Как найти номинальную мощность генератора постоянного тока

Примеры решения задач

Пример 1. Генератор постоянного тока параллельного возбуждении имеет номинальную

мощность P

2

=10 кВт; номинальное напряжение U = 230 В; частоту вращения n =1450 об/мин;

сопротивление обмоток цепи обмотки возбуждения R

В

=150 Ом; сопротивление обмоток

якоря R

Я

= 0,3 Ом; КПД в номинальном режиме η = 86,5 %. Падением напряжения в

щеточном контакте пренебречь.

Определить: ток генератора, ток в цепи возбуждения, ток в цепи якоря, ЭДС якоря, электро

магнитный момент, электромагнитная мощность, мощность приводного двигателя.

Генератор работает при номинальной нагрузке.

Решение:

Ток генератора:







Ток в обмотке возбуждения: I

В

=







Ток в цепи якоря: I

Я

= I + I

В

= 43,5 +1,5 = 45А.

ЭДС якоря: E =U + I

Я

R

Я

= 230 + 45 0,3 = 243,5 В.

Электромагнитная мощность: P

эм

= E I

Я

= 243,5 45 =10957 Вт .

Электромагнитный момент: M

эм

= 9,55











Мощность приводного двигателя: P

1

=









Пример 2. В генераторе постоянного тока независимого возбуждения с номинальным

напряжением U = 440 В установился ток I = 64 А при частоте якоря n = 2800 об/мин. В новом

режиме работы нагрузка и магнитный поток не изменились, но частота якоря стала

n* = 740 об/мин.

Определить напряжение и ток в генераторе в новом режиме.

Решение:

В генераторе независимого возбуждения ток генератора равен току якоря, т.е. I = I

Я

.

В номинальном режиме:

Напряжение на нагрузке U = I R

Н

.

ЭДС якоря E =U + I R

Я

= I R

Н

+ I R

Я

, с другой стороны E = С

Е

п Ф.

Получили: I R

Н

+ I R

Я

= С

Е

п Ф.

В новом режиме, соответственно:

E* =U* + I* R

Я

= I* Rн + I* R

Я

= С

Е

п* Ф.

Возьмем отношение, полученных уравнений и получим:

I*=

 





 A и

U* =

 





 B

Пример 3. В электродвигателе постоянного тока с параллельным возбуждением, имеющим

номинальные данные: мощность на валу P

2

=130 кВт ; напряжение U = 220 В; ток,

потребляемый из сети I = 640 А; частоту вращения n = 600 об/мин; сопротивление цепи

обмотки возбуждения R

В

= 43 Ом; сопротивление обмотки якоря R

Я

= 0,007 Ом.

Определить номинальные суммарные и электрические потери в обмотках.

Решение:

Ток в обмотке возбуждения: I

В

=







Ток в цепи якоря: I

Я

= I I

В

= 640-5,116 = 634,884 A.

Электрические потери мощности

в цепи якоря: ΔP

эл

Я

= I

Я

2

R

Я

= 634,884

2

0,007 = 2821,544 Вт;

в обмотке возбуждения:

ΔP

эл B

= I

B

2

R

B

=U I

B

= 220 5,116=1125,52 Вт .

Суммарные потери мощности:

ΣΔP = ΔP

эл B

+ ΔP

эл Я

=1125,52 + 2821,544 = 3947,064 Вт .

Расчетные формулы параметров машин постоянного тока

В таблице 1 представлены расчетные формулы для определения основных параметров машин постоянного тока.

В данной таблице собраны все формулы, которые касаются расчета параметров машин постоянного тока.

Таблица 1 — Расчетные формулы для определения основных параметров машин постоянного тока

