Как найти нормаль от точки к касательной

Рассмотрим
кривую, уравнение которой имеет вид

Уравнение
касательной к данной кривой в точке
имеет вид:

(34)

Нормалью
к кривой в данной точке называется
прямая, проходящая через данную точку,
перпендикулярную к касательной в этой
точке.

Уравнение
нормали к данной кривой в точке
имеет вид:

(35)

Длина
отрезка касательной, заключенного между
точкой касания и осью абсцисс называется
длиной
касательной
,
проекция этого отрезка на ось абсцисс
называется
подкасательной.

Длина
отрезка нормали, заключенного между
точкой касания и осью абсцисс называется
длиной
нормали
,проекция
этого отрезка на ось абсцисс называется
поднормалью.

Пример
17

Написать
уравнения касательной и нормали к кривой
в точке, абсцисса которой равна.

Решение:

Найдем
значение функции в точке
:

Найдем
производную заданной функции в точке

Уравнение
касательной найдем по формуле (34):

Уравнение
нормали найдем по формуле (35):

Ответ:
Уравнение
касательной :

Уравнение
нормали :.

Пример
18

Написать
уравнения касательной и нормали, длины
касательной и подкасательной, длины
нормали и поднормали для эллипса

в
точке
,
для которой.

Решение:

Найдем
как производную функции, заданной
параметрически по формуле (10):

Найдем
координаты точки касания
:
и значение производной в точке касания
:

Уравнение
касательной найдем по формуле (34):

Найдем
координаты
точкипересечения
касательной с осью:

Длина
касательной равна длине отрезка
:

Согласно
определению, подкасательная
равна

Где
угол
– угол между касательной и осью. Поэтому,– угловой коэффициент касательной,
равный

Таким
образом, подкасательная
равна

Уравнение
нормали найдем по формуле (35):

Найдем
координатыточкипересечения нормали с осью:

Длина
нормали равна длине отрезка
:

Согласно
определению, поднормаль
равна

Где
угол
– угол между нормалью и осью. Поэтому,– угловой коэффициент нормали, равный

Поэтому,
поднормаль
равна:

Ответ:
Уравнение
касательной :

Уравнение
нормали :

Длина
касательной
;
подкасательная;

Длина
нормали
; поднормаль

Задания
7.
Написать
уравнения касательной и нормали:

1. К параболе в точке, абсцисса которой

.

2.
К окружности
в точках пересечения её с осью абсцисс

.

3.
К циклоиде
в точке, для которой

.

4.
В каких точках кривой
касательная параллельна:

а)
оси Оx; б) прямой

.

10.
Промежутки монотонности функции.
Экстремумы функции.

Условие
монотонности функции:

Для
того, чтобы дифференцируемая на
функцияне возрастала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неположительна .

(36)

Для
того, чтобы дифференцируемая на
функцияне убывала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неотрицательна.

(37)

Промежутки,
на которых производная функции сохраняет
определенный знак, называются промежутками
монотонности
функции

Пример
19

Найти
промежутки монотонности функции
.

Решение:

Найдем
производную функции
.

Найдем
промежутки знакопостоянства полученной
производной. Для этого

разложим полученный
квадратный трехчлен на множители:

.

Исследуем
знак полученного выражения, используя
метод интервалов.

Таким
образом, получаем согласно (36), (37),что
заданная функция возрастает на
и убывает на.

Ответ:
Заданная
функция
возрастает наи убывает на.

Определение
Функция
имеет в точкелокальный
максимум (минимум)
,
если существует такая окрестность
точки
,
что для всехвыполняется условие

().

Локальный
минимум или максимум функции
называетсялокальным
экстремумом.

Необходимое
условие существования экстремума
.

Пусть
функция
определена в некоторой окрестности
точки.
Если функцияимеет
в точкеэкстремумом, то производнаяв точкелибо равна нулю, либо не существует.

Точка
называетсякритической
точкой

функции
,
если производнаяв точкелибо равна нулю, либо не существует.

Достаточные
условия наличия экстремума в критической
точке
.

