есть 3 точки нужно найти нормаль плоскости в которой они лежат
-
Вопрос заданболее года назад
-
1543 просмотра
1
комментарий
Решения вопроса 1
@Rsa97
Для правильного вопроса надо знать половину ответа
Нормаль к плоскости вычисляется как векторное произведение двух векторов, задающих плоскость. Для точек A, B, C можно взять векторы AB и AC.
Комментировать
Пригласить эксперта
Ответы на вопрос 1
@samodum
Какой вопрос – такой и ответ
Похожие вопросы
-
Показать ещё
Загружается…
19 мая 2023, в 14:02
100000 руб./за проект
19 мая 2023, в 13:22
7000 руб./за проект
11 мая 2023, в 16:20
1500 руб./в час
Минуточку внимания
Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой
В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.
Как найти уравнение плоскости, которая проходит через 3 заданные точки
Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:
Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.
Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.
Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.
1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 ( x 1 , y 1 , z 1 ) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .
Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.
Из этого мы и будем исходить в дальнейшем.
Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .
Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .
Поскольку M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) а M 1 M 3 → = x 3 – x 1 , y 3 – y 1 , z 3 – z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:
n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1
Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.
2. Второй подход нахождения уравнения, проходящей через M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , основан на таком понятии, как компланарность векторов.
Если у нас есть множество точек M ( x , y , z ) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) только в том случае, когда векторы M 1 M → = ( x – x 1 , y – y 1 , z – z 1 ) , M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) и M 1 M 3 → = ( x 3 – x 1 , y 3 – y 1 , z 3 – z 1 ) будут компланарными.
На схеме это будет выглядеть так:
Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M → = ( x – x 1 , y – y 1 , z – z 1 ) , M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) и M 1 M 3 → = ( x 3 – x 1 , y 3 – y 1 , z 3 – z 1 ) .
Запишем полученное уравнение в координатной форме:
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0
После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) .
От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.
В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.
Примеры задач на составление уравнения плоскости, проходящих через 3 точки
Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.
Есть три точки, не лежащие на одной прямой, с координатами M 1 ( – 3 , 2 , – 1 ) , M 2 ( – 1 , 2 , 4 ) , M 3 ( 3 , 3 , – 1 ) . Составьте уравнение плоскости, проходящей через них.
Решение
Используем поочередно оба способа.
1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :
M 1 M 2 → = – 1 – – 3 , 2 – 2 , 4 – – 1 ⇔ M 1 M 2 → = ( 2 , 0 , 5 ) M 1 M 3 → = 3 – – 3 , 3 – 2 , – 1 – – 1 ⇔ M 1 M 3 → = 6 , 1 , 0
Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:
n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = – 5 · i → + 30 · j → + 2 · k →
У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = ( – 5 , 30 , 2 ) . Далее нам нужно взять одну из точек, например, M 1 ( – 3 , 2 , – 1 ) , и записать уравнение для плоскости с вектором n → = ( – 5 , 30 , 2 ) . Мы получим, что: – 5 · ( x – ( – 3 ) ) + 30 · ( y – 2 ) + 2 · ( z – ( – 1 ) ) = 0 ⇔ – 5 x + 30 y + 2 z – 73 = 0
Это и есть нужное нам уравнение плоскости, которая проходит через три точки.
2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) в следующем виде:
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0
Сюда можно подставить данные из условия задачи. Поскольку x 1 = – 3 , y 1 = 2 , z 1 = – 1 , x 2 = – 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = – 1 , в итоге мы получим:
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = x – ( – 3 ) y – 2 z – ( – 1 ) – 1 – ( – 3 ) 2 – 2 4 – ( – 1 ) 3 – ( – 3 ) 3 – 2 – 1 – ( – 1 ) = = x + 3 y – 2 z + 1 2 0 5 6 1 0 = – 5 x + 30 y + 2 z – 73
Мы получили нужное нам уравнение.
Ответ: – 5 x + 30 y + 2 z – 73 .
А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.