Наименование величин Формулы Принятые обозначения
Мощность, кВт N – число проводников обмотки якоря;
а – число пар параллельных ветвей в обмотке якоря;
р – число пар полюсов;
n – скорость вращения, об/мин.
Сопротивление якорной цепи, Ом Ф – магнитный поток пары полюсов, вебер;
Rя, Rс, Rдоб. – сопротивления обмотки якоря, последовательной обмотки возбуждения и добавочных полюсов, Ом
Ориентировочной значение сопротивления цепи якоря, Ом Значение коэффициента β двигателей различного типа возбуждения:
для независимого и параллельного возбуждения β=0,5;
для смешанного β=0,6;
для последовательного β=0,75;
КПД двигателя и генератора ∆Рх – потери холостого хода машины или постоянные потер, кВт;
∆Рв – потери на возбуждение, кВт;
∆Рмех. – механические потери на трение в подшипниках и о коллектор, кВт;
∆Рст. – магнитные потери в стали якоря, кВт;
∆Рвент. – вентиляционные потери, кВт;
∆Рдоб. – добавочные потери.
В некомпенсированных машинах
∆Рдоб. = 1%Рном, в компенсированных 0,5%, кВт;
kз – коэффициент загрузки;
∆Uщ = 2 В для графитных щеток;
∆Uщ = 0,6 В для металлографитных;
Переменные потери См – конструктивная постоянная момента;
Ф – магнитный поток, вебер;
Расчетные коэффициенты для двигателя параллельного возбуждения а) искусственная скоростная характеристика при введении добавочного сопротивления Rдоб. последовательно в цепь якоря;
б) искусственная скоростная характеристика двигателя при шунтировании якоря двигателя сопротивлением Rш;
α – коэффициент шунтирования.

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

В данной статье будет рассматриваться пример расчета реактивной мощности асинхронного.

Для питания потребителей постоянного тока, требуется выбрать внешнюю аккумуляторную батарею, для.

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного.

В данном примере требуется выбрать сечение проводов (по нагреву, по току и по потере напряжения) для.

Требуется определить потери активной и реактивной мощности в автотрансформаторе типа АТДЦТН-125000/220/110.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Источник

Мощность постоянного тока

Мощность – это работа, произведенная за единицу времени. Электрическая мощность равна произведению тока на напряжение: P=U∙I. Отсюда можно вывести другие формулы для мощности:

Единицу измерения мощности получим, подставив в формулу единицы измерения напряжения и тока:

Единица измерения электрической мощности, равная 1 ВА, называется ватом (Вт). Название вольт-ампер (ВА) используется в технике переменного тока, но только для измерения полной и реактивной мощности.

Единицы измерения электрической и механической мощности связаны следующими соотношениями:

1 Вт =1/9,81 кГ•м/сек ≈1/10 кГ•м/сек;

Если не учитывать неизбежных потерь энергии, то двигатель мощностью 1 кВт может перекачивать каждую секунду 102 л воды на высоту 1 м или 10,2 л воды на высоту 10 м.

1. Нагревательный элемент электрической печи на мощность 500 Вт и напряжение 220 В выполнен из проволоки высокого сопротивления. Рассчитать сопротивление элемента и ток, который через него проходит (рис. 1).

Ток найдем по формуле электрической мощности P=U∙I,

откуда I=P/U=(500 Bm)/(220 B)=2,27 A.

Сопротивление рассчитывается по другой формуле мощности: P=U^2/r,

откуда r=U^2/P=(220^2)/500=48400/500=96,8 Ом.

2. Какое сопротивление должна иметь спираль (рис. 2) плитки при токе 3 А и мощности 500 Вт?

Для этого случая применим другую формулу мощности: P=U∙I=r∙I∙I=r∙I^2;

отсюда r=P/I^2 =500/3^2 =500/9=55,5 Ом.

3. Какая мощность превращается в тепло при сопротивлении r=100 Ом, которое подключено к сети напряжением U=220 В (рис. 3)?

4. В схеме на рис. 4 амперметр показывает ток I=2 А. Подсчитать сопротивление потребителя и электрическую мощность, расходуемую в сопротивлении r=100 Ом при включении его в сеть напряжением U=220 В.

P=U∙I=220∙2=440 Вт, или P=U^2/r=220^2/110=48400/110=440 Вт.

5. На лампе указано лишь ее номинальное напряжение 24 В. Для определения остальных данных лампы соберем схему, показанную на рис. 5. Отрегулируем реостатом ток так, чтобы вольтметр, подключенный к зажимам лампы, показывал напряжение Uл=24 В. Амперметр при этом показывает ток I=1,46 А. Какие мощность и сопротивление имеет лампа и какие потери напряжения и мощности возникают на реостате?

Мощность лампы P=Uл∙I=24∙1,46=35 Вт.

Ее сопротивление rл=Uл/I=24/1,46=16,4 Ом.

Падение напряжения на реостате Uр=U-Uл=30-24=6 В.

Потери мощности в реостате Pр=Uр∙I=6∙1,46=8,76 Вт.

6. На щитке электрической печи указаны ее номинальные данные (P=10 кВт; U=220 В).

Определить, какое сопротивление представляет собой печь и какой ток проходит через нее при работе P=U∙I=U^2/r;

r=U^2/P=220^2/10000=48400/10000=4,84 Ом; I=P/U=10000/220=45,45 А.

7. Каково напряжение U на зажимах генератора, если при токе 110 А его мощность равна 12 кВт (рис. 7)?

Так как P=U∙I, то U=P/I=12000/110=109 В.

8. На схеме на рис. 8 показана работа электромагнитной токовой защиты. При определенном токе электромагнит ЭМ, который удерживается пружиной П, притянет якорь, разомкнет контакт К и разорвет цепь тока. В нашем примере токовая защита разрывает токовую цепь при токе I≥2 А. Сколько ламп по 25 Вт может быть одновременно включено при напряжении сети U=220 В, чтобы ограничитель не сработал?

Защита срабатывает при I=2 А, т. е. при мощности P=U∙I=220∙2=440 Вт.

Разделив общую мощность одной лампы, получим: 440/25=17,6.

Одновременно могут гореть 17 ламп.

9. Электрическая печь имеет три нагревательных элемента на мощность 500 Вт и напряжение 220 В, соединенных параллельно.

Каковы общее сопротивление, ток и мощность при работе печи (рис.91)?

Общая мощность печи P=3∙500 Вт =1,5 кВт.

Результирующий ток I=P/U=1500/220=6,82 А.

Результирующее сопротивление r=U/I=220/6,82=32,2 Ом.

Ток одного элемента I1=500/220=2,27 А.

Сопротивление одного элемента: r1=220/2,27=96,9 Ом.

10. Подсчитать сопротивление и ток потребителя, если ваттметр показывает мощность 75 Вт при напряжении сети U=220 В (рис.10).

Так как P=U^2/r, то r=U^2/P=48400/75=645,3 Ом.

11. Плотина имеет перепад уровней воды h=4 м. Каждую секунду через трубопровод на турбину попадает 51 л воды. Какая механическая мощность превращается в генераторе в электрическую, если не учитывать потерь (рис. 11)?

Механическая мощность Pм=Q∙h=51 кГ/сек ∙4 м =204 кГ•м/сек.

Отсюда электрическая мощность Pэ=Pм:102=204:102=2 кВт.

12. Какую мощность должен иметь двигатель насоса, перекачивающего каждую секунду 25,5 л воды с глубины 5 м в резервуар, расположенный на высоте З м? Потери не учитываются (рис. 12).

Общая высота подъема воды h=5+3=8 м.

Механическая мощность двигателя Pм=Q∙h=25,5∙8=204 кГ•м/сек.

Электрическая мощность Pэ=Pм:102=204:102=2 кВт.

13. Гидроэлектростанция получает из водохранилища на одну турбину каждую секунду 4 м3 воды. Разница между уровнями воды в водохранилище и турбине h=20 м. Определить мощность одной турбины без учета потерь (рис. 13).

Механическая мощность протекающей воды Pм=Q∙h=4∙20=80 т/сек•м; Pм=80000 кГ•м/сек.

Электрическая мощность одной турбины Pэ=Pм:102=80000:102=784 кВт.

14. У двигателя постоянного тока с параллельным возбуждением обмотка якоря и обмотка возбуждения соединены параллельно. Обмотка якоря имеет сопротивление r=0,1 Ом, а ток якоря I=20 А. Обмотка возбуждения имеет сопротивление rв=25 Ом, а ток возбуждения равен Iв=1,2 А. Какая мощность теряется в обеих обмотках двигателя (рис. 14)?

Потери мощности в обмотке якоря P=r∙I^2=0,1∙20^2=40 Вт.

Потери мощности в обмотке возбуждения

Общие потери в обмотках двигателя P+Pв=40+36=76 Вт.

15. Электроплитка на напряжение 220 В имеет четыре переключаемые ступени нагрева, что достигается путем различных включений двух нагревательных элементов с сопротивлениями r1 и r2, как это показано на рис. 15.

Определить сопротивления r1 и r2, если первый нагревательный элемент имеет мощность 500 Вт, а второй 300 Вт.

Так как мощность, выделяемая в сопротивлении, выражается формулой P=U∙I=U^2/r, то сопротивление первого нагревательного элемента

а второго нагревательного элемента r2=U^2/P2 =220^2/300=48400/300=161,3 Ом.

В положении ступени IV сопротивления соединяются последовательно. Мощность электроплитки в этом положении равна:

P3=U^2/(r1+r2 )=220^2/(96,8+161,3)=48400/258,1=187,5 Вт.

В положении ступени I нагревательные элементы соединены параллельно и результирующее сопротивление равно: r=(r1∙r2)/(r1+r2)=(96,8∙161,3)/(96,8+161,3)=60,4 Ом.

Мощность плитки в положении ступени I: P1=U^2/r=48400/60,4=800 Вт.

Эту же мощность получим, сложив мощности отдельных нагревательных элементов.

16. Лампа с вольфрамовой нитью рассчитана на мощность 40 Вт и напряжение 220 В. Какие сопротивление и ток имеет лампа в холодном состоянии и при рабочей температуре 2500 °С?

Отсюда сопротивление нити лампы в горячем состоянии rt=U^2/P=220^2/40=1210 Ом.

Сопротивление холодной нити (при 20 °С) определим по формуле rt=r∙(1+α∙∆t),

откуда r=rt/(1+α∙∆t)=1210/(1+0,004∙(2500-20) )=1210/10,92=118 Ом.

Через нить лампы в горячем состоянии проходит ток I=P/U=40/220=0,18 А.

Ток при включении равен: I=U/r=220/118=1,86 А.

При включении ток примерно в 10 раз больше, чем ток горячей лампы.

17. Каковы потери напряжения и мощности в медном контактном проводе электрифицированной железной дороги (рис. 16)?

Провод имеет сечение 95 мм2. Двигатель электропоезда потребляет ток 300 А на расстоянии 1,5 км от источника тока.

Потеря (падение) напряжения в линии между точками 1 и 2 Uп=I∙rп.

Сопротивление контактного провода rп=(ρ∙l)/S=0,0178∙1500/95=0,281 Ом.

Падение напряжения в контактном проводе Uп=300∙0,281=84,3 В.

Напряжение Uд на зажимах двигателя Д будет на 84,3 В меньше, чем напряжение U на зажимах источника Г.

Падение напряжения в контактном проводе во время движения электропоезда меняется. Чем дальше электропоезд удаляется от источника тока, тем длиннее линия, а значит, больше ее сопротивление и падение напряжения в ней. Ток по рельсам возвращается к заземленному источнику Г. Сопротивление рельсов и земли практически равно нулю.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

6.1. Расчет генератора постоянного тока с параллельным возбуждением

Для
расчета генератора постоянного тока
с параллельным
возбуждением необходимо:

усвоить
устройство и принцип действия
электрических машин постоянного
тока; знать формулы,
выражающие взаимосвязь между
электрическими величинами, характеризующими
данный тип электрической машины.


отчетливо представлять связь между
напряжением U
на зажимах машины, ЭДС Е
и падением напряжения IR
в
обмотке якоря генератора и двигателя.

Для
генератора Е
=
U+
IЯ·
R,
для
двигателя U
= Е +
IЯ·
R

В этих
формулах R=
RЯ+
RДП
+
RКО
+
RС
+
RЩ
– сумма сопротивлений всех участков
цепи якоря: RЯ
– обмотки якоря;

RДП
– обмотки добавочных полюсов; RКО
– компенсационной обмотки;

RЩ
– переходного щеточного контакта;
RС
последовательной
обмотки возбуж­дения.

При
отсутствии в машине (это зависит от её
типа и предложен­ной задачи) каких-либо
из указанных обмоток в формулу,
определяю­щую R,
не входят соответствующие слагаемые.
Полезный
вращающий момент М
на валу двигателя определяется по
формуле

M
=
Н·м,

где
Р2

полезная механическая мощность,
Вт.

n
– об/мин
.
– частота вращения вала двигателя.

Пример

Генератор
постоянного тока с параллельным
возбуждением ра­ботает в номинальном
режиме.

Его технические
данные:

РНОМ
=16000Вт – номинальная мощность;
Uном
=230 В – номинальное напряжение;

RЯ=0,13
Ом – сопротивление обмотки якоря;
RВ=164
Ом – сопротивление обмотки возбуждения;

ηНОМ

= 90,1
%
номинальный коэффициент полезного
действия.