Пусть
точка
является критической.

Первое
достаточное условие экстремума:

Пусть
функция
непрерывна в некоторой окрестноститочкии дифференцируема в каждой точке.

Точка
является локальным максимумом, если
при переходе через

производная
функции меняет знак с плюса на минус.

Точка
является локальным минимумом, если при
переходе через

производная
функции меняет знак с минуса на плюс.

Пример
20

Найти
экстремумы функции
.

Решение:

Найдем
производную заданной функции

Приравнивая
в полученной производной к нулю числитель
и знаменатель, найдем критические точки:

Исследуем
знак производной, используя метод
интервалов.

Из
рисунка видно, что при переходе через
точку
производная меняет знак с плюса на
минус. Следовательно, в точке
локальный максимум.

При
переходе через точку
производная меняет знак с минуса на
плюс.

Следовательно,
в точке

локальный минимум.

При
переходе через точку
производная не меняет знак. Следовательно,
критическая точкане является экстремумом заданной
функции.

Ответ:

локальный максимум,

локальный минимум.

Второе
достаточное условие экстремума:

Если
первые
производные функциив точкеравны нулю, а-ная
производная функциив точкеотлична от нуля, то точкаявляется экстремумом функции,
причем,

если

,
(38)

то
-локальный
минимум

если

,
(39)

то
-локальный
максимум.

Пример
21

Найти
экстремумы функции, пользуясь второй
производной
.

Решение:

ОДЗ:
.

Найдем
первую производную заданной функции

Найдем
критические точки функции:

Точку
мы не рассматриваем, так как функция
определена только в левой окрестности.

Найдем
вторую производную

Находим

Таким
образом, на основании (39) делаем вывод
о том, что при
– локальный максимум.

Ответ:

локальный максимум.

Задания
8.

Исследовать
на возростание и убывание функции:

1.

2.

3.

4.

5.

6.

Исследовать
на экстремумы функции:

7.

8.

9.

10.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Уважаемые студенты!
Заказать задачи по физике, информатике, экономике, праву и другим 200 предметам можно здесь всего за 10 минут.

Уравнение касательной и нормали к кривой

Формула

Уравнение касательной к кривой $ y=f(x) $ в точке $ M(x_0,y_0) $ имеет вид:

$$ y – y(x_0) = y'(x_0) (x – x_0) $$

Уравнение нормали к кривой $ y $ в точке $ M(x_0,y_0) $ имеет вид:

$$ y – y(x_0) = -frac{1}{y'(x_0)} (x – x_0) $$

Нормаль к кривой – это перпендикуляр к касательной, проведенный через точку касания.

Примеры решений

Пример 1

Составить уравнение касательной и нормали к кривой в точке $ M(1;-1) $:

$$ x^2 + 2xy^2 + 3y^4 = 6 $$

Решение

Найдем производную, дифференцируя функцию $ y(x) $ по переменной $ x $:

$$ (x^2)’_x+ (2xy^2)’_x + (3y^4)’_x = (6)’_x $$

Учитывая, что $ y^2 $ и $ y^4 $ сложные функции продолжаем:

$$ 2x + 2y^2 + 4xyy’ + 12y^3 y’ = 0 $$

Выражаем $ y’ $ из полученного уравнения:

$$ 4xyy’ + 12y^3 y’ = -2x – 2y^2 $$

Выносим $ y’ $ за скобки:

$$ y'(4xy + 12y^3) = -2x – 2y^2 $$

Делим обе части уравнения на выражение $ 4xy+12y^3 $:

$$ y’ = -frac{2x+2y^2}{4xy + 12y^3} = -frac{x+y^2}{2xy+6y^3} $$

Теперь вычисляем значение $ y’ $:

$$ y’ = -frac{1 + (-1)^2}{2cdot 1 cdot (-1) + 6cdot (-1)^3} = -frac{2}{-8} = frac{1}{4} $$

Зная, что $ y’ = frac{1}{4} $ и $ y(x_0) = y(1) = -1 $ составляем уравнения касательной и нормали к кривой в точке $ M(1;-1) $.

Получаем уравнение касательной:

$$ y – (-1) = frac{1}{4} (x – 1) $$

Записываем в красивой форме:

$$ y = frac{1}{4} x – frac{3}{4} $$

Получаем уравнение нормали:

$$ y – (-1) = -frac{1}{frac{1}{4}} (x – 1) $$

Раскрываем скобки и записываем в красивой форме, полученное уравнение:

$$ y+1 = -4(x-1) $$

$$ y = -4x + 3 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

Уравнение касательной: $ y = frac{1}{4}x – frac{3}{4} $

Уравнение нормали: $ y = -4x +3 $

Вывод уравнения нормали к графику функции

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Замечание 1

Нормаль — это прямая, которая образует с касательной к графику функции угол в $90°$.

Нормальный перпендикуляр к графику касательной. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Нормальный перпендикуляр к графику касательной. Автор24 — интернет-биржа студенческих работ

В связи с тем, что нормаль перпендикулярна к касательной, её угловой коэффициент будет величиной, обратной к угловому коэффициенту касательной:

$k_{норм}=- frac{1}{k_{к}}= -1 frac{1}{f’(x_0)}$.

Пользуясь полученным выводом, запишем уравнение нормали к графику функции:

$y – y_0 = – frac{1}{f’(x_0)} cdot (x – x_0) left(1right) $, здесь $x_0$ и $y_0$ — координаты точки для которой строится искомая линия, при этом производная в этой точке $f’(x_0) ≠ 0$.

Порядок действий при поиске уравнения нормальной прямой если задана координата $x_0$:

  1. Вычисляется, чему равен нулевой игрек $y(x_0)$ для функции.
  2. Затем нужно определить производную.
  3. Нужно высчитать затем, чему равен $f’(x)$ в точке $x_0$, найденное значение — коэффициент касательной.
  4. Все найденные значения подставляются в формулу $(1)$.

Напомним также как выглядит само уравнение касательной:

$y – y_0 = f’(x_0) cdot (x – x_0)$.

Пример 1

Найдите уравнение нормали для функции $y=x^2$ в точке $x_0=2$.

Решение:

Производная данной функции составит $y’(x) = 2x$, затем найдём, чему равен наш подопытный кролик-функция в заданной точке $y_0= x^2 = 2^2 = 4$.

Теперь нужно высчитать производную функции в точке $x_0$: $y’(2) = 2 x = 2 cdot 2= 4$.

Все полученные значения расставляем по своим местам в формулу $(1)$:

$y-4=-frac{1}{4} cdot (x – 2)$

Уравнение нормали найдено.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.05.2023

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и
$y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

$$begin{array}{c}
left{begin{array}{l}
y_{1}=x^{2}-1 \
y_{2}=x^{3}-1
end{array} Rightarrow x^{2}-1=x^{3}-1 Rightarrow x^{3}-x^{2}=0 Rightarrowright. \
Rightarrow x_{1,2}=0, x_{3}=1
end{array}$$

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

$$begin{array}{c}
y_{1}^{prime}=left(x^{2}-1right)^{prime}=left(x^{2}right)^{prime}-(1)^{prime}=2 x-0=2 x, y_{1}^{prime}(1)=2 \
y_{2}^{prime}=left(x^{3}-1right)^{prime}=left(x^{3}right)^{prime}-(1)^{prime}=3 x^{2}-0=3 x^{2}, y_{2}^{prime}(1)=3
end{array}$$

Итак, искомый тангенс:

$$operatorname{tg} phi=frac{3-2}{1+2 cdot 3}=frac{1}{7}$$

Ответ. $operatorname{tg} phi=frac{1}{7}$

Касательная плоскость и нормаль к поверхности.

Пусть поверхность задана в неявном виде: $F(x,y,z)=0$ и пусть точка $M_0(x_0,y_0,z_0)$ принадлежит данной поверхности. Тогда уравнение касательной плоскости к этой поверхности в точке $M_0$ таково:

$$
begin{equation}
F_{x}^{‘}(M_0)cdot(x-x_0)+F_{y}^{‘}(M_0)cdot(y-y_0)+F_{z}^{‘}(M_0)cdot(z-z_0)=0
end{equation}
$$

Уравнение нормали имеет вид:

$$
begin{equation}
frac{x-x_0}{F_{x}^{‘}(M_0)}=frac{y-y_0}{F_{y}^{‘}(M_0)}=frac{z-z_0}{F_{z}^{‘}(M_0)}
end{equation}
$$

Если же уравнение поверхности задано в явном виде $z=f(x,y)$, то уравнение касательной плоскости имеет вид:

$$
begin{equation}
f_{x}^{‘}(x_0,y_0)cdot(x-x_0)+f_{y}^{‘}(x_0,y_0)cdot(y-y_0)-(z-z_0)=0
end{equation}
$$

Уравнение нормали в случае явного задания поверхности таково:

$$
begin{equation}
frac{x-x_0}{f_{x}^{‘}(x_0,y_0)}=frac{y-y_0}{f_{y}^{‘}(x_0,y_0)}=frac{z-z_0}{-1}
end{equation}
$$

Примечание (желательное для более полного понимания текста): показатьскрыть

Пример №1

Найти уравнение касательной плоскости и нормали к поверхности $z=3x^2y^4-6xy^3+5x-4y+10$ в точке $M_0(-2;1;20)$.

Решение

Поверхность задана в явном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (3) и (4). Значения $x_0$, $y_0$, $z_0$ (координаты точки $M_0$) в нашем случае таковы: $x_0=-2$, $y_0=1$, $z_0=20$. Но перед тем, как переходить к решению, осуществим небольшую проверку. Убедимся, что точка $M_0$ действительно лежит на заданной поверхности. Эта проверка не является обязательной, но желательна, ибо ошибка в условиях подобных задач – дело вовсе не редкое. Подставим $x=x_0$, $y=y_0$ в уравнение нашей поверхности и убедимся, что $z_0$ действительно равно 20:

$$
z_0=3x_{0}^{2}y_{0}^{4}-6x_0y_{0}^{3}+5x_0-4y_0+10=3cdot (-2)^2cdot 1^4-6cdot (-2)cdot 1^3-4cdot 1+10=12+12-4=20.
$$

Проверка пройдена, точка $M_0$ действительно лежит на заданной поверхности. Теперь найдём частные производные, т.е. $z_{x}^{‘}$ и $z_{y}^{‘}$:

$$
z_{x}^{‘}=6xy^4-6y^3+5;\
z_{y}^{‘}=12x^2y^3-18xy^2-4.

$$

Нас интересуют значения частных производных именно в точке $M_0$, посему подставим $x=x_0$, $y=y_0$ в выражения частных производных:

$$
z_{x}^{‘} left(x_0, y_0right)=6x_0y_{0}^{4}-6y_{0}^{3}+5=-12-6+5=-13;\
z_{y}^{‘}left(x_0, y_0right)=12x_{0}^{2}y_{0}^{3}-18x_0y_{0}^{2}-4=48-(-36)-4=80.
$$

Подставляя $x_0=-2$, $y_0=1$, $z_0=20$, $z_{x}^{‘} left(x_0, y_0right)=-13$, $z_{y}^{‘} left(x_0, y_0right)=80$ в формулу (3) получим уравнение касательной плоскости:

$$

-13cdot(x-(-2))+80cdot(y-1)-(z-20)=0;\
-13x+80y-z-86=0.
$$

Подставляя $x_0=-2$, $y_0=1$, $z_0=20$, $z_{x}^{‘} left(x_0, y_0right)=-13$, $z_{y}^{‘} left(x_0, y_0right)=80$ в формулу (4) получим уравнение нормали:

$$
frac{x-(-2)}{-13}=frac{y-1}{80}=frac{z-20}{-1}; frac{x+2}{-13}=frac{y-1}{80}=frac{z-20}{-1}.
$$

Ответ: Касательная плоскость: $-13x+80y-z-86=0$; нормаль: $frac{x+2}{-13}=frac{y-1}{80}=frac{z-20}{-1}$.