У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 ( 5 , – 8 , – 2 ) , M 2 ( 1 , – 2 , 0 ) , M 3 ( – 1 , 1 , 1 ) . Необходимо составить уравнение плоскости, проходящей через нее.
Решение
Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = ( – 4 , 6 , 2 ) , M 1 M 3 → = – 6 , 9 , 3 .
Векторное произведение будет равно:
M 1 M 2 → × M 1 M 3 → = i → j → k → – 4 6 2 – 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →
Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 ( 5 , – 8 , – 2 ) , M 2 ( 1 , – 2 , 0 ) , M 3 ( – 1 , 1 , 1 ) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.
Если мы используем второй способ, у нас получится:
x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0 ⇔ x – 5 y – ( – 8 ) z – ( – 2 ) 1 – 5 – 2 – ( – 8 ) 0 – ( – 2 ) – 1 – 5 1 – ( – 8 ) 1 – ( – 2 ) = 0 ⇔ ⇔ x – 5 y + 8 z + 2 – 4 6 2 – 6 9 3 = 0 ⇔ 0 ≡ 0
Из получившегося равенства также следует, что заданные точки M 1 ( 5 , – 8 , – 2 ) , M 2 ( 1 , – 2 , 0 ) , M 3 ( – 1 , 1 , 1 ) находятся на одной прямой.
Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:
1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).
2. Взять точку M 4 ( x 4 , y 4 , z 4 ) , которая не лежит на прямой М 1 М 2 .
3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.
Как найти нормаль к плоскости по 3 точкам?
Простой 1 комментарий
В вашем случае, если у вас есть 3 точки, принадлежащие плоскости
ну а дальше просто подставляете эти значения в формулу выше)))
ЗЫ: остается лишь определится с направлением нормали, которое зависит от соглашения по выбору и предоставлению точек A,B,C, которое к слову вы тут не озвучили.
Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой.
В этой статье мы разберемся с задачей нахождения уравнения плоскости в прямоугольной системе координат в трехмерном пространстве, когда известны координаты трех различных точек этой плоскости, не лежащих на одной прямой. Сначала покажем принцип нахождения уравнения плоскости, после чего перейдем к решению примеров и задач, в которых требуется составить уравнение плоскости, проходящей через три заданные точки.
Навигация по странице.
Нахождение уравнения плоскости, проходящей через три заданные точки.
Прежде чем приступать к составлению уравнения плоскости, проходящей через три заданные точки пространства, вспомним одну аксиому: через три несовпадающие и не лежащие на одной прямой точки трехмерного пространства проходит единственная плоскость. Таким образом, задав три различных и не лежащих на одной прямой точки, мы в трехмерном пространстве однозначно определим плоскость, проходящую через эти точки.
Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , в ней заданы три несовпадающие точки , которые не лежат на одной прямой. Поставим перед собой следующую задачу: написать уравнение плоскости, проходящей через эти три точки.
Покажем два способа ее решения.
Первый способ составления уравнения плоскости, проходящей через три заданные точки .
Известно, что общее уравнение плоскости вида задает в прямоугольной системе координат Oxyz плоскость , которая проходит через точку , а нормальный вектор плоскости имеет координаты . Следовательно, мы можем составить общее уравнение плоскости, если знаем координаты точки, через которую она проходит, и координаты нормального вектора этой плоскости. От этого знания и будем отталкиваться при нахождении уравнения плоскости, проходящей через три заданные точки .
Итак, из условия задачи нам известны координаты точки (даже координаты трех точек), через которую проходит плоскость, уравнение которой нам требуется составить. Осталось отыскать координаты нормального вектора этой плоскости.
Так как нормальный вектор плоскости и любой ненулевой вектор этой плоскости перпендикулярны, то вектор перпендикулярен как вектору , так и вектору . Следовательно, в качестве вектора можно принять векторное произведение векторов и . Так как и (при необходимости обращайтесь к статье вычисление координат вектора по координатам точек), то . После вычисления записанного определителя, станут видны координаты нормального вектора , и можно записывать требуемое уравнение плоскости, проходящей через три заданные точки.
