Как найти нормальные векторы плоскостей

Существует ряд заданий, которым для решения необходимо нормальный вектор на плоскости, чем саму плоскость. Поэтому в этой статье получим ответ на вопрос определения нормального вектора с примерами и наглядными рисунками. Определим векторы трехмерного пространства и плоскости по уравнениям.

Нормальный вектор плоскости – определение, примеры, иллюстрации

Чтобы материал легко усваивался, необходимо предварительно изучить теорию о прямой в пространстве и представление ее на плоскости  и векторы.

Определение 1

Нормальным вектором плоскости считается любой ненулевой вектор, который лежит на  перпендикулярной к данной плоскости прямой.

Отсюда следует, что имеет место существование большого количества нормальных векторов  в данной плоскости. Рассмотрим на рисунке, приведенном ниже.

Нормальный вектор плоскости – определение, примеры, иллюстрации

Нормальные векторы располагаются на параллельных прямых, поэтому  они все коллинеарны. То есть, при нормальном векторе n→ , расположенном в плоскости γ, вектор t·n→, имея ненулевое значение параметра t, также нормальный вектор плоскости γ. Любой вектор может быть рассмотрен как направляющий вектор прямой, которая перпендикулярна этой плоскости.

Имеются случаи совпадения нормальных векторов плоскостей из-за перпендикулярности одной из параллельных плоскостей, так как прямая перпендикулярна и второй плоскости. Отсюда следует, что нормальные векторы перпендикулярных плоскостей должны быть перпендикулярными.

Рассмотрим на примере нормального вектора на плоскости.

Задана прямоугольная система координат Охуz  в трехмерном пространстве. Координатные векторы i→, j→, k→ считаются нормальными векторами плоскостей Oyz, Oxz и Oxy. Это суждение верно, так как i→, j→, k→ ненулевые и расположены на координатных прямых Ox, Oy и Oz. Эти прямые перпендикулярны координатным плоскостям Oyz, Oxz и Oxy.

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости из уравнения плоскости

Статья предназначена для того, чтобы научить находить координаты нормального вектора плоскости при известном уравнении плоскости прямоугольной системы координат Охуz. Для определения нормального вектора n→=(A, B, C) в плоскости необходимо наличие общего уравнения плоскости, имеющее вид Ax+By+Cz+D=0. То есть достаточно иметь уравнение плоскости, тогда появится возможность для нахождения координат нормального вектора.

Пример 1

Найти координаты нормального вектора, принадлежащего плоскости 2x-3y+7z-11=0.

Решение

По условию имеем уравнение плоскости. Необходимо обратить внимание на коэффициенты, так как они и являются координатами нормального вектора заданной плоскости. Отсюда получаем, что n→=(2, -3, 7) – это нормальный вектор плоскости. Все векторы плоскости задаются при помощи формулы t·n→=2·t, -3·t, 7·t, t является любым действительным числом не равным нулю.

Ответ: n→=(2, -3, 7).

Пример 2

Определить координаты направляющих векторов заданной плоскости x+2z-7=0.

Решение

По условию имеем, что дано неполное уравнение плоскости.  Чтобы увидеть координаты, необходимо преобразовать уравнение x+2z-7=0  к виду 1·x+0·y+2z-7=0. Отсюда получим, что координаты нормального вектора данной плоскости равны (1, 0, 2). Тогда множество векторов будет иметь такую форму записи (t, 0, 2·t), t∈R, t≠0.

Ответ: (t, 0, 2·t), t∈R, t≠0.

При помощи уравнения плоскости в отрезках, имеющего вид xa+yb+zc=1, и общего уравнения плоскости возможна запись нормального вектора этой плоскости, где координаты равны 1a, 1b, 1c.

Знания о нормальном векторе позволяют с легкостью решать задачи. Часто встречающимися задачами являются задания с доказательствами параллельности или перпендикулярности плоскостей. Заметно упрощается решение задач на составление уравнений заданной плоскости. Если имеется вопрос о нахождении угла между плоскостями или между прямой и плоскостью, то формулы нормального вектора и нахождения его координат помогут в этом.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта



5.2.3. Вектор нормали плоскости (нормальный вектор)

Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов.