Пример №2

Найти уравнение касательной плоскости и нормали к поверхности $z=5sqrt{x^2+y^2}-2xy-39$ в точке $M_0(3;-4;z_0)$.

Решение

Поверхность задана в явном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (3) и (4). Значения $x_0$ и $y_0$ (первая и вторая координаты точки $M_0$) заданы по условию: $x_0=3$, $y_0=-4$. Третью координату (т.е. $z_0$) нужно определить самостоятельно, подставив в заданное уравнение $x=x_0$ и $y=y_0$:

$$
z_0=5sqrt{x_{0}^{2}+y_{0}^{2}}-2x_0y_0-39=5sqrt{25}+24-39=10.
$$

Теперь, как и в предыдущем примере, перейдём к нахождению частных производных $z_{x}^{‘}$ и $z_{y}^{‘}$. После того, как мы найдём эти производные в общем виде, укажем их значения при $x=x_0$ и $y=y_0$:

$$
z_{x}^{‘}=frac{10x}{sqrt{x^2+y^2}}-2y; z_{x}^{‘} left(x_0, y_0right)=frac{10cdot 3}{sqrt{3^2+(-4)^2}}-2cdot(-4)=11;\
z_{y}^{‘}=frac{10y}{sqrt{x^2+y^2}}-2x; z_{y}^{‘} left(x_0, y_0right)=frac{10cdot (-4)}{sqrt{3^2+(-4)^2}}-2cdot 3=-10.\
$$

Подставляя $x_0=3$, $y_0=-4$, $z_0=10$, $z_{x}^{‘} left(x_0, y_0right)=11$, $z_{y}^{‘} left(x_0, y_0right)=-10$ в формулы (3) и (4) получим уравнения касательной плоскости и нормали:

$$
11cdot(x-3)+(-10)cdot(y-(-4))-(z-10)=0; 11x-10y-z-63=0; \
frac{x-3}{11}=frac{y-(-4)}{-10}=frac{z-10}{-1}; frac{x-3}{11}=frac{y+4}{-10}=frac{z-10}{-1}.
$$

Ответ: Касательная плоскость: $11x-10y-z-63=0$; нормаль: $frac{x-3}{11}=frac{y+4}{-10}=frac{z-10}{-1}$.

Пример №3

Найти уравнение касательной плоскости и нормали к поверхности $3xy^2z+5xy+z^2=10xz-2y+1$ в точке $M_0(1;-2;3)$.

Решение

Перенесём все слагаемые в левую часть равенства и обозначим полученное в левой части выражение как $F(x,y,z)$:

$$
3xy^2z+5xy+z^2-10xz+2y-1=0.
$$
$$F(x,y,z)=3xy^2z+5xy+z^2-10xz+2y-1$$

Используем формулы (1) и (2). Значения $x_0$, $y_0$ и $z_0$ как и ранее обозначают координаты точки $M_0$, т.е. $x_0=1$, $y_0=-2$, $z_0=3$.

Проверим, действительно ли точка $M_0$ лежит на данной поверхности. Для этого подставим $x=x_0$, $y=y_0$ и $z=z_0$ в выражение $3xy^2z+5xy+z^2-10xz+2y-1$ и выясним, равен ли нулю полученный результат:

$$
3x_0y_{0}^{2}z_0+5x_0y_0+z_{0}^{2}-10x_0z_0+2y_0-1=36-10+9-30-4-1=0.
$$

Итак, точка $M_0$ действительно лежит на данной поверхности. Естественно, что данная проверка не является обязательной, но она крайне желательна. Перейдём к дальнейшему решению. Нам нужно найти $F_{x}^{‘}$, $F_{y}^{‘}$ и $F_{z}^{‘}$:

begin{aligned}
& F_{x}^{‘}=3y^2z+5y-10z;\
& F_{y}^{‘}=6xyz+5x+2; \
& F_{z}^{‘}=3xy^2+2z-10x. end{aligned}

