в механической прочности, магнитных свойствах. Минус в сложности изготовления.
Так же есть катушки в виде дискового формата. Соединяемые между собой. В целом тип катушки и форма обмотки выбирается от электрических параметров необходимых в конкретном применении с учетом экономичной стороны и технологий.
Краткая справка о материалах магнитопровода
Для изготовления сердечников трансформаторов в обязательном порядке отбирают материалы, имеющие высокую магнитную проницаемость, малую площадь петли гистерезиса, минимальные энергетические потери при возникновении в них вихревых токов.
Сталь низкоуглеродистого состава – основа для производства сердечников. Мощные трансформаторы, которые имеют сложные структуры магнитопроводов, в генераторных системах и подобных им имеют сердечники, изготовленные из малоуглеродистых стальных материалов.
Для эксплуатации в высокочастотных режимах работы преобразователей энергии, их сердечник выполняют из ферритов или подобных им композитов (прессованные порошки с свойствами магнитной мягкости по типу магнетитов или карбонильного железа). Такие системы связывают с диэлектрической структурой в виде эпоксидных смол. В итоге получается собрание мелкозернистого порошка ферромагнитного (вещества в твердом состоянии, кристаллах, обладающих свойством намагниченности) состава, изолированного друг друга токопроводящей смолой.
Распространенная технология сердечников связана с набором отдельных пластин в пакетную стальную структуру с малым содержанием углерода
Исходные данные
Для выполнения проектных расчетов силовых агрегатов преобразования энергии, сетевых трансформаторов напряжения, импульсных энергетических преобразователей необходимо иметь часть справочно-табличных данных, исходя из составов материалов проводов обмоток, изоляции, стали сердечников, таких как:
- Величина максимальной индуктивности – для точного расчета габаритной мощности.
- Значение плотности тока – аналогичное участие справочного значения в расчете размерной мощности изделия.
- Коэффициенты мощности конкретного устройства – для расчета мощностного параметра.
- Сопротивления материалов сердечников и значение в проводниках обмоток для возможности расчета полной мощности.
Необходимы номинально-заданные параметры оборудования исходя из конкретного применения, нагрузки, которая будет использоваться в расчетном преобразователи:
- габаритные размеры сердечника и материалы из чего он изготовлен, тип и форма – размеры окна магнитопровода по длине и ширине особенно важны, т.к. связаны с площадью сечения магнитопровода, от которой идут дальнейшие расчеты;
- номинальные токи обмоток первичной и вторичной стороны устройства;
- номинальные напряжения в сети со стороны первичной и вторичной обмотки;
- значение и функционал трансформатора, на который направлен расчет;
- мощность по активной составляющей (первичной или вторичной обмотки)
- количество обмоток со стороны нагрузок;
- прочие детали или возможные подробности по изделию и функционалу его применения.
На основании исходных данных номинального и справочного характера вполне реально произвести ручной расчет трансформатора согласно формулам или воспользоваться автоматизированным сервисам в сети Интернет.
Как посчитать магнитопровод
В совокупности справочных и расчетных материалов, параметрических значений расчета трансформатора достаточно несложно произвести расчет его магнитопровода.
1 шаг
Расчету подвергается произведение площади сечения стержня Sст на площадь сердечника Sсер согласно равенству форм. 20:
Sст x Sсер = Pгаб x 102 / (2,22F х B х j x КПД x Nster x Kc x Km), где:
- Pгаб – габаритная мощность рассчитываемого трансформатора;
- F – частота переменного тока 50Гц
- B – максимальная индукция трансформатора, Тл;
- J – значение плотности тока А/м2;
- КПД – базовый коэффициент полезного действия устройства;
- Nster – Число стержней сердечника;
- Kc – коэффициент заполнения сечения сердечника магнитной сталью;
- Km – коэффициент заполнения окна стержня магнитной сталью;
Частично данные берутся из исходных номинальных значений оборудования, но большая часть вытекает из технической справочной литературы и табличных параметров и величин согласно указанному сердечнику изделия. В них входят: индукция, КПД оборудования, плотность тока, А/м2, коэффициенты заполнения сердечника и его окна.
2 шаг
Следующий шаг в расчете предполагает получение значения толщины сечения сердечника по Формуле 8, опубликованной в обзоре выше.
3 шаг
Последним шагом для расчета магнитопровода необходимо посчитать еще одно равенство значений узнав ширину ленты сердечника по форм. 21:
Bline= Sст x Sсер / (A x С x H), где
- Bline – ширина ленты сердечника для расчета, мм;
- Sст x Sсер -площади сечения стержня и самого сердечника, см2;
- A x С x H – размеры сторон сердечника, мм.
После чего, имея на руках три основных параметра магнитопровода с помощью литературы подбора, методом сравнительного анализа полученного значения с ближайшим стандартом производится выбор марки, размеров и всех данных магнитопровода трансформатора.
Определение параметров обмоток
Параметрические составляющие в обмотках в расчете ручных формул начинаются с определения ЭДС одного витка обмотки Е по формуле 22:
Е = 4,44 x F x В х Sст x Kc x 10-4, где
- F -частота переменного тока, ГЦ;
- В – максимум индукции, ТЛ;
- Sст –площадь сечения стержня;
- Kc – – коэффициент заполнения стержня.
Следующим расчетным показателем требуется получить падения напряжения на каждой обмотке трансформатора по формуле 23:
^U1 = 1,5*U1 *J*A*10-3
^U2 = 1,5*U2 *J*A*10-3
А от падения напряжения рассчитываются количество витков первичной и вторичной обмотки по новым формулам.
Формула 24. Расчет количества витков на основе падения напряжения:
N1= (U1- ^U1) / E
N2= (U2- ^U2) / E
Получив количество витков возможно узнать диаметры проводников (форм. 25):
D1 = 1.13
D2 = 1.13
Обычно при этом расчет обмоток завершается по проектному трансформатору, однако в его содержании возможно еще высчитывать средние длины витка обмоток, длины витков каждой обмотки и их массы. Допустимо вывести расчет и массы магнитопровода, для более детальных и точных вычислений.
Мощность потерь
Их зависимость просматривается от воздействия силы магнитного поля на сердечник. Деление по виду потерь сердечника происходит в двух формациях:
- Статические потери Pstat – перемагничивание магнитопровода. Они прямо пропорциональны длине петли магнитного потока Sпетли, частоте переменного тока F и весу магнитопровода G:
Pstat = Sпетли х F х G (форм. 26)
Еще их называют потерями на гистерезисе. При уменьшении толщины ленты начинает рост таких потерь, аналогично при росте петли, частоты сети или весу сердечника.
Второй тип потерь:
- Динамические потери – потери, которые происходят при возникновении в сердечники вихревых токов.
Постоянный ток имеет нулевую частоту петли гистерезиса, как только частота начинает расти – идет возникновение динамических потерь в сердечнике.
Особенности расчета автотрансформатора
Автотрансформатор – преобразователь напряжений, имеющий в отличии от обычного трансформатора, единую и единственную обмотку с одним или несколькими промежуточными выводами.
Рисунок 3. Внешний вид автотрансформатора.
Если коэффициент трансформации нагруженного электротехнического устройства малого значения – автотрансформатор становится более экономически выгодным обычного преобразователя напряжения, т.к. расход медного провода его катушки заметно меньше, чем у двух обмоточного обычного трансформатора.
Рисунок 4. Принципиальная схема автотрансформатора.
В общей точке обмотки судя по схеме на Рисунок 4 обмотки устройства протекает ток с определенным значением дельты:
Важно! Вход и Выход изделия напрямую связаны. Это означает опасность и запрет в проведении защитного заземления схемы, в которую включен нагруженный автотрансформатор.
Устройство автотрансформатора в нагруженном состоянии или в режиме холостого хода имеет дополнительную обмотку, без какой-либо связи с основной. И как только значение мощности дополнительной катушки больше мощности основной обмотки – экономическая и выгода автотрансформатора падает с критической скоростью.
Для расчета мощности во вторичной обмотке устройства представляет собой сумму двух значений:
Preborn = Uii x I + Pprox= Uii x I1, где
- Ppreborn – преобразовательная мощность, величина проходящая в зону вторичной обмотки по средствам магнитной связи;
- Pprox – проходящая мощность во вторичную обмотку посредством электрической связи
- Uii, I – напряжение, ток автотрансформатора.
Расчет автотрансформатора похож систему расчета силового преобразователя напряжения с одной поправкой – магнитопровод автотрансформатора рассчитывается на единицу значения преобразовательной мощности:
Ppreborn = 1,1*Pa * , где
Pa – мощность автотрансформатора, общая, Вт;
коэффициент трансформации оборудования.
Автотрансформаторы, как бы парадоксальны их свойства и устройства не были, в однофазных и трехфазных сетях низковольтного и высоковольтного напряжения достаточно популярны за счет своих характеристик и возможности изменять выходную электрическую величину, низкой стоимости и коэффициентом полезного действия около 99%.
Мощные автотрансформаторы, начиная с напряжения 110 кВ используются в регулировочных ступенчатых узлах распределительных установок.
Слабые устройства, небольшой мощности, внешнего вида, как на Рисунок 3 стали очень популярны в научно-исследовательских организациях, как стендовое оборудование, позволяющее проводить многие тесты. Это касается и учебных заведениях. В них используются лабораторные автотрансформаторы (ЛАТР) для проведения работ и испытаний с целью обучения молодых специалистов.
Как посчитать пленочный трансформатор
Инновация в разработках сверхпроводников, в области криоэлектроники представлена в виде криогенного устройства на сверхпроводниках. Схематически его основные элементы представлены ниже на Рисунке 5 Это и есть – пленочный трансформатор магнитного потока.
Рисунок 5. Схематика пленочного трансформатора.
Квадратообразный обруч с активной полоской, изолирующей пленку, помещается между активной полосой трансформатора магнитного потока и магниточувствительным элементом.
С помощью преобразовательного устройства на сверхпроводниках происходит повышение умножение трансформатора магнитного потока.
Сверхпроводниковый трансформатор магнитного потока – пленочный трансформатор – устройство разработанная в научно-исследовательских институтах, имеет определенные свойства и преимущества:
- увеличение чувствительности датчиков;
- расширение динамического диапазона;
- увеличение помехозащищенности.
Пленочные трансформаторы сверхпроводимости нашли широкое применение в медицине в магнита-резонансных установках, позволяющих снять информацию сразу по всему организму и телу человека.
Рисунок 6. Схематика пленочного трансформатора с движением потока.
Однородность магнитного поля в активной полосе трансформатора увеличивается как показано на Рис. 7.
Рисунок 7. Схемы активных пластин.
Концентрация магнитного поля имеет определенный темп увеличения эффективности, рассчитываемый по формуле:
Наконец-то на последней схематике приведен эскиз активной полосы и приведены ее основные параметры для расчета:
В настоящее время на сверхпроводниках реализованы лишь пленочные трансформаторы способные увеличивая магнитный поток воздействовать на магниточувствительным элемент для проведения определенной работы. Если сверхпроводимость войдет в нашу жизнь для любого материала изменится не только конкретный преобразователь энергии, но и весь человеческий мир.
Обзор онлайн сервисов
Произвести расчеты трансформаторов любого типа, их составных частей или комплектующих помимо технических справок и таблиц, научной литературы в настоящее время довольно много качественных онлайн сервисов расчет электротехнических параметров или оборудования по конкретному запросу.
Если брать расчет трансформаторов – онлайн площадки в богатом остатке предлагают различные онлайн калькуляторы, расчетам которых вполне можно доверять.
Они не требуют никаких сложных значений или данных – достаточно иметь несколько основных исходных параметров электрических величин и знания геометрии оборудования.
Несколько вариантов онлайн площадок расчета трансформаторов предлагается в обзоре статьи на справедливую оценку и тестирование любым радиолюбителем или бывалым специалистом электронщиком:
- Интересная программа онлайн доступа и расчета с возможностью провести расчет как по стержневому виду, так и броневому виду сердечника, что увеличивает функционал и улучшает поддержку: Калькулятор расчета трансформатора №1.
- Помощь в расчете «Пуш-Пулл» трансформатора – простота и умение наращивать мощность являются основными преимуществами трансформаторов «Push-Pull», что в переводе с английского языка означает – двухтактный – трансформатор напряжения использующий импульсный трансформатор и становится трансформатор с двунаправленным возбуждением. Расчет такого устройства по формулам в ручном режиме может занять весомую часть времени. Помочь в этом может автоматизация расчета программой «ExcellentIT».
- Любые расчеты преобразователей электрической энергии, блоков питания, сложных устройств, которые так хочется собрать многими радиолюбителями и электронщиками-самоучками, но не хватает технической базы и формул, теперь возможно производить с помощью «Сборника Расчетных программ».
Но не стоит автоматизированные, онлайн сервисы делать панацеей в расчетах и проектировании преобразующих, питающих энергоустройств и систем электроники. Нужно помнить, что любая автоматика или компьютеризация без человека – оператора не стоит и не может ничего.
Примеры расчета
Для получения практических навыков расчета преобразователей напряжения упрощенными формулами в ручном режиме произведем:
Расчет силового трансформатора, который должен запитывать N-оборудование
Условия и исходные данные для расчета
- Тип оборудования: трансформатор напряжения силовой;
- Напряжение обмотки ВН: 660В;
- Ток обмотки ВН: 60mA;
- Напряжение обмотки НН: 12В;
- Ток обмотки НН: 6А;
- Тип сердечника: П-образный / коэффициентом количества витков на 1В = 50;
- Размеры окна сердечника: А = 10 см, И = 3 см.
Расчет силового трансформатора пошагово
- Т.к. обмотки ВН и НН в единственном экземпляре определить общую мощность трансформатора можно по формуле:
Pобщ = (Uвн * Iвн) + (Uнн * Iнн);
Pобщ = (660 * 0,06) + (12 * 6) = 39,6 + 72 = 111,6 Вт;
- Следующий шаг определение мощности первичной цепи обмотки по формуле:
P1 = 1,25 * Pобщ;
P1 = 1,25 * 111,6 = 139,5 Вт;
- Третий шаг определить площадь сечения сердечника из формулы:
- Определение количества витков на 1В и номинальный ток первичной обмотки можно:
N1v = K / Sсеч = 50 / 11,8 = 4,2;
I1 = P1 / Uнн = 139,5 / 220 = 0,63А;
- Остается найти число витков и диаметр проводников для первичной и вторичной обмотки:
- N1 = N1v * Uнн = 4,2 * 220 = 924 витков;
- D1 = 0,8 * = 0,8 * = 0,8 * 0,79 = 0,63 mm;
- N2 = N1v * Uвн = 4,2 * 660 = 2772 витка;
- D2 = 0,8 * = 0,8 * = 0,8 * 0,24 = 0,2 mm;
- С учетом того, что в исходных данных у нас есть размеры окна сердечника найдем ее площадь поперечного сечения, через который проверим войдут ли проводники в заданную площадь:
Sser = A * В = 10 * 3 = 30 см2 = 3000 мм2
Зная параметры диаметра проводников на каждой обмотке, можно вычислить опытную площадь проводников, которая должна быть меньше расчетной окна сердечника.
Этот расчет является защитным и проверочным предохранителем от ненужной траты сил и материалов по заранее ошибочным расчетным данным:
- S1 Первичная: 0,8 * D1 * N1 = 0,8 * 0,63 * 924 = 465 мм2;
- S2 Вторичная: 0,8 * D2 * N2 = 0,8 * 0,2 * 2772 = 444 мм2;
- Sser> (S1 + S2) – Необходимое условие
«Что и требовалось доказать»
3000> (444 + 465) – условие правильности расчета выполняется.
Остальные расчеты трансформаторов напряжения проводятся примерно в таком же формате, что и пример выше. Если позволяется – используют калькуляторы расчета в сети интернет.
Оборудование преобразования других величин электрической энергии проверяется расчетными методами по своим правилам и формулам или в тех же сервисах компьютерных программ.
1. Силовые трансформаторы: назначение, классификация, номинальные данные трансформаторов
Назначение трансформаторов
Трансформаторы — приборы, служащие для преобразования электрических токов одного напряжения в токи другого напряжения
Основное назначение трансформаторов — изменять напряжение переменного тока. Трансформаторы применяются также для преобразования числа фаз и частоты. Наибольшее распространение имеют силовые трансформаторы напряжения, которые выпускаются электротехнической промышленностью на мощности свыше миллиона киловольтампер и на напряжения до 1150–1500 кВ.
Для передачи и распределения электрической энергии необходимо повысить напряжение турбогенераторов и гидрогенераторов, установленных на электростанциях, с 16–24 кВ до напряжений 110, 150, 220, 330, 500, 750 и 1150 кВ, используемых в линиях передачи, а затем снова понизить до 35, 10, 6, 3, 0,66, 0,38 и 0,22 кВ, чтобы использовать энергию в промышленности, сельском хозяйстве и быту.
Силовые трансформаторы выпускаются в основном на частоту 50 Гц.
Классификация трансформаторов
Трансформаторы малой мощности широко используют в различных электротехнических установках, системах передачи и переработки информации и других устройствах.
По числу фаз трансформаторы делятся на одно-, двух-, трехи многофазные. Силовые трансформаторы выпускаются в основном в трехфазном исполнении.
Трансформаторы имеют две или несколько обмоток, индуктивно связанных друг с другом. Обмотки, потребляющие энергию из сети, называются первичными. Обмотки, отдающие электрическую энергию потребителю, называются вторичными.
Многофазные трансформаторы имеют обмотки, соединенные в многолучевую звезду или многоугольник. Трехфазные трансформаторы имеют соединение в трехлучевую звезду и треугольник.
По конструкции силовые трансформаторы делят на масляные и сухие (рис. 1).
В масляных трансформаторах магнитопровод с обмотками находится в баке, заполненном трансформаторным маслом, которое является хорошим изолятором и охлаждающим агентом.
Рис. 1. Трансформатор сухого типа изоляции
Сухие трансформаторы охлаждаются воздухом. Они применяются в жилых и промышленных помещениях, в которых эксплуатация масляного трансформатора нежелательна. Трансформаторное масло является горючим, и при нарушении герметичности бака масло может повредить другое оборудование.
Повышающие и понижающие трансформаторы
В зависимости от соотношения напряжений на первичной и вторичной обмотках трансформаторы делятся на повышающие и понижающие:
– в повышающем трансформаторе первичная обмотка имеет низкое напряжение, а вторичная — высокое;
– в понижающем трансформаторе, наоборот, вторичная обмотка имеет низкое напряжение, а первичная — высокое.
Трансформаторы, имеющие одну первичную и одну вторичную обмотки, называются двухобмоточными. Достаточно широко распространены трехобмоточные трансформаторы, имеющие на каждую фазу три обмотки, например, две на стороне низкого напряжения, одну — на стороне высокого напряжения или наоборот. Многофазные трансформаторы могут иметь несколько обмоток высокого и низкого напряжения.
Номинальные данные трансформаторов
Номинальные данные трансформатора, на которые он рассчитан с заводской гарантией на 25 лет, указываются в паспортной табличке трансформатора:
– номинальная полная мощность Sном, кВА;
– номинальное линейное напряжение Uл.ном, В или кВ;
– номинальный линейный ток Iл.ном., А;
– номинальная частота f, Гц;
– число фаз;
– схема и группа соединения обмоток;
– напряжение короткого замыкания Uк, %;
– режим работы;
– способ охлаждения, дата изготовления.
В табличке приводятся также данные, необходимые для монтажа: полная масса, масса масла, масса выемной (активной) части трансформатора. Указываются тип трансформатора в соответствии с ГОСТ на марки трансформаторов и завод-изготовитель.
Номинальная мощность однофазного трансформатора определяется по формуле: Sном = U1ном·I1ном, a трехфазного
,
где U1л.ном, U1ф.ном, I1л.ном и I1ф.ном— соответственно номинальные линейные и фазные значения напряжений и токов.
Номинальными напряжениями трансформатора являются линейные напряжения при холостом ходе на первичной и вторичной обмотках трансформатора. За номинальные токи первичной и вторичной обмоток трансформатора принимаются токи, рассчитанные по номинальной мощности при номинальных первичных и вторичных напряжениях.
2. Автотрансформаторы
Назначение и устройство автотрансформаторов
Наряду с трансформаторами широко применяются автотрансформаторы, в которых имеется электрическая связь между первичной и вторичной обмотками. Мощность из одной обмотки автотрансформатора в другую передается как магнитным полем, так и за счет электрической связи. Автотрансформаторы строятся на большие мощности и высокие напряжения и применяются в энергосистемах, а также используются для регулирования напряжения в установках небольшой мощности.
Примечание. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.
В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки.
Принцип действия автотрансформаторов
В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения (рис. 2).
Если присоединить источник переменного напряжения к точкам А (a) и Х (x) (рис. 2), то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.
Рис. 2. Схемы однофазных автотрансформаторов: а — понижающего; б — повышающего
Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1, то оба тока геометрически сложатся, и по участку aХ будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.
Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.
В электромагнитных преобразователях энергии — трансформаторах — передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.
Примечание. Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации мало отличается от единицы и не более 1,5…2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают. Их минус — наличие гальванической связи нагрузки с питающей сетью.
Лабораторные автотрансформаторы (латры)
Автотрансформаторы применяются в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.
Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода.
От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на
поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой по окружности тороидального сердечника перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В (рис. 3).
Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.