Но для решения задач нам будет хватать и одного: если плоскость задана общим уравнением  в прямоугольной (!) системе координат, то вектор  является нормальным вектором данной плоскости.

Просто до безобразия! – всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости. И чтобы хоть как-то усложнить практику рассмотрим тоже простую, но очень важную задачу, которая часто встречается, причём, не только в геометрии:

Задача 134

Найти единичный нормальный вектор плоскости .

Решение: принципиально ситуация выглядит так:

Сначала из уравнения плоскости «снимем» вектор нормали: .

И эту задачку мы уже решали: для того чтобы найти единичный вектор , нужно каждую координату вектора  разделить на длину вектора .

Вычислим длину вектора нормали:

Таким образом:

Контроль:, ОК

Ответ:

Вспоминаем, что координаты этого вектора  – есть в точности направляющие косинусы вектора : .

И, как говорится, обещанного три страницы ждут 🙂  – вернёмся к Задаче 130, чтобы выполнить её проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке  и двум векторам , и в результате решения мы получили уравнение .

Проверяем:

Во-первых, подставим координаты точки  в полученное уравнение:

 – получено верное равенство, значит, точка  лежит в данной плоскости.

На втором шаге из уравнения плоскости «снимаем» вектор нормали: . Поскольку векторы  параллельны плоскости, а вектор  ей перпендикулярен, то должны иметь место следующие факты: . Ортогональность векторов элементарно проверяется с помощью скалярного произведения:

Вывод: уравнение плоскости найдено правильно.

В ходе проверки я фактически процитировал следующее утверждение теории: вектор  параллелен плоскости  в том и только том случае, когда .

Итак, с «выуживанием» нормального вектора разобрались, теперь ответим на противоположный вопрос:

5.2.4. Как составить уравнение плоскости по точке и вектору нормали?

5.2.2. Как составить уравнение плоскости по трём точкам?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Автор статьи

Елена Борисовна Калюжная

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Нормальный вектор плоскости – наиболее компактный и наглядный способ определить плоскость в трехмерной системе координат.

Определение 1

Вектор нормали к плоскости – любой ненулевой вектор, принадлежащий прямой, перпендикулярной к рассматриваемой плоскости. По отношению к такой прямой нормальный вектор является направляющим.

Для каждой плоскости существует бесконечное множество коллинеарных друг по отношению к другу нормальных векторов.

В качестве примера плоскостей, задаваемых нормальными векторами, можно рассматривать координатные плоскости системы координат $Oxyz$: $Oxy$, $Oxz$, $Oyz$. Для них нормальными векторами будут, векторы, направляющие оси, т.е., соответственно, $Oz$, $Oy$ и $Ox$ ($vec{k}, vec{j}, vec{i}$).

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Векторы в трехмерной системе координат. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Векторы в трехмерной системе координат. Автор24 — интернет-биржа студенческих работ

Рассмотрим основные математические закономерности, показываюшие как найти вектор нормали к плоскости.

Формула нормального вектора выводится из общего уравнения плоскости, которое имеет вид $Ax + By + Cz + D = 0$.

Плоскости, в уравнениях которых один из коэффициентов равен $0$, соответствуют базовым плоскостям системы координат ($Oxy, Oxz, Oyz$).

Уравнения вида

$Ax + D = 0 \ By + D = 0 \ Cz + D = 0$

описывают плоскости, параллельные $Oxy, Oxz, Oyz$ и отстоящие от них на расстояние, равное отношению свободного члена $D$ к соответствующему коэффициенту, например:

$x = frac{D}{A}$

Нормальный вектор плоскости $Ax + By + Cz + D = 0$ можно выразить как $bar{n}(A; B; C)$. Существует бесконечное множество плоскостей, перпендикулярных данному вектору. Для определения плоскости нужна еще точка на ней. Через любую точку также можно провести бесконечное количество плоскостей (их совокупность называется связкой). Нормальный вектор и точка взаимодополняют друг друга, определяя единственную плоскость.