Определить:

Iном
– ток нагрузки, I
B
– ток возбуждения,
I
Я

ток якоря,

РЯ

потери мощности в якоре,
РВ

потери мощности в обмотке возбуждения,

РЩ
– потери мощности в щеточном контакте,

РХ
=
Р
СТ
МЕХ
– потери холостого хода, состоящие из
по­терь в стали и механических потерь.
РДОБ

добавочные потери,

P

суммарные потери мощности,
Е
– ЭДС генератора.

Решение

I.
Ток нагрузки
Iном
= Рном
/
Uном
=16000 Вт / 230 В = 69,6 А

2.
Ток возбуждения IB
=
U
H
0
M
/
R
B
= 230 В / I64
Ом = 1,4 А.

3.
Ток якоря

Iя
=
Iном
+ Iв
=
69,6
А + 1,4 А = 71 А

4.
Потери мощности в обмотке якоря
Ря
=

I2я
·
Rя
=712
А2
·0,13 Ом = 655
Вт.

5.
Потери мощности в обмотке воз­буждения

РВ
= I2В
·
RВ
=1,42
А2
·
164 Ом
= 321 Вт.

6.
Потери мощности в щеточном контакте
Рщ
=

UЩ
·
Iя=2
В • 71 А= 1428 Вт.

Здесь
UЩ
= 2 В
падение
напряжения на электрографитированных
щетках.

7.
Добавочные потери мощности РДОБ
=
0,01·Р
НОМ
= 0,01 • 16000 Вт = 160 Вт.

8.
Мощность,
потребляемая генератором от первичного
двигателя

Р1
=

Рном
/ ηНОМ
=
16000 Вт / 0,901 = 17758 Вт

9.
Суммарные потери мощности в генераторе
∑Р
= Р
1

Рном

= 17758 Вт –16000 Вт = 1758 Вт

10.
Потери холостого хода, состоящие из
потерь в стали и механических потерь

Рх
= ∑Р

(РЯ+
Р
В
+
Р
Щ+
Р
ДОБ)
=
1758 Вт – (655+321+142+160) Вт = 480 Вт

11.
ЭДС генератора, без учета потерь в
щеточном контакте

Е =
U+
IЯ
·
Rя
= 230 В + 71 А · 0,13 Ом = 239,23 В

С
учетом потерь в щеточном контакте

Е =U+
IЯ
· (Rя
+
Rщ)=
U
+(
Iя
·
Rя
+∆ UЩ)
=
230 В+(71 0,13
Ом +2 В) = 241,23 В

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ПРАКТИЧЕСКАЯ РАБОТА №11

«Расчет параметров генераторов постоянного тока»

ЦЕЛЬ РАБОТЫ: рассчитать ток генератора в
номинальном режиме, ЭДС генератора, номинальное изменение напряжения, ток в
обмотке возбуждения, ток в цепи якоря при номинальной нагрузке.
  

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

  В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС . При
подключении к генератору нагрузки в цепи яко­
ря возникает ток, а на выводах генератора устанав­ливается напряжение, определяемое уравнением на­пряжений для цепи якоря генератора:

                                                   
.                                  (11.1)

Здесь

                                    
                                (11.2)


сумма сопротивлений всех участков цепи якоря: обмотки
якоря , обмотки добавочных полюсов ,
компенсационной
обмотки , последовательной
обмотки
возбуждения  и переходного щеточного контакта .

При отсутствии в машине
каких-либо из указан­
ных обмоток в (11.2) не входят
соответствующие слагаемые.

Якорь генератора приводится во вращение
при­водным двигателем, который создает на валу гене­ратора вращающий момент . Если генератор ра­ботает в режиме х.х. , то
для вращения его
якоря нужен
сравнительно небольшой момент холо­
стого
хода . Этот момент обусловлен тормозными
моментами, возникающими в генераторе при его работе в режиме х.х.: моментами от сил трения и вихревых токов в якоре.

При неизменной частоте
вращения  вра­щающий момент приводного двигателя  уравнове­
шивается суммой противодействующих моментов: мо­ментом
х.х.
 и электромагнитным моментом М, т.
е.