Рис. 3. Схема лабораторного регулируемого однофазного автотрансформатора
Примечание. При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.
Трехфазные автотрансформаторы
Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухи трехобмоточные автотрансформаторы.
В трехфазных автотрансформаторах фазы обычно соединяют звездой с выведенной нейтральной точкой (рис. 4). При необходимости понижения напряжения электрическую энергию подводят к зажимам А, В, С и отводят от зажимов а, b, с, а при повышении напряжения — наоборот. Их применяют в качестве устройств для снижения напряжения при пуске мощных двигателей, а также для ступенчатого регулирования напряжения на зажимах нагревательных элементов электрических печей.
Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.
Рис. 4. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой
Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.
Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.
Недостатки автотрансформаторов
Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.
Существенный недостаток автотрансформаторов — гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6–10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.
При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.
3. Схемы и группы соединений обмоток трансформаторов
Схемы соединений обмоток трехфазных трансформаторов
Трехфазный трансформатор имеет две трехфазные обмотки — высшего и низшего напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A, B, С, конечные выводы — X, Y, Z, а для аналогичных выводов фаз обмотки низшего напряжения применяют обозначения: a, b, c, x, y, z.
В большинстве случаев обмотки трехфазных трансформаторов соединяют
– либо в звезду – ;
– либо в треугольник – (рис. 5).
Рис. 5. Включение обмоток трансформатора в звезду и треугольник
Выбор схемы соединений зависит от условий работы трансформатора. Например, в сетях с напряжением 35 кВ и более выгодно соединять обмотки в звезду и заземлять нулевую точку, так как при этом напряжение проводов линии передачи будет в раз меньше линейного, что приводит к снижению стоимости изоляции.
Фазный коэффициент трансформации трехфазного трансформатора находят как соотношение фазных напряжений при холостом ходе:
nф = Uф внх/Uф ннх,
а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:
nл = Uл внх/Uл ннх.
Если соединений фазных обмоток выполнено по схемам «звездазвезда» ( / ) или «треугольник-треугольник» ( / ), то оба коэффициента трансформации одинаковы, т. е.
nф = nл.
При соединении фаз обмоток трансформатора по схеме:
– «звезда-треугольник» (/ )
— nл = nф .
– «треугольник-звезда» ( / )
— nл = nф/ ;
Группы соединений обмоток трансформатора
Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.
Рассмотрим cначала влияние надписи на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 6, а).
Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Е1 и E2 будут совпадать по фазе и, соответственно, будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 6, б).
Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 6, в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.
Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0 °С соответствует группе 0, а сдвиг 180° — группе 6 (рис. 7).
Рис. 6. Влияние маркировки начал и концов обмоток на фазу вторичного напряжения по отношению к первичному: а — одинаковое направление намотки; б — ЭДС Е1 и E2 совпадают по фазе; в — ЭДС Е2 меняет фазу на 180°
Рис. 7. Циферблат часов для обозначения групп соединений
Рис. 8. Группа соединений обмоток : а — схема соединений; б — векторные диаграммы
В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.
Пусть обмотки трансформатора соединены по схеме / (рис. 8). Обмотки, расположенные на одном стержне, будем располагать одну под другой.
Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 8, а ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 8, б). Схема имеет группу / — 0.
Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 9, а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу / — 6.
Рис. 9. Группа соединений обмоток / — 6: а — схема соединений; б — векторные диаграммы
На рис. 10 представлена схема, в которой по сравнению со схемой рис. 8 выполнена круговая перемаркировка зажимов вторичной обмотки (а->b , b->c, с->a). При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.
Рис. 10. Группа соединений обмоток / — 4: а — схема соединений; б — векторные диаграммы
Схемы соединений / позволяют получить четные номера групп, при соединении обмоток по схеме / номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 11. В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.
Примечание. Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: / — 0 и / — 11. Они, как правило, и применяются на практике.
Рис. 11. Группа соединений обмоток — 0: а — схема соединений; б — векторные диаграммы
4. Параллельная работа силовых трансформаторов
Условия параллельной работы трансформаторов
При параллельной работе трансформаторов первичные их обмотки присоединяют к общей питающей сети, а вторичные — к общей сети, предназначенной для электроснабжения приемников электрической энергии.
Примечание. Для лучшего использования трансформаторов при параллельной работе необходимо нагрузки распределять между ними прямо пропорционально их номинальным мощностям.
Это достигается:
– тождественностью групп соединения обмоток;
– равенством в пределах допусков соответственно номинальных первичных и вторичных напряжений;
l равенством в пределах допусков напряжений короткого замыкания. Нарушение первого условия вызывает появление больших уравнительных токов между обмотками трансформаторов, которые приводят к быстрому чрезмерному их нагреву. Требование равенства соответственно номинальных первичных и вторичных напряжений сводится к установлению равенства коэффициентов трансформации, которые не должны отличаться друг от друга более чем на ±0,5 % их среднего значения во избежание недопустимых уравнительных токов обмоток трансформаторов.
Рис. 12. Схема включения трехфазных трансформаторов для параллельной работы
Различие между напряжениями короткого замыкания трансформаторов при параллельной работе допускают до ±10 % их среднего значения, так как неравенство этих величин вызывает перегрузку тех трансформаторов, у которых напряжение короткого замыкания имеет меньшее значение. Помимо этого, рекомендуется, чтобы отношение номинальных мощностей параллельно работающих трансформаторов не превышало 3:1.
При параллельном включении трехфазных трансформаторов нужно, чтобы их одноименные зажимы были присоединены к одному и тому же проводу сети (рис. 12), а перед первоначальным включением проведена фазировка, т. е. проверка соответствия по фазе вторичных ЭДС. при подключении первичных обмоток к общей сети.
Распределение нагрузок между трансформаторами, включенными на параллельную работу
Распределение нагрузок S1 и S2 между параллельно работающими трансформаторами (рис. 13) подчинено уравнению
S1/S2 = (S1ном/S2ном) ´ (Uк2*/Uк1*),
где S1ном, S2ном— номинальные мощности; Uк1*, Uк2* — напряжение короткого замыкания трансформаторов, включаемых на параллельную работу.
Некоторое перераспределение нагрузки между параллельно работающими трансформаторами с различными напряжениями короткого замыкания осуществляют изменением их коэффициентов трансформации путем переключения ответвлений первичных обмоток. Переключение необходимо выполнять так, чтобы у недогруженных трансформаторов вторичное напряжение при холостом ходе было выше, чем у трансформаторов, работающих с перегрузкой. В виде исключения допустима параллельная работа трансформаторов с разными коэффициентами трансформации и неодинаковыми напряжениями короткого замыкания при непременном условии, чтобы ни один из трансформаторов не был перегружен сверх установленных норм.
Рис. 13. Параллельная работа трансформаторов разной мощности
Фазировка трансформаторов для включения их на параллельную работу
Как правило, фазировка выполняется на низшем напряжении трансформаторов. На обмотках напряжением до 1000 В фазировка проводится вольтметром на соответствующее напряжение.
Для получения замкнутого электрического контура при выполнении измерений, фазируемые обмотки следует предварительно соединить в одной точке, у обмоток с заземленной нейтралью такой точкой является соединение нейтралей через землю.
У обмоток с изолированной нейтралью перефазировкой соединяют любые два вывода фазируемых обмоток.
При фазировке трансформаторов с заземленными нейтралями (рис. 14, а) — измеряют напряжение между выводом а1 и тремя выводами а2, в2, с2, затем между выводом в1 и этими же тремя выводами, и наконец между с1 и все теми же тремя выводами.
При фазировке трансформаторов без заземленных нейтралей (13.14, б), последовательно ставят перемычку сначала между выводами а2-а1 и измеряют напряжение между выводами b2-b1 и c2-c1, затем ставят перемычку между выводами b2-b1 и замеряют напряжение между выводами а2-а1 и с2-с1, и наконец ставят перемычку между выводами с2-с1 и замеряют напряжение между выводами а2-а1 и b2-b1.
Для параллельной работы трансформаторов соединяются те выводы, между которыми нет напряжения.
Рис. 14. Схемы фазировки трансформаторов для включения их на параллельную работу: а — с заземленными нейтралями; б — без заземленных нейтралей
5. Определение коэффициента трансформации силовых трансформаторов
Значение коэффициента трансформации
Коэффициентом трансформации называется отношение напряжения обмотки высокого напряжения (ВН) к напряжению обмотки низкого напряжения (НН) при холостом ходе трансформатора: K=U1/U2. Для трехобмоточных трансформаторов коэффициентом трансформации является отношение напряжений обмоток ВН/СН, ВН/НН и
СН/НН (СН — среднего напряжения).
Значение коэффициента трансформации, в первую очередь, важно при определении тока и напряжения, снимаемого на стороне нагрузки. Так же оно позволяет проверить правильное число витков обмоток трансформатора, поэтому его определяют на всех ответвлениях обмоток и для всех фаз. Эти измерения, кроме проверки самого коэффициента трансформации, дают возможность проверить правильность установки переключателя напряжения на соответствующих ступенях, а также целость обмоток.
Определение коэффициента трансформации
Если трансформатор монтируется без вскрытия и при этом имеется ряд ответвлений, он недоступен для измерений, то определение коэффициента трансформации производится только для доступных ответвлений.
При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток.
Примечание. При этом измерения рекомендуется проводить на тех обмотках, для которых напряжение короткого замыкания наименьшее.
В паспорте каждого трансформатора даются номинальные напряжения обеих обмоток, относящиеся к режиму холостого хода. Поэтому номинальный коэффициент трансформации можно легко определить по их отношению.
Внимание. Измеренный коэффициент трансформации на всех ступенях переключателя ответвлений не должен отличаться более чем на 2 % от коэффициента трансформации на том же ответвлении на других фазах или от паспортных данных, или от данных предыдущих измерений.
В случае более значительного отклонения должна быть выяснена его причина. При отсутствии виткового замыкания трансформатор может быть введен в работу.
Коэффициент трансформации определяют методами:
– двух вольтметров;
– моста переменного тока;
– постоянного тока;
– образцового (стандартного) трансформатора и др.
Метод двух вольтметров
Коэффициент трансформации рекомендуется определять методом двух вольтметров. Принципиальная схема для определения коэффициента трансформации методом двух вольтметров для однофазных трансформаторов дана на рис. 15, а.
При испытании трехфазных трансформаторов одновременно измеряют линейные напряжения, соответствующие одноименным зажимам обеих проверяемых обмоток. Подводимое напряжение не должно превышать номинального напряжения трансформатора и быть чрезмерно малым, чтобы на результаты измерений не могли повлиять ошибки вследствие потери напряжения в обмотках от тока холостого хода и тока, обусловленного присоединением измерительного прибора к зажимам вторичной обмотки.
Подводимое напряжение должно быть от одного (для трансформаторов большой мощности) до нескольких десятков процентов номинального напряжения (для трансформаторов небольшой мощности), если испытания проводятся с целью проверки паспортных данных трансформаторов. В большинстве случаев к трансформатору подводят напряжение от сети 380 В. В случае необходимости вольтметр присоединяется через трансформатор напряжения или включается с добавочным сопротивлением. Классы точности измерительных приборов — 0,2…0,5.
Рис. 15. Метод двух вольтметров для определения коэффициентов трансформации трансформаторов: а — двухобмоточных; б — трехобмоточных
Примечание. Допускается присоединять вольтметр V1 к питающим проводам, а не к вводам трансформатора, если это не отразится на точности измерений из-за падения напряжения на этих проводах.
При испытании трехфазных трансформаторов симметричное трехфазное напряжение подводят к одной обмотке и одновременно измеряют линейные напряжения на линейных зажимах первичной и вторичной обмоток.
При измерении фазных напряжений допускается определение коэффициента трансформации по фазным напряжениям соответствующих фаз. Проверку коэффициента трансформации производят при однофазном или трехфазном возбуждении трансформатора.
Если коэффициент трансформации был определен на заводеизготовителе, то при монтаже целесообразно измерять те же напряжения. При отсутствии симметричного трехфазного напряжения коэффициент трансформации трехфазных трансформаторов, имеющих схему соединения обмоток / или / , можно определить при помощи фазных напряжений с поочередным закорачиванием фаз.
Для этого одну фазу обмотки (например, фазу А), соединенную в треугольник, закорачивают соединением двух соответствующих линейных зажимов данной обмотки. Затем при однофазном возбуждении определяют коэффициент трансформации оставшейся свободной пары фаз, который при данном методе должен быть равным 2Kф для системы / при питании со стороны звезды (рис. 16) или Kф/2 для схемы / при питании со стороны треугольника (рис. 17), где Kф — фазный коэффициент трансформации.
Аналогичным образом производят измерения при накоротко замкнутых фазах В и С.
При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток (рис. 14, б).
Если у трансформатора выведена нейтраль, доступны все начала и концы обмоток, то определение коэффициента трансформации можно производить для фазных напряжений. Проверку коэффициента трансформации по фазным напряжениям производят при одноили трехфазном возбуждении трансформатора.
Примечание. Для трансформаторов с РПН разница коэффициента трансформации не должна превышать значения ступени регулирования. РПН предназначены для ступенчатого регулирования напряжения силовых понижающих трансформаторов под нагрузкой.
Рис. 16. Определение коэффициентов трансформации трансформатора, соединенного по схеме / , при несимметричном трехфазном напряжении:а — первое измерение; б — второе измерение; в — третье измерение
Рис. 17. Определение коэффициентов трансформации трансформатора, соединенного по схеме / , при несимметричном трехфазном напряжении:а — первое измерение; б — второе измерение; в — третье измерение
Коэффициент трансформации при приемосдаточных испытаниях определяется дважды:
– первый раз до монтажа, если паспортные данные отсутствуют или вызывают сомнения;
– второй раз непосредственно перед вводом в эксплуатацию при снятии характеристики холостого хода.
Прибор типа УИКТ-3
Для ускорения измерения коэффициента трансформации применяется универсальный прибор типа УИКТ-3, которым можно измерить коэффициенты трансформации силовых и измерительных трансформаторов тока и напряжения без применения постороннего источника переменного тока. Одновременно с измерением коэффициента трансформации определяется полярность первичной и вторичной обмоток. Погрешность в измерении не должна превышать 0,5 %
измеряемой величины.
Принцип работы прибора основан на сравнении напряжений, индуктируемых во вторичной и первичной обмотках трансформатора, с падением напряжения на известных сопротивлениях (рис. 18). Сравнение производится по мостовой схеме.
Рис. 18. Принципиальная схема универсального прибора типа УИКТ-3
6. Признаки неисправной работы силовых трансформаторов при эксплуатации
Перегрузка трансформатора
Необходимо проверить нагрузку трансформатора. У трансформаторов с постоянной нагрузкой перегрузку можно установить по амперметрам, у трансформаторов с неравномерным графиком нагрузки — путем снятия суточного графика по току.
Следует иметь в виду, что трансформаторы допускают нормальные перегрузки, зависящие от графика нагрузки, температуры окружающей среды и недогрузки в летнее время. Кроме того, допускаются аварийные перегрузки трансформаторов независимо от предшествующей нагрузки и температуры охлаждающей среды.
Допустимые превышения температуры отдельных частей трансформатора и масла над температурой охлаждающей среды, воздуха или воды не должны превышать нормативных значений. Если указанные мероприятия не дают должного эффекта, необходимо разгрузить трансформатор, включив на параллельную работу еще один трансформатор или отключив менее ответственных потребителей.
Высокая температура трансформаторного помещения. Необходимо измерить температуру воздуха в трансформаторном помещении на расстоянии 1,5–2 м от бака трансформатора на середине его высоты. Если эта температура более чем на 8–10 °С превышает температуру наружного воздуха, необходимо улучшить вентиляцию трансформаторного помещения.
Низкий уровень масла в трансформаторе. В данном случае обнаженная часть обмотки и сильно перегревается. Убедившись в отсутствии течи масла из бака, необходимо долить масло до нормального уровня.
Внутренние повреждения трансформатора:
– замыкания между витками, фазами;
– образование короткозамкнутых контуров из-за повреждения изоляции болтов (шпилек), стягивающих активную сталь трансформатора;
– замыкания между листами активной стали трансформатора.
Все эти недостатки при незначительных короткозамкнутых контурах, несмотря на высокую местную температуру, не всегда влияют на повышение общей температуры масла. Развитие этих повреждений ведет к быстрому росту температуры масла.
Ненормальное гудение в трансформаторе
Ослабла прессовка шихтованного магнитопровода трансформатора.
Необходимо подтянуть прессующие болты.
Нарушена прессовка стыков в стыковом магнитопроводе трансформатора. Под влиянием вибрации магнитопровода ослабла затяжка вертикальных болтов, стягивающих стержни с ярмами, это изменило зазоры в стыках, что и вызвало усиленное гудение. Необходимо перепрессовать магнитопровод, заменив прокладки в верхних и нижних стыках листов магнитопровода.
Вибрируют крайние листы магнитопровода трансформатора. Необходимо расклинить листы электрокартоном.
Ослабли болты, крепящие крышку трансформатора и прочие детали. Необходимо проверить затяжку всех болтов.
Трансформатор перегружен или нагрузка фаз отличается значительной несимметричностью. Необходимо устранить перегрузку трансформатора или уменьшить несимметрию нагрузки потребителей.
Возникают замыкания между фазами и витками. Необходимо отремонтировать обмотку.
Трансформатор работает при повышенном напряжении. Необходимо установить переключатель напряжения (при его наличии) в положение, соответствующее повышенному напряжению.
Потрескивание внутри трансформатора
Перекрытие (но не пробой) между обмоткой или отводами на корпус вследствие перенапряжений. Необходимо осмотреть и отремонтировать обмотку.
При обрыве заземления могут происходить разряды обмотки или ее отводов на корпус, что воспринимается как треск внутри трансформатора.
Необходимо восстановить заземление до того уровня, на котором оно было выполнено заводом-изготовителем: присоединить заземление в тех же точках и с той же стороны трансформатора, т. е. со стороны выводов обмотки низшего напряжения. Однако при неправильном восстановлении заземления в трансформаторе могут возникнуть короткозамкнутые контуры, в которых могут появиться циркулирующие токи.
Пробой обмоток трансформатора и обрыв в них
Пробой обмоток на корпус между обмотками высшего и низшего напряжения или между фазами.
Причины пробоя обмоток трансформатора:
– возникли перенапряжения, связанные с грозовыми явлениями, аварийными или коммутационными процессами;
– резко ухудшилось качество масла (увлажнение, загрязнение и пр.);
– понизился уровень масла;
– изоляция подверглась естественному износу (старению);
– при внешних коротких замыканиях, а также при замыканиях внутри трансформатора возникли электродинамические усилия.
При перенапряжениях могут происходить не пробои изоляции, а только перекрытия между обмотками, фазами или между обмоткой и корпусом трансформатора. В результате перекрытия обычно происходит лишь оплавление поверхности нескольких витков и появляется копоть на соседних витках, полное электрическое соединение между витками, фазами или же между обмоткой и корпусом трансформатора отсутствует.
Пробой изоляции обмотки трансформатора можно обнаружить мегаомметром. Однако в некоторых случаях, когда в результате перенапряжений на обмотке возникают оголенные места в виде точек (точечный разряд), выявить дефект можно, только испытав трансформатор приложенным или индуктированным напряжением. Необходимо отремонтировать обмотку, а в случае необходимости заменить трансформаторное масло.
Обрывы в обмотках трансформатора. В результате обрыва или плохого контакта происходит оплавление или выгорание части проводника. Дефект обнаруживается по выделению горючего газа в газовом реле и работе реле на сигнал или отключение.
Причины обрывы в обмотках трансформатора:
– плохо выполнена пайка обмотки, дефект провода обмотки, повреждение его изоляции;
– возникли повреждения проводов, соединяющих концы обмоток с выводами;
– при коротких замыканиях внутри и вне трансформатора развиваются электродинамические усилия.
Обрыв можно обнаружить по показаниям амперметров или с помощью мегаомметра.
При соединении обмоток трансформатора треугольником нахождение фазы, имеющей обрыв, производится путем разъединения обмотки в одной точке и испытания каждой фазы трансформатора в отдельности. Обрыв чаще всего происходит в местах изгиба кольца под болт.
Необходимо отремонтировать обмотку. Чтобы предотвратить повторение обрыва в отводах обмотки трансформатора, следует отвод, выполненный круглым проводом, заменить гибким соединением — демпфером, состоящим из набора тонких медных лент сечением, равным сечению провода.
Работа газовой защиты трансформатора
Газовая защита от внутренних повреждений или ненормального режима работы трансформатора в зависимости от интенсивности газообразования срабатывает или на сигнал, или на отключение, или одновременно на то и другое.
Причины срабатывания газовой защиты трансформатора:
– произошли небольшие внутренние повреждения трансформатора, что привело к слабому газообразованию;
– при заливке или очистке масла в трансформатор попал воздух;
– медленно понижается уровень масла из-за снижения температуры окружающей среды или вследствие течи масла из бака.
Газовая защита трансформатора сработала на сигнал и на отключение или только на отключение. Это вызывается внутренними повреждениями трансформатора и другими причинами, сопровождаемыми сильным газообразованием.
Горючесть газа свидетельствует о наличии внутреннего повреждения. Если газы бесцветны и не горят, то причиной действия реле является выделившийся из масла воздух. Цвет выделившегося газа позволяет судить о характере повреждения:бело-серый цвет свидетельствует о повреждении бумаги или картона; желтый — дерева; черный — масла.
Но так как окраска газа может через некоторое время исчезнуть, то его цвет следует определить тут же при его появлении. Снижение температуры вспышки масла также свидетельствует о наличии внутреннего повреждения.
Если причиной действия газовой защиты было выделение воздуха, то его необходимо выпустить из реле. При снижении уровня масло следует долить, отключить газовую защиту от действия на отключение.
При повреждении обмотки необходимо найти место повреждения и произвести соответствующий ремонт. Для этого необходимо вскрыть трансформатор и извлечь сердечник. Замкнутые накоротко витки обмотки можно найти при включении трансформатора со стороны низшего напряжения на пониженное напряжение. Короткозамкнутый контур будет сильно разогрет, и из обмотки появится дым. Этим способом могут быть найдены и другие короткозамкнутые контуры.
Поврежденные места в активной стали могут быть найдены при холостом ходе трансформатора (при вынутом сердечнике). Эти места будут сильно нагреты. При этом испытании напряжение подводят к обмотке низшего напряжения и поднимают с нуля.
Внимание. Обмотка высшего напряжения должна быть предварительно разъединена в нескольких местах во избежание пробоя обмотки (из-за отсутствия масла).
Замыкание между листами активной стали трансформатора и ее оплавление следует устранить перешихтовкой поврежденной части магнитопровода с заменой междулистовой изоляции. Поврежденную изоляцию в стыках магнитопровода заменяют новой, состоящей из листов асбеста толщиной 0,8–1 мм, пропитанных глифталевым лаком. Сверху и снизу прокладывают кабельную бумагу толщиной 0,07–0,1 мм.
Ненормальное вторичное напряжение трансформатора
Первичные напряжения трансформатора одинаковы, авторичные напряжения одинаковы при холостом ходе, но сильно разнятся при нагрузке.
Причины:
– плохой контакт в соединении одного зажима или внутри обмотки одной фазы;
– обрыв первичной обмотки трансформатора стержневого типа, соединенного по схеме треугольник — звезда или треугольник — треугольник.
Первичные напряжения трансформатора одинаковы, а вторичные напряжения неодинаковы при холостом ходе и при нагрузке.
Причины:
– перепутаны начала и конец обмотки одной фазы вторичной обмотки при соединении звездой;
– обрыв в первичной обмотке трансформатора, соединенного по схеме «звезда-звезда». В этом случае три линейных вторичных напряжения не равны нулю;
– обрыв во вторичной обмотке трансформатора при соединении его по схеме «звезда-звезда» или «треугольник-звезда». В этом случае только одно линейное напряжение не равно нулю, а два других линейных напряжения равны нулю.
При схеме соединения «треугольник-треугольник» обрыв его вторичной цепи можно установить измерением сопротивлений или по нагреву обмоток — обмотка фазы, имеющей обрыв, будет холодной из-за отсутствия в ней тока.
В последнем случае возможна временная эксплуатация трансформатора при токовой нагрузке вторичной обмотки, составляющей 58 % номинальной. Для устранения неисправностей, вызывающих нарушения симметрии вторичного напряжения трансформатора, необходим ремонт обмоток.
7. Эксплуатация комплектных трансформаторных подстанций
Состав и условное обозначение ктп
Комплектная трансформаторная подстанция (КТП) — это электрическая установка, предназначенная для приема, преобразования и распределения электроэнергии трехфазного тока.
Она служит для распределения энергии между отдельными электроприемниками или группами электроприемников в цехе и состоит из:
– одного или двух трансформаторов;
– устройства высшего напряжения с коммутационной аппаратурой;
– комплектного РУ со стороны низшего напряжения (РУНН). Условное обозначение комплектной трансформаторной подстанции
КТП-Х/10//0,4-81-У1 расшифровывается так: К — комплектная, Т — трансформаторная, П — подстанция, Х — мощность силового трансформатора (25, 40, 63, 100, 160), кВА, 10 — класс напряжения в кВ, 0,4 — номинальное напряжение на стороне НН, 81 — год разработки, У1 — вид климатического исполнения.
Внутрицеховые комплектные трансформаторные подстанции, как правило, размещают на первом этаже в основных и вспомогательных помещениях производств.
Всоставкомплектной трансформаторной КТП-250-2500/10/0,4-У3 подстанции входят:
– устройство со стороны высшего напряжения — шкаф глухого ввода ВВ-1 или шкаф ШВВ-2УЗ с выключателем нагрузки ВНП;
– силовые трансформаторы (один — для КТП, два — для 2КТП), например, масляные ТМФ-250, ТМФ-400-для КТП-250-400 или масляные ТМЗ и сухие ТСЗГЛ — для КТП-630, -1000, -1600, -2500;
– распределительное устройство низшего напряжения РУНН 0,4 кВ, состоящее из шкафов ввода низшего напряжения, секционного шкафа для двухтрансформаторной подстанции и шкафов отходящих линий.
Рис. 19. Принципиальная схема комплектной трансформаторной подстанции BW — счетчик, FV1 — FV6 газовые разрядники, Т — силовой трансформатор, S — рубильник, F1 — F3 предохранители, ТА1 — ТА3 — трансформаторы тока, SF1 — SF3 — автоматические выключатели
Защита КТП от многофазных коротких замыканий отходящих линий осуществляется выключателями со встроенными электромагнитными и тепловыми расцепителями. На рис. 19 показана принципиальная схема КТП.
Подключение ктп
При радиальном питании КТП кабельными линиями от распределительного пункта 6–10 кВ по схеме блок-линия-трансформатор допускается глухое присоединение к трансформатору.
Внимание. Установка шкафа УВН с отключающей и заземляющей аппаратурой перед трансформатором КТП при магистральной схеме питания обязательна.
При мощности трансформаторов 1000–1600 кВА к одной магистрали следует присоединять две-три КТП, при меньшей мощностях — тричетыре.
КТП с трансформаторами мощностью 2500 кВА необходимо питать по радиальной схеме, так как при магистральной схеме с двумя трансформаторами трудно выполнить селективную защиту на питающей линии.
Техническое обслуживание комплектных трансформаторных подстанций
При техническом обслуживании комплектных трансформаторных подстанций основным оборудованием, за которым нужно вести регулярное наблюдение и уход, являются: силовые трансформаторы; коммутационная аппаратура распределительных щитов.
Токи нагрузок при нормальной эксплуатации не должны превышать значений, указанных в заводских инструкциях. В подстанциях с двумя резервирующих друг друга трансформаторами, эксплуатационная нагрузка не должна превышать 80% номинальной. При аварийном режиме допускается перегрузка линий, отходящих от распределительных щитов, КТП, при защите их автоматами с комбинированными расцепителями.
Кроме показаний приборов, о нагрузке герметизированных трансформаторов типов ТНЗ и ТМЗ судят по давлению внутри бака, которое при нормальной нагрузке не должно превышать 50 кПа.
При давлении 60 кПа срабатывает реле давления, выдавливая стеклянную диафрагму, давление при этом понижается до нуля. Резкое снижение внутреннего давления происходит и при потере герметичности трансформатора.
Если давление упало до нуля, проверяют целостность диафрагмы. Если она разбита, трансформатор отключают, и выясняют причину, приведшую к срабатыванию реле давления. При отсутствии повреждения (т. е. реле сработало от перегрузки) устанавливают новую диафрагму и включают трансформатор под пониженную нагрузку. На герметизированных трансформаторах для контроля температуры в верхних слоях масла установлены термометрические сигнализаторы с действием на световой или звуковой сигнал при перегреве.
У трансформаторов, снабженных термосифонными фильтрами, во время эксплуатации контролируют нормальную циркуляцию масла через фильтр по нагреву верхней части кожуха. Если в пробе масла обнаруживают загрязненность, фильтр перезаряжают. Для этого фильтр разбирают, очищают внутреннюю поверхность от грязи, шлама и промывают чистым сухим маслом. При необходимости заменяют сорбент. Сорбент, полученный в герметической таре, можно применять без сушки.
Контроль за осушителем сводится к наблюдению за цветом индикаторного силикагеля. Если большая часть его окрашивается в розовый цвет, весь силикагель осушителя заменяют или восстанавливают нагревом его при 450–500 °С в течение 2 ч, а индикаторный силикагель — нагревом при 120 °С до тех пор, пока вся масса не окрасится в голубой цвет (приблизительно через 15 ч).
Совет. Удаление шлама и оксидной пленки с контактной системы переключателя ступеней, рекомендуется производить не реже 1 раза в год прокручиванием переключателя до 15–20 раз по часовой и против часовой стрелки.
Периодичность осмотров КТП устанавливается службой главного энергетика. Осмотр производится при полном снятии напряжении на вводе и отходящих линиях.
8. Обслуживание измерительных трансформаторов напряжения
Измерительные трансформаторы напряжения служат для преобразования высокого напряжения в низкое стандартных значений, которое используется для питания измерительных приборов и различных реле управления защиты и автоматики. Они так же, как и трансформаторы тока изолируют измерительные приборы и реле от высокого напряжения, обеспечивая безопасность их обслуживания.
По принципу устройства, схеме включения и особенностям работы трансформаторы напряжения практически не отличаются от силовых трансформаторов. При малой мощности режим работы трансформаторы напряжения приближается к режиму холостого хода. Размыкание вторичной обмотки не приводит к опасным последствиям.
На напряжении 35 кВ и ниже трансформаторы напряжения, как правило, включается через предохранители для того, чтобы при повреждении трансформатора напряжения они не стали причиной развития аварий. Для безопасности персонала один из выводов вторичной обмотки трансформаторы напряжения обязательно заземляют.
Техническое обслуживание трансформаторов напряжения и их вторичных цепей осуществляется персоналом и заключается в надзоре за
работой самих трансформаторов напряжения и контроле исправности цепей вторичного напряжения.
Надзор за работой трансформаторов напряжения производится во время осмотров оборудования. При этом обращают внимание:
– на общее состояние трансформатора напряжения;
– наличие в них масла:
– отсутствие разрядов и треска внутри трансформатора напряжения;
– отсутствие следов перекрытий по поверхности изоляторов и фарфоровых покрышек;
– степень загрязнения изоляторов;
– отсутствие трещин и сколов изоляции;
– состояние армировочных швов.
При обнаружении трещин в фарфоре трансформаторы напряжения должны быть отключены и подвергнуты детальному осмотру и испытанию.
Трансформаторы напряжения на 6–35 кВ с небольшим объемом масла не имеют расширителей и маслоуказателей. Масло в них не доливают до крышки на 20–30 мм. Образовавшееся пространство над поверхностью масла выполняет функцию расширителя.
Внимание. Обнаружение следов вытекания масла из таких трансформаторов напряжения требует срочного вывода их из работы, проверки уровня масла и устранения течи.
В процессе эксплуатации необходимо следить за тем, чтобы плавкие вставки предохранителей были правильно выбраны. Надежность действия предохранителей обеспечивается в том случае, если номинальный ток плавкой вставки меньше в 3–4 раза тока короткого замыкания в наиболее удаленной точке от трансформаторов напряжения вторичных цепей.
На щитах управления необходимо систематически контролировать наличие напряжения от трансформаторов напряжения по вольтметрам и сигнальным устройствам (табло, сигнальные лампы, звонок).
В случае исчезновения вторичного напряжения из-за перегорания предохранителей низкого напряжения, их следует заменить, а отключившиеся автоматы — включить.
9. Обслуживание трансформаторов тока
Схемы соединения
Трансформаторы тока применяют в схемах измерений и учета электрической энергии. Трансформаторы тока являются также элементами устройств релейной защиты и автоматики. Через трансформаторы тока релейные схемы получают информацию о состоянии электрических цепей высокого напряжения.
Рассмотрим схемы соединений трансформаторов тока. При помощи трансформаторов тока первичный ток уменьшают до значений, наиболее удобных для питания измерительных приборов и реле. Обычно вторичные токи трансформаторов тока не превышают 1 или 5 А.
Первичные обмотки трансформаторов тока включают в рассечку электрической цепи (рис. 20), а вторичные замыкают на нагрузку (приборы, реле). Размыкание вторичной обмотки трансформатора тока может привести к аварийному режиму, при котором резко возрастает магнитный поток в сердечнике и ЭДС на разомкнутых концах. При этом максимальное значение ЭДС может достигнуть нескольких киловольт. При магнитном насыщении увеличиваются активные потери в магнитопроводе, что приводит его к нагреву и обгорании изоляции обмоток.
Неиспользуемые в эксплуатации вторичные обмотки трансформаторов тока закорачивают при помощи специальных зажимов.
Рис. 20. Схемы соединений трансформаторов тока: а — звездой; б — треугольником; в — неполной звездой; г — на разность токов двух фаз; д — на сумму токов трех фаз
Первичные обмотки трансформаторов тока изолируют от вторичных на полное рабочее напряжение. Однако на случай повреждения изоляции принимаются меры, обеспечивающие безопасность работ во вторичных цепях. Для этого один из концов вторичной обмотки трансформаторов тока заземляют.
Конструкции трансформаторов тока
Выпускают трансформаторы тока:
– для наружной установки;
– внутренней установки;
– встроенные в проходные вводы силовых трансформаторов и баковых масляных выключателей;
– накладные, надевающиеся сверху на вводы силовых трансформаторов.
У встроенных и накладных трансформаторов тока первичной обмоткой служит токоведущий стержень ввода.
В зависимости от вида установки и рабочего класса напряжения, первичной обмотки трансформаторы тока выполняют:
– трансформаторы тока с литой эпоксидной изоляцией (серии ТПЛ, ТПОЛ, ТШЛ);
– трансформаторы тока с бумажно-масляной изоляцией в фарфоровом корпусе (серии ТФН, ТРН).
Эксплуатация трансформаторов тока
Техническое обслуживание трансформаторов тока заключается в надзоре за ними и выявлении видимых неисправностей. При этом контролируют нагрузку первичной цепи и устанавливают, нет ли перегрузки. Перегрузка трансформаторов тока по току допускается до 20%.
Очень важно следить за нагревом и состоянием контактов, через которые проходит первичный ток. В случае нагрева контактных шпилек у маслонаполненных трансформаторов тока и попадания на них масла, оно может воспламениться и привести к пожару.
При осмотре обращают внимание на отсутствие внешних признаков повреждений (обгорание контактов, трещин в фарфоре), так как трансформаторы тока подвержены термическим и динамическим воздействиям при прохождении через них сквозных токов короткого замыкания.
Примечание. Большое значение имеет состояние внешней изоляции трансформаторов тока. Более 50% случаев повреждений трансформаторов
тока с литой изоляцией происходит в результате перекрытий по загрязненной и увлажненной поверхности изоляторов.
У маслонаполненных трансформаторов тока проверяют:
– уровень масла по маслоуказателю;
– отсутствие подтеков масла;
– цвет силикагеля в воздухоосушителе (голубой цвет — силикагель годен, красный — подлежит замене или регенерации).
При обнаружении дефектов токоведущих частей и изоляции трансформатор тока должен выводится в ремонт.
Почему вторичную обмотку трансформатора тока нельзя оставлять разомкнутой
Трансформатор тока нормально работает в режиме короткого замыкания и не допускает работы вхолостую. При работе с трансформаторами тока необходимо следить за тем, чтобы вторичная обмотка трансформатора тока при подключенной первичной не оставалась разомкнутой.
При размыкании вторичной цепи, что может быть, например, при отключении амперметра, исчезает встречный магнитный поток Ф2 (рис. 21).
Рис. 21. Схема включения измерительного трансформатора тока
Следовательно, по сердечнику начинает проходить большой переменный поток Ф1, который вызывает наведение большой ЭДС во вторичной обмотке трансформатора тока (до тысячи вольт), так как вторичная обмотка имеет большое число витков. Наличие такой большой ЭДС нежелательно потому, что это опасно для обслуживающего персонала и может принести к пробою изоляции вторичной обмотки трансформатора тока.
При возникновении в сердечнике большого потока Ф1 в самом сердечнике начинают наводиться большие вихревые токи, сердечник начинает сильно нагреваться. При длительном нагреве может выйти из строя изоляция обеих обмоток трансформатора. Поэтому надо помнить, что, если надо отключить измерительные приборы, то необходимо сначала закоротить либо вторичную, либо первичную обмотку трансформатора, либо поствавить ограничитель напряжения.
У некоторых трансформаторов тока для этой цели предусмотрены специальные устройства (гнезда со штекерами, перемычки и т. д). Если таких устройств нет, то необходимо их сделать самим.
10. Неисправности измерительных трансформаторов в цепях учета электрической энергии
Характерный признак повреждения трансформатора тока
Характерный признак повреждения трансформатора тока — несоответствие вторичного тока первичному. Однако такое же значительное уменьшение вторичного тока может возникнуть и при неисправностях и ошибках в схеме. Поэтому проверке подлежит как трансформатор тока, так и его цепи.
Выявить поврежденный трансформатор тока можно по следующему характерному признаку: вторичный ток при сопротивлении вторичных цепей, близком к нулю (обмотка закорочена на сборке зажимов), значительно больше, чем вторичный ток при фактическом сопротивлении.
Повышенная нагрузка измерительных трансформаторов
Повышенная нагрузка измерительных трансформаторов, превышающая допустимую для данного класса точности, вносит дополнительную отрицательную погрешность (недоучет) при измерении потребления электроэнергии.
Для опытного определения нагрузки измеряют одновременно токи и напряжения во вторичных цепях. Измерения могут быть проведены как под рабочим током и напряжением, так и на отключенном присоединении с подачей напряжения от постороннего источника. Снизить нагрузку вторичной обмотки трансформатора тока можно путем увеличения сечения жил кабелей в токовых цепях и путем исключения из этих цепей дополнительной аппаратуры.
Совет. Для снижения нагрузки и снижения погрешности трансформатора напряжения нагрузку следует распределить по возможности так, чтобы токи во всех фазах были одинаковы.
Нагрузку трансформаторов напряжения, соединенных в открытый треугольник, целесообразно распределить следующим образом. На напряжение Uca нагрузка не подключается. Она по возможности равномерно распределяется между напряжениями Uab и Ubc.
Необходимо проверить возможность снижения нагрузки путем исключения дополнительной аппаратуры в цепях напряжения, а также проверить падение напряжения в проводах, соединяющих трансформатор напряжения со счетчиком.
Повышенное падение напряжения в цепях напряжения
Повышенное падение напряжения в проводах, соединяющих трансформатор напряжения со счетчиком, приводит к увеличению отрицательной погрешности. Практически это может иметь место, если длина провода превышает 15 м.
Падение напряжения может быть определено опытным путем. Для этой цели пригоден вольтметр переменного тока, обладающий внутренним сопротивлением (1–10 кОм/В). Вольтметр подключается к концам жилы (рис. 22).
Измерение потери напряжения, как разности линейных напряжений на концах кабеля, не может дать достоверных результатов. Большая ошибка будет внесена погрешностью вольтметров, неодновременностью отсчета и прочими причинами.
Для уменьшения падения напряжения необходимо увеличить сечение жил кабеля. В отдельных случаях приходится питать счетчики не от общих «шинок напряжения», а прокладывать к ним отдельный кабель.
Хорошие результаты для уменьшения падения напряжения в проводах, соединяющих трансформатор напряжения на счетчик, дает емкостная компенсация индуктивности (рис. 23).
Рис. 22. Измерение падения напряжения в жиле контрольного кабеля
Рис. 23. Схема подключения компенсирующих конденсаторов в цепи трансформатора напряжения
Напомню, что трансформатор – это электротехническое устройство, способное преобразовывать электрическую энергию через промежуточную среду в виде электромагнитного поля. Устройство трансформатора достаточно простое. Он состоит из магнитного сердечника (может иметь различные формы) на который наматываются витки изолированного провода. Классический вариант трансформатора содержит две обмотки: первичная (она же входная) и вторичная (она же выходная). В зависимости от материала магнитного сердечника, общей мощности трансформатора, нужных параметров (входное и выходное напряжение и сила тока) данное устройство содержит определённое количество витков и сечение обмоточного провода.
Первичные обмотки трансформаторов в большинстве своем рассчитаны на стандартное сетевое напряжение величиной 220 вольт (реже на 380 вольт, это трансформаторы используют в промышленной сфере). Одной из главных характеристик трансформатора является его мощность. Зная мощность данного устройства и имея первичную обмотку, рассчитанную на 220 вольт можно легко переделать любой трансформатор под свои нужды (если этой мощности вам будет хватать) намотав вторичную обмотку под нужное выходное напряжение и силу тока.
А как можно определить эту самую мощность трансформатора? По его сердечнику! Электрическая мощность трансформатора (в ваттах) равна квадрату площади (в сантиметрах) поперечного сечения той части магнитопровода, на которую наматывается провод.
Напомню, что электрическая мощность равна произведению напряжения на силу тока. То есть, если мы узнали мощность трансформатора, с которой он может работать мы можем вычислить номинальную силу тока, что может выдавать вторичная обмотка (зная величину напряжения).
К примеру, вы решили сделать себе блок питания относительно небольшой мощности. Берём от старой, ненужной электротехники (если таковая у вас имеется в доме, гараже) понижающий силовой трансформатор (с железным магнитопроводом) или его покупаем. Допустим, по сердечнику вы определили, что трансформатор имеет мощность около 120 ватт. Это значит, что при напряжении в 12 вольт (на вторичной обмотке) он может обеспечивать силу тока величиной до 10 ампер (мощность разделили на напряжение и получили силу тока). В действительности же нужно учитывать, что у малогабаритных трансформаторов КПД равен около 80%, значит и максимальный выходной ток будет чуть меньше, чем 10 ампер (исходя из данного примера).