Нас интересуют значения частных производных именно в точке $M_0$, посему подставим $x=x_0$, $y=y_0$ и $z=z_0$ в выражения частных производных:

begin{aligned}
& F_{x}^{‘}(M_0)=3y_{0}^{2}z_0+5y_0-10z_0=-4;\
& F_{y}^{‘}(M_0)=6x_0y_0z_0+5x_0+2=-29; \
& F_{z}^{‘}(M_0)=3x_0y_{0}^{2}+2z_0-10x_0=8. end{aligned}

Подставляя $x_0=1$, $y_0=-2$, $z_0=3$, $F_{x}^{‘} left(M_0right)=-4$, $F_{y}^{‘} left(M_0right)=-29$ и $F_{z}^{‘} left(M_0right)=8$ в формулы (1) и (2) получим уравнения касательной плоскости и нормали:

$$
-4cdot(x-1)-29cdot(y-(-2))+8(z-3)=0; -4x-29y+8z-78=0.\
frac{x-1}{-4}=frac{y-(-2)}{-29}=frac{z-3}{8}; frac{x-1}{-4}=frac{y+2}{-29}=frac{z-3}{8}.
$$

Ответ: Касательная плоскость: $-4x-29y+8z-78=0$; нормаль: $frac{x-1}{-4}=frac{y+2}{-29}=frac{z-3}{8}$.

Пример №4

Найти уравнение касательной плоскости и нормали к поверхности $z^3+4xyz=-3x^2+5y+7$ в точке $M_0(0;-3;z_0)$.

Решение

Поверхность задана в неявном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (1) и (2). Значения $x_0$ и $y_0$ (первая и вторая координаты точки $M_0$) заданы по условию: $x_0=0$, $y_0=-3$. Третью координату (т.е. $z_0$) нужно определить самостоятельно, подставив в заданное уравнение $x=x_0$ и $y=y_0$:

$$
z_{0}^{3}+4x_0y_0z_0=-3x_{0}^{2}+5y_0+7;\
z_{0}^{3}=-15+7; z_{0}^{3}=-8; z_0=-2.
$$

Перенесём все слагаемые в левую часть равенства:

$$
z^3+4xyz+3x^2-5y-7=0.
$$

Обозначим $F(x,y,z)=z^3+4xyz+3x^2-5y-7$ и применим формулы (1) и (2). Найдём частные производные первого порядка $F_{x}^{‘}$, $F_{y}^{‘}$ и $F_{z}^{‘}$. После того, как мы найдём эти производные в общем виде, укажем их значения в точке $M_0$:

begin{aligned}
& F_{x}^{‘}=4yz+6x; ; F_{x}^{‘}(M_0)=4y_0z_0+6x_0=-24;\
& F_{y}^{‘}=4xz-5; ; F_{y}^{‘}(M_0)=4x_0z_0-5=-5;\
& F_{z}^{‘}=3z^2+4xy; ; F_{z}^{‘}(M_0)=3z_{0}^{2}+4x_0y_0=12.
end{aligned}

Подставляя $x_0=0$, $y_0=-3$, $z_0=-2$, $F_{x}^{‘} left(M_0right)=-24$, $F_{y}^{‘} left(M_0right)=-5$ и $F_{z}^{‘} left(M_0right)=12$ в формулы (1) и (2) получим уравнения касательной плоскости и нормали:

$$
-24cdot(x-0)-5cdot(y-(-3))+12(z-(-2))=0; -24x-5y+12z+9=0.\
frac{x-0}{-24}=frac{y-(-3)}{-5}=frac{z-(-2)}{12}; frac{x}{-24}=frac{y+3}{-5}=frac{z+2}{12}.
$$

Ответ: Касательная плоскость: $-24x-5y+12z+9=0$; нормаль: $frac{x}{-24}=frac{y+3}{-5}=frac{z+2}{12}$.

Добавить комментарий