                                                   
.                               (11.3)

Выражение (11.3) — уравнение
моментов для генератора
при
. Умножив члены уравнения (11.3) на угловую
скорость
вращения якоря , получим уравнение мощностей:

                                             
,                              
(11.4)

где  —  подводимая от
приводного двигателя к генератору мощность (меха­ническая);  — мощ­ность х.х., т. е. мощность, подводимая к
генератору в режиме х.х. (при отключен­ной нагрузке);  — электромагнитная мощность генератора.

Механическая мощность,
развиваемая приво
дным
двигателем
, преобразуется в генераторе в полезную электрическую мощность , передаваемую нагрузке, и мощ­ность, затрачиваемую на покрытие потерь.

Так как генераторы обычно
работают при неизменной частоте
вращения, то их характеристики рассматривают при условии . Рассмотрим основные характеристики генераторов посто­янного тока.

Характеристика холостого
хода
— зависимость
напряжения
на выходе
генератора в режиме х.х.  от тока возбуждения :

 при  и .

Нагрузочная характеристика
зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбу­ждения :

 при  и .

Внешняя характеристика — зависимость напряжения на выходе генератора U
от тока нагрузки :

  при  и ,

где  
регулировочное сопротивление в цепи обмотки возбуж­
дения.

Регулировочная
характеристика

зависимость тока возбуж­дения
 от тока нагрузки  при неизменном напряжении на выходе генератора:

 при  и .

Вид
перечисленных характеристик определяет рабочие свой­ства генераторов
постоянного тока.

При
оценке свойств генераторов постоянного тока используется понятие номинального
изменения напряжения на выходе генера­тора при сбросе нагрузки:                (11.5)

Обычно для генератора независимого возбуждения .

Характери­стика  показывает, как следует менять
ток в цепи возбуж­дения, чтобы при изменениях нагрузки генератора напряжение на
его выводах оставалось неизменным, равным номинальному. При этом частота вращения сохраняется постоянной .

При работе
генератора без нагрузки в цепи возбуждения уста­навливают ток , при котором напряжение на
выводах генератора
становится равным номинальному.

В генераторе
постоянного тока независимого возбуждения ток в обмотке  возбуждения
определяется по формуле:                 
Iв= Uном /rв.                 (11.6)

Ток в цепи якоря при номинальной нагрузке: Iаном= Iном+ Iв.             (11.7)

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

1.     
Решить
задачу №1. Генератор постоянного тока независимого возбуж­дения мощностью Рном
и напряжением
Uном имеет
сопротивление обмоток в цепи якоря, приведенное к рабочей температуре,
Σr ; в
генераторе применены электрографитированные щетки марки ЭГ (∆
Uщ
=

2,5 В). Определить номинальное изменение напряжения при сбросе нагрузки.
Значения параметров приведены в табл.
11.1.

Таблица 11.1

Параметр

Варианты

1

2

3

4

5

6

7

Рном
,
кВт

20

45

15

90

80

30

18

Uном,
В

230

460

230

460

460

230

230

Σr,
Ом

0,12

0,22

0,15

0,12

0,11

0,08

0,13

Решение:

– определить ток в номинальном режиме Iаном;

– определить ЭДС генератора Ea,
выразив его из уравнения
напряжений (10.18)
;

определить
номинальное изменение напряжения при сбросе нагрузки ∆
Uном.

2.     
Решить
задачу №2. Генератор постоянного тока параллельного возбуж­дения имеет
номинальные данные: мощность Рном, напряжение
Uном, частота
вращения
nном,
сопротивление обмоток в цепи якоря, приве­денное к рабочей температуре,
Σr, падение
напряжения в щеточном контакте пары щеток ∆
Uщ
= 2 В, сопротивление цепи обмотки воз­буждения
rв, КПД в
номинальном режиме ηном, ток генератора
Iном, ток в
цепи возбуждения
Iв, ток в
цепи якоря
Iаном, ЭДС
якоря
Еаном, электромагнитная
мощность Рзм, электромагнитный момент при но­минальной нагрузке Мном,
мощность приводного двигателя Р1ном.

    Значения перечисленных параметров
приведены в табл. 11.2. Тре­буется определить значения параметров, не указанных
в таблице.

Таблица 11.2

Параметр

Варианты

1

2

3

4

5

Рном , кВт

10

18

45

Uном, В

230

230

460

230

nном , об/мин

1450

1500

1000

Σr , Ом

0,3

0,15

rв , Ом

150

100

92

ηном , %

86,5

88

88

Iном , А

87

97,8

Iв ,А

4

Iаном ,А

75

Еа, В

480

240

477

Рзм.ном,
кВт

55

Мном, Н•м

280

525

Р1ном , кВт

23

21

3.     
Оформить отчет по практической работе.