«Нормальный вектор плоскости» 👇

Точку на плоскости можно обозначить как $M_1(x; y; z)$. Вектор, соединяющий ее с любой другой точкой $M$ данной плоскости, при скалярном умножении на вектор нормали к плоскости $N$ дает ноль:

$overline{M_1M} cdot N = 0$

Переписав уравнение через проекции, получим

$overline{M_1M} cdot N = A(x – x_1) + B(y – y_1) + C(z – z_1) = 0$

Это дает нам возможность выводить уравнение плоскости через координаты точки и параметры нормального вектора плоскости.

Замечание 1

Определить плоскость в пространстве можно и другими способами, например, с помощью указания координат трех ее точек, не лежащих на одной прямой, двух неколлинеарных векторов и точки и т.д. Однако форма записи с помощью нормального вектора плоскости и точки наиболее компактна. К ней другие методы задания плоскости можно привести путем алгебраических преобразований.

С помощью нормального вектора плоскости как ее определителя могут быть решены задачи на доказательство параллельности или перпендикулярности плоскостей, на составление уравнения плоскости, на нахождение угла между прямой и плоскостью, на нахождение угла между плоскостями.

Пример 1

Сформулируем уравнение плоскости, проходящей через точку с координатами $M(1; -2; 3)$ и перпендикулярной вектору $N = 2i + 4k$.

Для начала найдем коэффициенты, соответствующие координатам:

$A = 2 \ B = 0 \ C = 4$

Заметим, что $B = 0$ следует из того, что направляющий вектор $vec{j}$ оси $Oy$ в исходном уравнении не упоминается.

Подставим значения в формулу:

$2(x – 1) + 0(y + 2) + 4(z – 3) = 0$

После стандартных преобразований получим ответ:

$x + 2z – 7 = 0$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Определение 1. Уравнение с
тремя переменнымиAx + By + Cz + D = 0,
гдеAB и Cне равны 0 одновременно, называетсяобщим уравнением плоскости.

Основные виды уравнений плоскости в
трехмерном пространстве:

1) z = 0- уравнение плоскостиOxy;

2) y = 0- уравнение плоскостиOxz;

3) x = 0- уравнение плоскостиOyz;

4) Cz + D = 0- уравнение плоскости, параллельной
плоскостиOxy;

5) By + D = 0- уравнение плоскости, параллельной
плоскостиOxz;

6) Ax + D = 0- уравнение плоскости, параллельной
плоскостиOyz;

7) Ax + By + D = 0- уравнение плоскости, параллельной оси
координатOx;

8) Ax + Cz + D = 0- уравнение плоскости, параллельной оси
координатOy;

9) Ax + By + D = 0- уравнение плоскости, параллельной оси
координатOz;

10) Ax + By + Cz = 0- уравнение плоскости, проходящей через
начало координат.

Теорема 1. Любая плоскость в
трехмерном пространстве может быть
задана общим уравнением
.

Определение 2.Вектор(ABC)называетсяобщим нормальным вектором
плоскости
Ax + By + Cz + D = 0.

Если две плоскости заданы общими
уравнениями A1x + B1y + C1z + D1 = 0
иA2x + B2y + C2z + D2 = 0,
то:

– плоскости параллельны тогда и только
тогда, когда их нормальные векторы
коллинеарны:
;

– плоскости перпендикулярны тогда и
только тогда, когда скалярное произведение
их нормальных векторов равно нулю:
A1A2 + B1B2 + C1C2 = 0.

A(xx0) + B(yy0) + C(zz0) = 0-уравнение прямой, проходящей через
точку
(x0y0z0),перпендикулярно нормальному вектору.

31. Уравнения прямой линии в
пространстве как линии пересечения
двух плоскостей. Канонические уравнения
прямой. Направляющий вектор прямой.
Условия параллельности и перпендикулярности
двух прямых в пространстве

Существует несколько способов задания
прямой в трехмерном пространстве:

1) – прямая как линия пересечения двух
плоскостей задается аналитически
системой двух линейных уравнений;

2) – канонические уравнения прямой, где(mnp) –
направляющий вектор прямой (т.е. прямая
параллельна этому вектору),M1(x1y1z1) –
некоторая точка, лежащая на данной
прямой.