Второй способ нахождения уравнения плоскости, проходящей через три заданные точки .
Очевидно, что множество точек определяет в прямоугольной системе координат Oxyz в трехмерном пространстве плоскость, проходящую через три различные и не лежащие на одной прямой точки , тогда и только тогда, когда три вектора и компланарны.
Следовательно, должно выполняться условие компланарности трех векторов и , то есть, смешанное произведение векторов должно быть равно нулю: . Это равенство в координатной форме имеет вид . Оно, после вычисления определителя, представляет собой общее уравнение плоскости, проходящей через три заданные точки .
Далее, от полученного общего уравнения плоскости, проходящей через три заданные точки, Вы при необходимости можете перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости.
Осталось рассмотреть решения примеров, в которых находится уравнение плоскости, проходящей через три несовпадающие и не лежащие на одной прямой точки.
Примеры составления уравнения плоскости, проходящей через три заданные точки.
В предыдущем пункте статьи мы рассмотрели два способа нахождения уравнения плоскости, проходящей через три различные и не лежащие на одной прямой точки. Давайте рассмотрим их применение при решении задачи.
[spoiler title=”источники:”]
http://qna.habr.com/q/1043348
http://www.cleverstudents.ru/line_and_plane/plane_passes_through_3_points.html
[/spoiler]
Метод координат — весьма эффективный и универсальный способ нахождения любых углов или расстояний между стереометрическими объектами в пространстве. Если Ваш репетитор по математике имеет высокую квалификацию, то он должен это знать. В противном случае я бы советовал для «С» части сменить репетитора. Моя подготовка к ЕГЭ по математике С1-С6 обычно включает разбор основных алгоритмов и формул, описанных ниже.
Угол между прямыми а и b
Углом между прямыми в пространстве называется угол между любыми параллельными им пересекающимися прямыми. Этот угол равен углу между направляющими векторами данных прямых (или дополняет его до 180 град).
Какой алгоритм использует репетитор по математике для поиска угла?
1) Выбираем любые вектора и , имеющие направления прямых а и b (параллельные им).
2) Определяем координаты векторов и по соответствующим координатам их начал и концов (от координат конца вектора нужно отнять координаты начала).
3) Подставляем найденный координаты в формулу:
. Для нахождения самого угла, нужно найти арккосинус полученного результата.
Нормаль к плоскости
Нормалью к плоскости называется любой вектор, перпендикулярный к этой плоскости.
Как найти нормаль? Для поиска координат нормали достаточно узнать координаты любых трех точек M, N и K, лежащих в данной плоскости. По этим координатам находим координаты векторов и и требуем выполнения условий и . Приравнивая скалярные произведение векторов к нулю, составляем систему уравнений с тремя переменными, из которой можно найти координаты нормали.
Замечание репетитора по математике: Совсем не обязательно решать систему полностью, ибо достаточно подобрать хотя бы одну нормаль. Для этого можно подставить вместо какой-нибудь из ее неизвестных координат любое число (например единицу) и решить систему двух уравнений с оставшимися двумя неизвестными. Если она решений не имеет, то это значит, что в семействе нормалей нет той, у которой по выбранной переменной стоит единица. Тогда подставьте единицу вместо другой переменной (другой координаты) и решите новую систему. Если опять промахнетесь, то Ваша нормаль будет иметь единицу по последней координате, а сама она окажется параллельной какой-нибудь координатной плоскости (в таком случае ее легко найти и без системы).
Угол между прямой и плоскостью
Допустим, что нам заданы прямая и плоскость координатами направляющего вектора и нормали
Угол между прямой и плоскость вычисляется по следующей формуле:
Угол между плоскостями
Пусть и — две любые нормали к данным плоскостям. Тогда косинус угла между плоскостями равен модулю косинуса угла между нормалями:
Уравнение плоскости в пространстве
Точки, удовлетворяющие равенству образуют плоскость с нормалью . Коэффициент отвечает за величину отклонения (параллельного сдвига) между двумя плоскостями с одной и той же заданной нормалью . Для того, чтобы написать уравнение плоскости нужно сначала найти ее нормаль (как это описано выше), а затем подставить координаты любой точки плоскости вместе с координатами найденной нормали в уравнение и найти коэффициент .
Расстояние от точки до плоскости
Для вычисления расстояния от точки до плоскости , заданной уравнением можно использовать следующую формулу:
В знаменателе стоит длина нормали, а числителе — значение выражения из левой части уравнения плоскости в точке
Комментарий репетитора по математике:
Методом координат можно находить не только углы и расстояния в пространстве, но и
1) площади многоугольников (треугольника, параллелограмма), расположенных в заданной плоскости.
2) объемы простейших многогранников (параллелепипедов и пирамид).
Для понимания таких формул нужно изучить понятия векторного и смешанного произведения векторов, а также определителя матрицы. В скором времени я сделаю для вычисления объемов соответствующую справочную страничку.
Средства аналитической геометрии репетитор по математике практически не использует в работе со средним и тем более слабым учеником. И очень жаль, что загруженность среднестатистического сильного школьника не позволяет репетитору провести более-менее серьезную работу на уровне определений из высшей математики и с соответствующей практикой решения задач. Поэтому я часто ограничиваюсь простым сообщением формул и демонстрацией одного – двух примеров их использования. В школьной программе не предусмотрено время для изучения векторных приемов вообще, однако на ЕГЭ Вы имеете право решать задачу С2 любым из известных науке способов. Отсюда мораль: учите координаты. Расширенная подготовка к ЕГЭ по математике с изучением приемов аналитической геометрии даст Вам мощное и универсальное средство для решения огромного класса задач типа С2. Пользуйтесь этой страничкой на здоровье!
Колпаков А.Н. Репетитор по математике Москва (Строгино).
Для того, чтобы однозначно построить плоскость, необходимы три точки, которые не лежат на одной прямой.
Общее уравнение плоскости принимает вид:
Ax+By+Cz+D=0Ax+By+Cz+D=0,
где A,B,C,DA, B, C, D — коэффициенты, задающие плоскость. Они не могут быть одновременно равны нулю.
Здесь будет калькулятор
Составление уравнения плоскости по трем точкам
Текст цитаты
Заголовок Текст цитаты
В случае, когда известны координаты всех трех точек, уравнение плоскости, проходящей через эти точки составляется с помощью определителя:
∣x−x1x2−x1x3−x1y−y1y2−y1y3−y1z−z1z2−z1z3−z1∣=0begin{vmatrix}
x-x_1 & x_2-x_1 & x_3-x_1 \
y-y_1 & y_2-y_1 & y_3-y_1 \
z-z_1 & z_2-z_1 & z_3-z_1 \
end{vmatrix}=0,
где (x1;y1;z1),(x2;y2;z2),(x3;y3;z3)(x_1;y_1;z_1), (x_2;y_2;z_2), (x_3;y_3;z_3) — координаты точек, через которые проходит данная плоскость, а (x;y;z)(x; y; z) — всевозможные координаты точек этой плоскости.
Составить уравнения плоскости проходящей через три точки с координатами (1;3;0),(5;6;4),(−1;−4;0)(1;3;0), (5;6;4), (-1;-4;0).
Решение
Пусть:
x1=1x_1=1
y1=3y_1=3
z1=0z_1=0
x2=5x_2=5
y2=6y_2=6
z2=4z_2=4
x3=−1x_3=-1
y3=−4y_3=-4
z3=0z_3=0
Составляем определитель:
∣x−x1x2−x1x3−x1y−y1y2−y1y3−y1z−z1z2−z1z3−z1∣=0begin{vmatrix}
x-x_1 & x_2-x_1 & x_3-x_1 \
y-y_1 & y_2-y_1 & y_3-y_1 \
z-z_1 & z_2-z_1 & z_3-z_1 \
end{vmatrix}=0
∣x−15−1−1−1y−36−3−4−3z−04−00−0∣=0begin{vmatrix}
x-1 & 5-1 & -1-1 \
y-3 & 6-3 & -4-3 \
z-0 & 4-0 & 0-0 \
end{vmatrix}=0
∣x−14−2y−33−7z40∣=0begin{vmatrix}
x-1 & 4 & -2 \
y-3 & 3 & -7 \
z & 4 & 0 \
end{vmatrix}=0
28x−8y−22z−4=028x-8y-22z-4=0 — уравнение искомой плоскости.
Ответ
28x−8y−22z−4=028x-8y-22z-4=0
Уравнение плоскости по точке и вектору нормали
Если дана точка, лежащая на плоскости и вектор нормали к этой плоскости, то сама плоскость задается уравнением:
(x−x0)⋅n1+(y−y0)⋅n2+(z−z0)⋅n3=0(x-x_0)cdot n_1+(y-y_0)cdot n_2+(z-z_0)cdot n_3=0,
где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, принадлежащей плоскости, а (n1;n2;n3)(n_1;n_2;n_3) — координаты вектора нормали к этой плоскости.
Выпишите уравнение плоскости, если даны: координата точки плоскости (8;−2;9)(8;-2;9) и вектор нормали (1;3;5)(1;3;5).
Решение
x0=8x_0=8
y0=−2y_0=-2
z0=9z_0=9
n1=1n_1=1
n2=3n_2=3
n3=5n_3=5
(x−x0)⋅n1+(y−y0)⋅n2+(z−z0)⋅n3=0(x-x_0)cdot n_1+(y-y_0)cdot n_2+(z-z_0)cdot n_3=0
(x−8)⋅1+(y−(−2))⋅3+(z−9)⋅5=0(x-8)cdot 1+(y-(-2))cdot 3+(z-9)cdot 5=0
x−8+3y+6+5z−45=0x-8+3y+6+5z-45=0
x+3y+5z−47=0x+3y+5z-47=0 — уравнение плоскости.
Проверка
Чтобы убедиться в том, что задача решена правильно, без ошибок, необходимо в полученное уравнение подставить координаты точки, которые даны в условии задачи:
8+3⋅(−2)+5⋅9−47=08+3cdot(-2)+5cdot9-47=0
0=00=0 — верно, значит ответ правильный.
Ответ
x+3y+5z−47=0x+3y+5z-47=0
Уравнение плоскости онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку “Решить”.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Уравнение плоскости, проходящей через три точки
Рассмотрим цель − вывести уравнение плоскости, проходящей через три различные точки M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), не лежащие на одной прямой. Так как эти точки не лежат на одной прямой, векторы и не коллинеарны. Следовательно точка M(x, y, z) лежит в одной плоскости с точками M1, M2, M3 тогда и тольно тогда, когда векторы M1M2, M1M3 и компланарны. Но векторы M1M2, M1M3, M1M компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Используя смешанное произведение векторов M1M2, M1M3, M1M в координатах, получим необходимое и достаточное условие принадлежности точки M(x, y, z) к указанной плоскости:
Разложив определитель в левой части выражения, например, по первому столбцу и упростив, получим уравнение плоскости в общей форме, проходящий по точкам M1, M2, M3:
Пример 1. Построить уравнение плоскости, проходящую через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2).
Решение.
Уравнение плоскости, проходящей через точки A(x1, y1, z1), B(x2, y2, z2) и C(x3, y3, z3) имеет следующий вид:
Подставляя координаты точек A, B, C в (1), получим:
Упростим:
Разложим определитель по первому столбцу:
Упростим выражение:
или
Ответ:
Уравнение плоскости, проходящей через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2) имеет вид:
Уравнение плоскости, проходящей через одну точку и имеющий нормаль n
Пример 2. Построить плоскость, проходящую через точку M0(-1, 2, 1) и имеюший нормаль n(1, 4/5, 1).
Решение.
Уравнение плоскости, проходящей через точку M0(x0, y0, z0) и имеющей нормаль n(A, B, C) имеет следующий вид:
Подставляя координаты векторов M0 и n в (2), получим:
или