4.     
Ответить на контрольные вопросы.

5.     
Сделать вывод о проделанной работе.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1.    Что происходит в цепи яко­ря при подключении
к генератору нагрузки?

2.    Чем якорь генератора приводится во вращение и что происходи на валу в
этот момент?

3.    Во что в генераторе преобразуется механическая мощность, развиваемая приводным двигателем?

4.    Что такое регулировочная характеристика?

5.    Что такое нагрузочная характеристика?


Подборка по базе: 2.4 Практическая работа Структурно-ф ункциональное описание.doc, контрольная работа 3.docx, практическая работа 3.docx, Курсовая работа на отправку1.docx, Практическая работа.docx, Практическая работа НТТз-20.doc, Контрольная работа сказки.docx, М.Н. Лукьянов_Лабораторная работа 1.docx, Курсовая работа_Скобцов ПФБ-3-014.docx, ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА ПО АСТРОНОМИИ.docx


ПРАКТИЧЕСКАЯ РАБОТА

«РАСЧЕТ ПАРАМЕТРОВ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА»

Генератор постоянного тока имеет: номинальную мощность P2; номинальное напряжение U; частоту вращения n; номинальный ток генератора I; ток в цепи возбуждения IВ; ток в цепи якоря IЯ; сопротивление обмоток цепи обмотки возбуждения RВ; сопротивление в цепи якоря RЯ , приведенное к рабочей температуре; ЭДС якоря E; электромагнитный момент при номинальной нагрузке Mэм ; электромагнитная мощность Pэм ; мощность приводного двигателя P1; КПД в номинальном режиме η.

Определить: для выбранного варианта значения параметров генератора постоянного тока, не указанные в таблицах 1, 2.

Таблица 1

Параметры генератора

P2

кВт

U

В

n

об/мин

I

А

IВ

А

IЯ

А

RВ ,

Ом

RЯ

Ом

1 24 230 1450 150 0,3
2 110 3000 17 Нет 0,55
3 220 1000 15,6 Нет Нет 1
4 230 87 100 0,15
5 110 2000 25 Нет
6 220 630 80 Нет Нет 0,144
7 460 4
8 110 3000 95 Нет
9 220 630 Нет 80 Нет 0,144
10 18 230 1500 80
11 110 3000 21,5 Нет
12 220 460 Нет 405 5,5 0,008
13 45 1000 97,8 92
14 110 4000 260 Нет
15 220 1000 Нет 16 0,8 0,9
16 110 3600 1,8 34
17 110 4000 15 Нет
18 220 1000 15,6 Нет Нет 1
19 230 90 90 0,2
20 110 3000 170 Нет
21 220 630 Нет 175 4,6
22 20 230 1450 92,5
23 110 3000 95 Нет
24 220 460 405 Нет Нет 0,009
25 110 3000 1,5 12

Таблица 2

Параметры генератора

EВ Mэм Н·м Pэм кВт P1 кВт η% Способ возбуждения
1 171 90 параллельное
2 89 последовательное
3 87 независимое
4 280 23 параллельное
5 15 82 последовательное
6 18,52 87 независимое
7 480 525 55 88 параллельное
8 37,5 85 последовательное
9 86 независимое
10 240 21 параллельное
11 7,8 89 последовательное
12 85 независимое
13 477 88 параллельное
14 72 88 последовательное
15 85 независимое
16 10,5 85 параллельное
17 4,5 80 последовательное
18 88 независимое
19 280 25 параллельное
20 62 90 последовательное
21 42,52 82 независимое
22 235 23 параллельное
23 35 89 последовательное
24 80 независимое
25 1,4 75 параллельное

Примеры решения задач

Пример 1. Генератор постоянного тока параллельного возбуждении имеет номинальную мощность P2 =10 кВт; номинальное напряжение U = 230 В; частоту вращения n =1450 об/мин; сопротивление обмоток цепи обмотки возбуждения RВ =150 Ом; сопротивление обмоток

якоря RЯ = 0,3 Ом; КПД в номинальном режиме η = 86,5 %. Падением напряжения в щеточном контакте пренебречь.

Определить: ток генератора, ток в цепи возбуждения, ток в цепи якоря, ЭДС якоря, электро-

магнитный момент, электромагнитная мощность, мощность приводного двигателя. Генератор работает при номинальной нагрузке.

Решение:

Ток генератора:

Ток в обмотке возбуждения: IВ =

Ток в цепи якоря: IЯ = I + IВ = 43,5 +1,5 = 45А.

ЭДС якоря: E =U + IЯRЯ = 230 + 45 ⋅ 0,3 = 243,5 В.

Электромагнитная мощность: Pэм = E IЯ = 243,5⋅ 45 =10957 Вт .

Электромагнитный момент: M эм= 9,55

Мощность приводного двигателя: P1=
Пример 2. В генераторе постоянного тока независимого возбуждения с номинальным напряжением U = 440 В установился ток I = 64 А при частоте якоря n = 2800 об/мин. В новом режиме работы нагрузка и магнитный поток не изменились, но частота якоря стала

n* = 740 об/мин.

Определить напряжение и ток в генераторе в новом режиме.

Решение:

В генераторе независимого возбуждения ток генератора равен току якоря, т.е. I = IЯ .

В номинальном режиме:

Напряжение на нагрузке U = I RН .

ЭДС якоря E =U + I RЯ = I RН + I RЯ , с другой стороны E = СЕп ⋅Ф.

Получили: I RН + I RЯ = СЕп ⋅Ф.

В новом режиме, соответственно:

E* =U* + I* RЯ= I* Rн+ I* RЯ= СЕп* ⋅ Ф.

Возьмем отношение, полученных уравнений и получим:

I*= A и

U* = B
Пример 3. В электродвигателе постоянного тока с параллельным возбуждением, имеющим номинальные данные: мощность на валу P2=130 кВт ; напряжение U = 220 В; ток, потребляемый из сети I = 640 А; частоту вращения n = 600 об/мин; сопротивление цепи обмотки возбуждения RВ= 43 Ом; сопротивление обмотки якоря RЯ= 0,007 Ом.

Определить номинальные суммарные и электрические потери в обмотках.

Решение:

Ток в обмотке возбуждения: IВ =

Ток в цепи якоря: IЯ= I IВ = 640-5,116 = 634,884 A.

Электрические потери мощности

в цепи якоря: ΔPэл Я= IЯ2RЯ= 634,8842 ⋅ 0,007 = 2821,544 Вт;

в обмотке возбуждения:

ΔPэл B = IB2RB =UIB = 220 ⋅5,116=1125,52 Вт .

Суммарные потери мощности:

ΣΔP = ΔPэл B + ΔPэл Я =1125,52 + 2821,544 = 3947,064 Вт .
Пример 4. Двигатель постоянного тока последовательного возбуждения включен в сеть с напряжением U = 220 В при номинальном вращающем моменте M =101,7 Н⋅м развивает частоту вращения якоря n = 750 об/мин. КПД двигателя η = 75 %; сопротивление цепи обмотки возбуждения RВ = 0,197 Ом; сопротивление обмотки якоря RЯ = 0,443 Ом. Пуск двигателя осуществляется при пусковом реостате R пуск =1,17 Ом. Пусковой ток приводит к увеличению магнитного потока в 1,2 раза.

Определить номинальные мощность на валу, электромагнитную и потребляемую мощности; суммарные потери в двигателе; пусковой ток и пусковой момент.

Решение:

Мощность на валу: P2= M

Потребляемая мощность: P1= 10644,4 Вт

Суммарные потери: ΣΔP = P1P2=10644,4 − 7983,45 = 2660,95 Вт.

Т.к. двигатель с последовательным возбуждением, тогда ток якоря находим:

IЯ= IВ =I =

ЭДС якоря: E =U I ⋅ (RЯ + RВ ) = 220 − (0,443 + 0,197) ⋅ 48,38 =189,04 В.

Электромагнитная мощность: Pэм = EI=189,04 ⋅ 48,38 = 9145,6 Вт .

Пусковой ток: пуск =

Номинальный момент: М = CМ ⋅Ф⋅ I =101,7 ,

пусковой момент: М пуск = CМ ⋅ФпускIпуск = CМ ⋅1,2⋅Ф⋅ Iпуск .

Возьмем отношение, полученных уравнений и получим:

М пуск =

Кратность

пускового тока:

пускового момента: = 3

Добавить комментарий