Трансформатор, который вы нашли, приобрели, оказался рассчитанный (его вторичная, выходная обмотка) на другое напряжение, не то, которое нужно именно вам. Не беда! Мы его аккуратно разбираем, разматываем старую вторичную обмотку и наматываем новую. Если диаметр провода может обеспечить вам нужный ток, то просто перематываем старую вторичную обмотку под нужное напряжение. От количества витков зависит напряжение (чем больше витков, тем выше напряжение на выходе). От сечения провода обмотки зависит сила тока (чем больше сечение, тем больший ток провод может пропустить через себя, не перегреваясь).
У различной мощности трансформаторов количество витков на 1 вольт будет также различное. Чем больше мощность, тем меньше нужно наматывать провода для получения 1 вольта (а в целом нужной величины напряжения). Сечение провода в значительной степени зависит от той плотности тока, которую вы можете допустить. Если площадь намотки велика, то и охлаждаться она будет лучше, следовательно, и плотность тока можно выбрать больше. Когда же обмотка намотана кучно, то лучше плотность тока брать меньше. В среднем плотность тока равна 2 А/мм2. При этой плотности диаметр провода (без учета изоляции) можно рассчитать по формуле:
Количество витков вторичной обмотки проще будет определить практическим путём. Для этого, на скорую руку, на трансформатор мотаем, допустим, 20 витков. Подаем на первичную обмотку питание. Далее измеряем напряжение на вторичной обмотке (этих самых 20 витках), после чего эти 20 витков делим на измеренное напряжение, и получаем количество витков, которые будут выдавать нам 1 вольт. Ну, а потом, чтобы узнать общее количество витков вторичной обмотки, мы напряжение вторичной обмотки умножаем на количество витков на один вольт. К примеру, 1 вольт мы получим при намотке 10 витков, следовательно, мы 10 умножаем на 12 вольт (которые мы хотим получить на выходе трансформатора). В итоге наша вторичная обмотка должна содержать 120 витков.
P.S. Чтобы не морочить голову с перемотками трансформаторных обмоток, пожалуй, лучше просто на рынке или в магазине приобрести трансформатор с подходящей мощностью, с нужным выходным напряжением и силой тока. Но учитывайте, что дешевые трансформаторы могут в некоторой степени не соответствовать своим характеристикам (обычно на магнитопровод ставят провод меньшего диаметра, чем нужно). Так, что лучше заплатить больше и приобрести качественный трансформатор.
Трансформаторы напряжения – это устройства, предназначенные для преобразования напряжений переменного тока в электрических цепях переменного тока частотой 50 или 60 Гц с номинальными напряжениями от 0,38 до 750 кВ посредством электромагнитной индукции.
Понижение высоких напряжений в трансформаторах напряжения происходит без изменения частоты переменного тока.
Трансформаторы напряжения используются для обеспечения электроэнергией токовых обмоток реле и измерительных приборов, например, амперметров, вольтметров, ваттметров и многих других. Также трансформатор напряжения защищает подключенные к нему устройства от повреждения высоким током в случае, если в основной цепи происходит короткое замыкание. Трансформаторы напряжения с двумя вторичными обмотками, кроме питания измерительных приборов и реле, предназначаются для работы на устройствах сигнализации замыканий на землю в сети с изолированной нейтралью или на защиту от замыканий на землю в сети с заземленной нейтралью.
Использование трансформаторов напряжения в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.
Трансформаторы напряжения применяются в таких областях как электроэнергетика, электроника, радиотехника.
Корпус трансформатора может быть выполнен, например, из компаунда на основе гидрофобной циклоалифатической смолы. Это необходимо для защиты обмоток от воздействия факторов окружающей среды, а также от механических повреждений.
Трансформатор напряжения представляет собой конструкцию из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток:
- стальной сердечник;
- первичная обмотка;
- вторичная обмотка (одна или две);
- разъемы для подключения.
Обратите внимание, вторичная обмотка может быть одна ил их может быть несколько.
Обмотки изолированы друг от друга и от сердечника.
На первичную обмотку попадает напряжение, которое требуется изменить. К вторичной обмотке подключается измерительные приборы, например, ваттметр и реле.
В повышающих трансформаторах напряжения первичной обмотки ниже, а напряжение вторичной обмотки больше.
В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются обратным образом – напряжение вторичной обмотки (или обмоток) ниже, а напряжение больше первичной обмотки.
Измерительные трансформаторы напряжения комплектуют разъемами. Таким образом, первичная обмотка подключается к цепям силового напряжения, а к вторичной обмотке могут быть присоединены другие приборы, например, реле и измерительные приборы (вольтметр, ваттметр и многие другие).
Конструкция может быть помещена в корпус, выполненный, например, из компаунда на основе гидрофобной циклоалифатической смолы. Это необходимо для защиты обмоток от воздействия факторов окружающей среды, а также от механических повреждений.
Принцип действия и силового понижающего трансформатора напряжения и измерительного трансформаторного напряжения основан на трансформировании напряжения переменным магнитным полем.
На первичную обмотку трансформатора, подключенную к основной цепи, подается высокое напряжение. В стальном сердечнике возникает переменный магнитный поток, который циркулирует по замкнутому кругу. Вторичная обмотка соединена с токовой катушкой амперметра или ваттметра с низким собственным сопротивлением, получающим ток вторичной обмотки.
Как правило, количество витков первичной обмотки трансформатора тока меньше вторичной, таким образом, трансформатор тока можно рассматривать в качестве преобразователя. Принцип работы такой же, как и у трансформатора напряжения, условия эксплуатации похожи на условия замыкания накоротко в трансформаторе напряжения. Электромагнитные параметры и положительные направления определяются электромеханикой.
Трансформаторы напряжения можно классифицировать по следующим признакам:
- по наличию или отсутствию заземления вывода X первичной обмотки;
- по количеству фаз;
- по количеству обмоток;
- по наличию компенсационной обмотки или обмотки для контроля изоляции сети;
- по виду изоляции;
- по классу точности;
- по способу охлаждения;
- по месту установки;
- по номинальному коэффициенту напряжения;
- по классу напряжения по ГОСТ 1516.3, кВ;
- по наибольшему рабочему напряжению, кВ;
- по номинальному напряжению первичной обмотки;
- по номинальному напряжению вторичной обмотки. Если вторичных обмоток две, то по номинальному напряжению основной вторичной обмотки;
- по номинальному напряжению дополнительной вторичной обмотки (если она есть);
- по номинальной мощности трансформатора, кВА (киловольт-амперы);
- по максимальной мощности трансформатора, кВА (киловольт-амперы);
- по напряжению короткого замыкания;
- по наибольшему току обмоток;
- по рабочему положению в пространстве;
- по степени защиты корпуса IP;
- по климатическому исполнению;
- по категории размещения согласно ГОСТ 15150;
- по диапазону рабочих температур;
- по габаритным размерам;
- по весу, объему;
- в зависимости от модели, марки, производителя.
По наличию или отсутствию заземления вывода X первичной обмотки трансформаторы напряжения можно разделить на следующие группы:
- заземляемые;
- незаземляемые.
По количеству фаз трансформаторы напряжения можно разделить на следующие группы:
- однофазные;
- трехфазные.
И однофазные и трехфазные трансформаторы напряжения широко используются в трехфазной сети питания.
Трехфазные трансформаторы напряжения устанавливают в трехфазной электросети.
Однофазные трансформаторы напряжения также рекомендуют устанавливать в трехфазной электросети группой по одному трансформатору на каждую отдельную фазу. Группа из трех однофазных трансформаторов, установленных на общей раме (площадке) и электрически соединенных между собой по определенной схеме – это трехфазная группа однофазных трансформаторов.
Однофазные трансформаторы имеют по одному стержню с первичной и вторичной обмотками. Другими словами, только по одной фазе.
Каждый трехфазный трансформатор содержит по три стержня (замкнутые сверху и снизу) с первичной и вторичной обмотками, соединяемые затем одной из двух основных схем.
Для соединения обмоток трехфазных трансформаторов используются две основные схемы:
- звезда;
- треугольник.
По количеству обмоток трансформаторы напряжения можно разделить на следующие группы:
- двухобмоточные;
- трехобмоточные.
Двухобмоточные трансформаторы напряжения – это трансформаторы, имеющие только одну вторичную обмотку напряжения.
Трехобмоточные трансформаторы напряжения – это трансформаторы, имеющие две вторичные обмотку напряжения: основную и дополнительную.
Выводы второй (дополнительной) обмотки, используемой для сигнализации или защиты при замыканиях на землю.
По наличию компенсационной обмотки или обмотки для контроля изоляции сети трансформаторы напряжения можно разделить на следующие группы:
- трехфазный с дополнительными обмотками для контроля изоляции сети;
- трехфазный с компенсационными обмотками.
Классы точности трансформатора напряжения – это система классификация трансформаторов напряжения в зависимости от максимальной погрешности, когда ток первичной обмотки соответствует номинальному значению и нагрузка вторичной обмотки находится в пределах допустимого диапазона. В нормальных условиях эксплуатации, погрешность трансформатора должна быть в пределах заданного диапазона. Классификация трансформаторов напряжения по классу точности предполагает разделение в зависимости от допускаемого значения погрешности.
Перечислим классы точности трансформа торов: 0.1, 0.2, 0.5, 1.0, 3.0.
Трансформаторы тока с различным классом точности должны использоваться для различных измерительных приборов. Например, расчетные и измерительные трансформаторы тока имеют класс точности в пределах от 0,1 до 0,5, в то время как амперметры, контролирующие ток нагрузки входных и выходных цепей, как правило, оборудованы трансформаторами тока с классом точности от 1,0 до 3,0.
Обратите внимание, трансформаторам может быть присвоен один или несколько классов точности в зависимости от номинальных мощностей и назначения.
По способу охлаждения трансформаторы напряжения можно разделить на следующие группы:
- трансформаторы с масляным охлаждением (или масляные трансформаторы);
- трансформаторы с воздушной системой охлаждения (трансформаторы сухие и с литой изоляцией).
Трансформаторы напряжения с естественным воздушным охлаждением (или «сухие» трансформаторы). Такая система охлаждения осуществляется посредством естественной конвекции воздуха и частичного лучеиспускания в воздухе. Условно принято обозначать естественное охлаждение при открытом исполнении – С, при защитном исполнении — СЗ, при герметичном исполнении СГ, с принудительной циркуляцией воздуха (дутьем) — СД.
Трансформаторы напряжения с естественным масляным охлаждением. Такая система охлаждения выполняется для трансформаторов мощностью до 16000 кВА. Осуществляется посредством передачи тепла, выделенного в обмотках и магнитопроводе, маслу, циркулирующему по баку и радиаторам, а после — окружающему воздуху. Для лучшей отдачи тепла в окружающую среду бак трансформатора снабжают ребрами, охлаждающими трубами или радиаторами в зависимости от мощности. Обратите внимание, температура масла в верхних, наиболее нагретых слоях не должна превышать +95°С. Условно принято обозначать естественное масляное охлаждение – М.
Трансформаторы напряжения с масляным охлаждением с дутьем и естественной циркуляцией масла. Такая система охлаждения выполняется для трансформаторов мощностью от 16000 кВА до 80 000 кВА. Осуществляется посредством размещения специальных вентиляторов в навесных охладителях из радиаторных труб. Вентилятор засасывает воздух снизу и обдувает нагретую верхнюю часть труб. Пуск и останов вентиляторов осуществляется автоматически в зависимости от нагрузки и температуры нагрева масла. Трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 100% от номинальной, а температура верхних слоев масла не более 55 °С, а также независимо от нагрузки при отрицательных температурах окружающего воздуха и температуре масла не выше 45 °С. Максимально допустимая температура масла в верхних слоях при работе трансформатора с номинальной нагрузкой 95 °С. Условно принято обозначать масляное охлаждение с дутьем и естественной циркуляцией масла – Д.
Трансформаторы напряжения с масляным охлаждением с дутьем и принудительной циркуляцией масла через воздушные охладители. Такая система охлаждения выполняется для трансформаторов мощностью от 63000 кВА и выше. Охладители состоят из тонких ребристых трубок, обдуваемых снаружи вентилятором. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла через охладители. Благодаря высокой скорости циркуляции масла, большой поверхности охлаждения и интенсивному дутью охладители обладают большой теплоотдачей и компактностью. Такая система охлаждения позволяет значительно уменьшить габаритные размеры трансформаторов. Условно принято обозначать масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители – ДЦ.
Трансформаторы напряжения с масляно-водяным охлаждением с принудительной циркуляцией масла. Такая система охлаждения выполняется для мощных трансформаторов от 160 MBА и более. Выполняется так же, как охлаждение ДЦ (трансформаторов напряжения с масляным охлаждением с дутьем и принудительной циркуляцией масла через воздушные охладители). Разница в том, что охладители в этой системе состоят из трубок, по которым циркулирует вода, а между трубками движется масло. Температура масла на входе в маслоохладитель не должна превышать 70 °С. Чтобы предотвратить попадание воды в масляную систему трансформатора, давление масла в маслоохладителях в этом случае должно превышать давление циркулирующей в них воды не менее чем на 0,02 МП. Условно принято обозначать масляно-водяное охлаждение с принудительной циркуляцией масла – Ц.
По виду изоляции трансформаторы напряжения можно разделить на следующие группы:
- трансформаторы с воздушно-бумажной изоляцией (С);
- трансформаторы с литой изоляцией (Л);
- трансформаторы с изоляцией, залитой битумным компаундом (К);
- трансформаторы с фарфоровой покрышкой (Ф);
- трансформаторы с масляной изоляцией (М);
- трансформаторы с газовой изоляцией (Г).
По месту установки трансформаторы напряжения можно разделить на следующие группы:
- трансформаторы для внутренней установки;
- трансформаторы для наружной установки;
- трансформаторы для комплектных РУ.
По рабочему положению в пространстве трансформаторы напряжения можно разделить на;
- устройства с вертикальным рабочим положением в пространстве;
- устройства с горизонтальным рабочим положением в пространстве;
- устройства с любым рабочим положением в пространстве.
Номинальный коэффициент напряжения – коэффициент, на который следует умножать но минальное первичное напряжение, чтобы найти максимальное напряжение, при котором трансформатор соответствует требованиям по нагреву в течение установленного времени.
Номинальное напряжение обмоток трансформатора напряжения – это величина напряжения на обмотках при холостом ходе.
Номинальные напряжения первичных обмоток однофазных трансформаторов, включаемых между фазами, и трехфазных трансформаторов на напряжение до 1000 В должны быть 380 или 660 В.
Номинальное первичное напряжение трансформатора – это напряжение, которое, необходимо подвести к его первичной обмотке, чтобы на зажимах разомкнутой вторичной обмотки получить вторичное номинальное напряжение, указанное в паспорте трансформатора.
Номинальное вторичное напряжение трансформатора – это напряжение, которое устанавливается на зажимах вторичной обмотки при холостом ходе трансформатора (к зажимам первичной обмотки подведено напряжение, а вторичная обмотка разомкнута) и при подведении к первичной обмотке номинального первичного напряжения.
Номинальная мощность трансформатора, кВА (киловольт-амперы) – это указанное в паспорте значение полной мощности, на которую трансформатор может быть нагружен непрерывно в номинальных условиях установки и охлаждающей среды при номинальной частоте и напряжении. Номинальная мощность трансформатора напряжения может равняться: 10; 15; 25; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 800; 1000; 1200 ВА.
В случае, когда обмотки трансформатора имеют разные мощности, то за номинальную принимают наибольшую.
Предельные мощности трансформаторов напряжения могут равняться: 160; 250; 400; 630; 1000; 1600; 2000; 2500 ВА.
За номинальные и предельные мощности трехобмоточных трансформаторов принимают суммарные мощности основной и дополнительной вторичных обмоток.
Номинальные токи обмоток трансформатора напряжения – это токи, определяемые по их номинальным мощностям и номинальным напряжениям.
Номинальное напряжение короткого замыкания Uk, %– это напряжение в процентах от номинального, при подведении которого к одной из обмоток трансформатора в замкнутой накоротко другой обмотке ток равен номинальному. Оно характеризует полное сопротивление обмоток трансформатора.
Степень защиты корпуса (IP).
Степень защиты корпусов от физических повреждений, атмосферных осадков, а также его износостойкость и водонепроницаемость обозначается IP (от англ. Ingress Protection Rating – степень защиты оболочки). После букв указываются цифры. Первая из них обозначает степень защиты от твердых фрагментов, вторая – от проникновения жидкостей. IP — это целая система классификации степеней защиты оболочки электрооборудования от проникновения твердых предметов и воды в соответствии с международным стандартом IEC 60529 и ГОСТ14254-96.
Перечислим основные данные классы: IPХ0 (защита отсутствует), IPХ1 (защита от вертикально падающих капель воды), IPХ2 (защита от диагонально падающих капель воды), IPХ3 (защита от мелких водяных брызг), IPХ4 (защита от большого количества водяных брызг, направленных со всех сторон), IPХ5 (защита от сильных струй воды, направленных со всех сторон), IPХ6 (защита даже при временном затоплении) и т.д.
Перечислим основные классы защиты корпусов светильников от попадания твердых инородных тел. IP0Х (защита отсутствует), IP1Х (защита от контакта с рукой человека и от твердых инородных тел диаметром более 50мм), IP2Х (защита от контакта с пальцами и от твердых инородных тел диаметром не менее 12мм), IP3Х (защита от повреждений инструментом, проводами и иными подобными инородными предметами диаметром более 2,5 мм), IP4Х (защита от повреждений инструментом, проводами и иными подобными инородными предметами диаметром более 1,0 мм), IP5Х (полная защита от любого внешнего контакта с инородными предметами и защита от повреждения оборудования вследствие пылевых отложений внутри корпуса светильника), IP6Х (полная защита от любого внешнего контакта с инородными предметами, а также защита от проникновения пыли) и т.д.
Ряд основных и наиболее часто встречающихся степеней защиты устройств защитного отключения: IP00, IP20, IP21, IP22, IP44.
Модели с невысокой степенью защиты IP20, IP21 или IP22 используются в сухих помещениях. Такие модели отличаются низкой ценой.
Модели с более высокой степенью защиты, например, IP44 можно использовать в помещениях с повышенной влажностью. Такие модели стоят дороже, но надежнее.
Климатическое исполнение – это стандартная система категорий, которая включает в себя условия эксплуатации, транспортировки и хранения технических изделий относительно макроклиматического районирования поверхности земного шара. Другими словами это система категорий, определяющая в каких условиях можно эксплуатировать, хранить и транспортировать то или иное электрическое изделие. Для приборов и технических изделий, произведенных в Российской Федерации, применяется ГОСТ 15150-69.
ОБОЗНАЧЕНИЕ КЛИМАТИЧЕСКОГО ИСПОЛНЕНИЯ ПО ГОСТ 15150-69 СОСТОИТ ИЗ БУКВЕННОЙ ЧАСТИ И ЦИФРОВОЙ ЧАСТИ.
БУКВЕННАЯ ЧАСТЬ МАРКИРОВКИ УКАЗЫВАЕТ НА климатическую зону:
- У — умеренный климат (+40/-45 оС);
- ХЛ — холодный климат (+40/-60 оС);
- УХЛ — умеренный и холодный климат (+40/-60 оС);
- Т — тропический климат (+40/+1 оС);
- М — морской умеренно-холодный климат (+40/-40 оС);
- О — общеклиматическое исполнение (кроме морского) (+50/-60 оС);
- ОМ — общеклиматическое морское исполнение (+45/-40 оС);
- В — все климатическое исполнение (+50/-60 оС).
Цифровая ЧАСТЬ МАРКИРОВКИ УКАЗЫВАЕТ НА категорию размещения изделия:
- открытый воздух;
- то же что и 1 только без попадания прямых солнечных лучей и без осадков;
- в закрытом помещении без регулирования климатических условий;
- в закрытом помещении с вентиляцией и отоплением;
- в помещениях с высокой влажностью, без искусственного регулирования климатических условий.
Обратите внимание, допускается эксплуатация изделий в макроклиматических районах и, отличающихся от тех, для которых предназначены изделия, если климатические факторы в период эксплуатации не выходят за пределы номинальных значений, установленных для данных изделий. Например, изделия вида климатического исполнения УХЛ4 могут в летний сухой период эксплуатироваться в условиях УХЛ2.
Обратите внимание, изделия могут быть предназначены также для эксплуатации в нескольких макроклиматических районах; в этих случаях сочетания различных условий эксплуатации или хранения со сроками пребывания в этих условиях устанавливают в стандартах или технических условиях на изделия, климатические исполнения (категория климатического исполнения) обязательно указываются в сопроводительных документах на товар.
Гарантийный срок эксплуатации трансформаторов напряжения составляет, как правило, до 5 лет.
Срок эксплуатации трансформаторов напряжения может составлять до 30 лет.
Обратите внимание, в сетях с изолированной нейтралью трансформаторы напряжения могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей. Чаще всего это явление наблюдается в кабельных сетях. Трансформаторы напряжения при наличии в сети феррорезонансных явлений выходят из строя. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.
Среди преимуществ использования трансформаторов напряжения называют:
- небольшой вес;
- компактная конструкция;
- низкая стоимость;
- легкость установки.