Если две прямые заданы каноническими
уравнениями

и
,
то:

– прямые параллельны тогда и только
тогда, когда их направляющие векторы
коллинеарны:
;

– прямые перпендикулярны тогда и
только тогда, когда скалярное произведение
их направляющих векторов равно нулю:
m1m2 + n1n2 + p1p2 = 0;

42. Углы между двумя плоскостями, между двумя прямыми, между прямой и плоскостью. Условия параллельности и перпендикулярности двух плоскостей, двух прямых, прямой и плоскости

Если две плоскости заданы общими
уравнениями A1x + B1y + C1z + D1 = 0
иA2x + B2y + C2z + D2 = 0,
то уголмежду
плоскостями равен углу между нормальными
векторами(A1B1C1)и(A2B2C2),
следовательно,

.

Если две прямые заданы каноническими
уравнениями

и
,
то уголмежду
прямыми равен углу между направляющими
векторами(m1n1p1)и(m2n2p2),
следовательно,

.

Если плоскость задана общим уравнением
Ax + By + Cz + D = 0,
а прямая задана каноническими уравнениями
,
то уголмежду
прямой и плоскостью равен дополнительному
углу к углу между нормальным вектором(ABC)и направляющим вектором(mnp),
следовательно,

.

В последнем случае:

– плоскость и прямая параллельны
тогда и только тогда, когда скалярное
произведение их нормального и направляющего
векторов равно нулю:

Am + Bn + Cp = 0.

– плоскость и прямая перпендикулярны
тогда и только тогда, когда их нормальный
и направляющий векторы коллинеарны:

.

Соседние файлы в папке Линейная алгебра

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как найти нормаль плоскости

Нормаль плоскости n (вектор нормали к плоскости) – это любой направленный перпендикуляр к ней (ортогональный вектор). Дальнейшие выкладки по определении нормали зависят от способа задания плоскости.

Как найти нормаль плоскости

Инструкция

Если задано общее уравнение плоскости – AX+BY+CZ+D=0 или его форма A(x-x0)+B(y-y0)+C(z-z0)=0, то можно сразу записать ответ – n(А, В, С). Дело в том, что это уравнение было получено, как задача определения уравнения плоскости по нормали и точке.

Для получения общего ответа, вам понадобится векторное произведение векторов из-за того, что последнее всегда перпендикулярно исходным векторам. Итак, векторным произведением векторов, является некоторый вектор, модуль которого равен произведению модуля первого (а) на модуль второго (b) и на синус угла между ними. При этом этот вектор (обозначьте его через n) ортогонален a и b – это главное. Тройка этих векторов правая, то есть из конца n кратчайший поворот от a к b совершается против часовой стрелки.
[a,b] – одно из общепринятых обозначений векторного произведения. Для вычисления векторного произведения в координатной форме, используется вектор-определитель (см. рис.1)

Как найти нормаль плоскости

Для того чтобы не путаться со знаком «-», перепишите результат в виде: n={nx, ny, nz}=i(aybz-azby)+j(azbx-axbz)+k(axby-aybx), и в координатах: {nx, ny, nz}={(aybz-azby), (azbx-axbz), (axby-aybx)}.
Более того, дабы не путаться с численными примерами выпишете все полученные значения по отдельности: nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx.

Вернитесь к решению поставленной задачи. Плоскость можно задать различными способами. Пусть нормаль к плоскости определяется двумя неколлинеарными векторами, причем сразу численно.
Пусть даны векторы a(2, 4, 5) и b(3, 2, 6). Нормаль к плоскости совпадает с их векторным произведением и, как только что было выяснено будет равна n(nx, ny, nz),
nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx. В данном случае ax=2, ay=4, az=5, bx=3, by=2, bz=6. Таким образом,
nx=24-10=14, ny=12-15=-3, nz=4-8=-4. Нормаль найдена – n(14, -3, -4). При этом она является нормалью к целому семейству плоскостей.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий