Как найти нормальный ток

В связи с тем, что
основную часть потребителей в микрорайоне
составляют электроприемники второй
категории, то, согласно требований по
надежности электроснабжения, они должны
обеспечиваться питанием от двух
независимых источников питания. Поэтому
кабельные линии, соединяющие
электроприемники с трансформаторными
подстанциями, выполняются двумя кабелями,
присоединенными к разным сборным шинам
0.4 кВ трансформаторных подстанций.

.Для выбора сечения
кабельных линий необходимо знать
значение тока в линии, как в нормальном,
так и в послеаварийном режиме.


Покажем
определение нормального и послеаварийного
тока на примере линии Л3, питающей ВРУ
10 и состоящей из двух кабелей

Мощность, передаваемая
по каждому из кабелей в нормальном и
послеаварийном режимах, определяется
на основании расчетных схем, показанных
на рис.10.

а)

б)

Рис10 Расчетная
схема для определения мощностей на
участках линий

а) нормальный
режим, б) послеаварийный режим.

Расчетные
токи будут определятся согласно расчетных
схем показанных на рис.11.

Для примера
рассмотрим определение расчетных токов
на основании расчетной схемы для ТП1
(рис11.а).

Р
ис
11. Расчетные схемы для определения токов
в линиях:

а) расчетная схема
для ТП1; б) расчетная схема для ТП2;

в) расчетная схема
для ТП3.

Значение
расчетного тока в нормальном режиме
определяется по выражению:

, (32)

где Sнр..-полная
расчетная мощность на участке сети в
нормальном режиме, кВА;

Uн
номинальное напряжение сети,
Uн=0.38 кВ.

Так как питание
образовательной школы производится по
двум кабелям, то расчетная мощность на
участке сети в нормальном режиме
определяется следующим образом:


, (33)

где Sр.обр.шк-полная
расчетная мощность образовательной
школы, согласно таблице 4, Sр.обр.шк=294,186
кВА

По формуле (32):

В послеаварийном
режиме (один кабель вышел из строя)
расчетный ток может быть определен по
формуле:


,
(34)

где 0.9 – поправочный
коэффициент для взаиморезервируемых
линий, взятый согласно п.2.3.3. /1/.

– полная расчетная
мощность на участке сети в послеаварийном
режиме,


.

Аналогичные расчеты
проводятся для остальных линий питающих
жилые дома и общественные здания.

Результаты расчетов
приведены в таблице 13

Таблица 13

Определение расчетных токов на участках линий от тп до вру

Линия

Участок
линии

Число
кабелей в
линии n

Полная
расчетная
нагрузка в
норм. режиме.:Sнр

Полная
расчетная
нагрузка в
ПАВ

режиме:Sрпав

Расчетный
ток одного
кабеля:Iрн

Расчетный
ток кабеля
в ПАВ:Iрп.ав

шт

кВА

кВА

А

А

ТП-1

Л1

ТП1-2

1

170,607

259,21

2-1

1

98,881

150,23

Л2

ТП1-3

1

87,461

132,88

Л3

ТП1-10

2

147,093

264,767

223,485

402,272

Л4

ТП1-12

2

33,191

59,744

50,429

90,771

Л5

ТП1-13

2

23,438

42,188

35,61

64,098

ТП-2

Л6

ТП2-5

2

119,432

214,978

181,46

326,625

Л7

ТП2-6

2

136,137

245,047

206,84

372,31

Л8

ТП2-9

2

39,063

70,313

59,349

106,829

ТП-3

Л9

ТП3-4

2

114,844

206,719

174,487

314,077

Л10

ТП3-7

2

121,147

218,065

184,064

331,315

7-14

1

28,396

43,143

Л11

ТП3-8

1

53,03

80,571

Л12

ТП3-11

2

37,93

68,274

57,629

103,732

Принимаем для
прокладки на территории микрорайона
кабель с алюминиевыми жилами с бумажной
пропитанной изоляцией марки ААБлУ,
прокладываемый в земле. Сечение данной
марки кабеля выбирается по табл.1.3.16./2/
в графе четырехжильных кабелей до 1 кВ,
и для линии Л4, по значению

по табл.1.3.16 /2/ для принятой
марки кабеля и способа его прокладки
выбирается сечение с учетом условия:


,
(35)

где Iдоп – длительно
допустимый ток кабеля, определяемый по
табл.1.3.16/2/. Принимаем

и соответствующее ему сечение F=95мм2

240А > 223,485А

Определяем
фактический допустимый ток и сравниваем
его с током нормального режима:


., (36)


(37)

где Кнобщ.
-суммарный поправочный коэффициент
для нормального режима работы сети, по
табл. 12, Кнобщ.=0,972

Если условие (37)
выполняется, то сечение выбрано верно
и необходимо проверить послеаварийный
режим, если же не выполняется, то
необходимо увеличить сечение на одну
ступень и снова сделать проверку.

Iд.=0,972*240=233,28
А.

233,28 А>223,485 А

Т.к. условие
выполняется, то осуществим проверку в
послеаварийном режиме работы
распределительной сети низкого
напряжения.

Проверку в
послеаварийном режиме работы осуществляют
по выражению:


(38)


(39)

где Кп.авобщ.
суммарный поправочный коэффициент
в послеаварийном режиме работы сети по
табл. 12, Кп.авобщ=1,35.

Iр.п.ав
– расчетный ток линии в послеаварийном
режиме определяемый по табл. 13,
Iр.п.ав=402,272
А.

Если данное условие
не выполняется то необходимо увеличить
сечение жилы кабеля F
еще на одну ступень; если же условие
выполняется, то принимаем выбранное
сечение жилы.

Iд.п.ав=1,35*240=324
А.

324 A>402,272
А.

Т.к. условие не
выполняется, то увеличиваем сечение на
одну ступень и принимаем F=120
мм2, Iдоп.=270
А.

Iд.п.ав=1,35*270=364,5
А.

364,5 A>402,272
А.

Т.к. условие снова
не выполняется, то увеличиваем сечение
на одну ступень и принимаем F=150
мм2, Iдоп.=305
А.

Iд.п.ав=1,35
*305=411,75 А.

411,75 A>402,272
А

Видим, что условия
(37) и (39) выполняются, следовательно
дальнейший расчет прекращаем и принимаем
окончательно сечение жилы F=150
мм2, Iд.т.=305
А.

Аналогичные расчеты
произведены и для других участков линий
распределительной сети и представлены
в таблице 14.

Таблица
14

Линия

Участок

линии

Расчетный ток

участка

Длит.

доп.ток:

Iдоп

Сечение

жил:

F

Сум-марный

коэф-ент

в нормальном

режиме

Кнобщ.

Iд=Iд.т*

*Кнобщ.

II’дIрн

Суммарный

коэф-ент

в послеаварийном

режиме

Кп.авобщ

Iд.п.ав=Iд.тКп.авоб

Iд.п.авIр.п.ав

Iрн

Iрп.ав

А

А

А

мм2

А

да/нет

А

уд/неуд

ТП-1

Л1

ТП1-2

259,21

270

305

120

150

0,864

233,28

263,52

Нет/да

ТП2-1

150,23

165

50

1,08

178,2

да

Л2

ТП1-3

132,88

135

165

35

50

0,864

116,64

142,56

нет

да

Л3

ТП1-10

223,485

402,272

240

270

305

95

120

150

0,972

233,28

262,44

296,46

да

да

да

1,35

324

364,5

411,75

неуд

неуд

уд.

Л4

ТП1-12

50,429

90,171

90

16

0,864

77,76

да

1,1475

103,275

уд.

Л5

ТП1-13

35,61

64,1

90

16

0,972

87,48

да

1,35

121,5

уд.

ТП-2

Л6

ТП2-5

184,064

331,315

200

240

270

70

95

120

0,972

194,4

233,28

262,44

да

да

да

1,35

270

324

364,5

неуд

неуд

уд

Л7

ТП2-6

206,84

372,31

240

270

305

95

120

150

0,972

233,28

262,44

296,46

да

да

да

1,35

324

364,5

411,75

неуд

неуд

уд

Л8

ТП2-9

59,349

106,829

90

16

0,972

87,48

да

1,35

121,5

уд

Расчетная таблица
для определения сечения жил кабеля


Продолжение
таблицы 14

Линия

Участок

линии

Расчетный ток

участка

Длит.

доп. ток:

Iдоп

Сечение

жил:

F

Суммарный

коэф-ент

в нормальном
режиме

Кнобщ.

Iд=Iд.т´Кнобщ.

I’д³Iрн

Суммарный коэф-ент

в послеаварийном

режиме

Кп.авобщ

Iд.п.ав=Iд.т´Кп.авоб

Iд.п.ав³Iр.п.ав

Iрн

Iрп.ав

А

А

А

мм2

А

да/нет

А

уд/неуд

ТП-3

Л9

ТП3-4

174,487

314,077

200

240

70

95

0,972

194,4

233,28

да

да

1,35

270

324

неуд

уд

Л10

ТП3-7

184,064

331,315

200

240

270

70

95

120

0,972

194,4

233,28

262,44

да

да

да

1,35

270

324

364,5

неуд

неуд

уд

7-14

43,143

90

16

1,08

97,2

да

Л11

ТП3-8

80,571

90

16

1,08

97,2

да

Л12

ТП3-11

57,629

103,732

90

16

0,972

87,48

да

1,35

121,5

уд

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Данный онлайн калькулятор позволяет произвести расчет тока по мощности электросети с любыми параметрами. Присутствует возможность задать такие параметры как тип сети (однофазная или трехфазная) напряжение, мощность, а так же коэффициент мощности (cosφ).

Полученное, в результате расчета, значение тока сети можно использовать для выбора автоматического выключателя, дифавтомата, УЗО, реле напряжения, магнитного пускателя и т.д. либо для определения требуемого сечения кабеля.

Ряд стандартных значений номинальных токов различных аппаратов защиты, а так же длительно допустимых токов алюминиевых и медных кабелей приведены в таблицах ниже.

ряд стандартных значений номинальных токов автоматов, дифавтоматов, УЗО, реле напряжения и магнитных пускателей

длительно допустимые значения тока для алюминиевых и медных кабелей



Не нашли на сайте статьи на интересующую Вас тему
 касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросыНапишите нам в комментариях!

Фото 1

Важнейшая характеристика любого электрического устройства — номинальный ток (Iн).

С учетом его величины подбирают сечение токоведущих жил и автоматы защиты. Ниже речь пойдет о способах определения Iн и о том, как эта величина в дальнейшем используется.

Что это такое?

Iн (по ПУЭ — допустимый длительный ток) — это максимальная сила тока, допускающая сколь угодно работу электроустройства, не ограниченную во времени, то есть не приводящая к перегреву его токоведущих частей.

При протекании Iн соблюдаются два условия:

Фото 2

  1. уравновешиваются выделение тепла в проводниках и его отвод в окружающее пространство;
  2. выделяемое тепло не вызывает нарушения механических и химических свойств материалов, необходимых для работы устройства.

При превышении номинальной величины наблюдается дисбаланс в пользу выделения тепла: возрастает температура токопроводящих частей с последующим расплавлением изоляции.

Это чревато возгоранием и коротким замыканием. Металлические элементы теряют прочность и деформируются. Все составляющие системы электроснабжения, от генератора или источника тока до потребителя — при проектировании рассчитываются на определенный Iн. Это относится не только к устройствам, но и к проводам, соединительным элементам и пр.

Величина Iн указана в паспорте оборудования. Также этот параметр наряду с другими наиболее важными, часто проставляют на корпусе или шильдике устройства. Наиболее предпочтительны: 1; 1,6; 2,5; 4; 6,3 А и кратные им.

Фото 3

  • для трансформаторов: 15, 30, 60, 75, 120 А и кратные им;
  • для существующих устройств (по договоренности между заказчиком и изготовителем): 1400, 2240 А;
  • для преобразователей и трансформаторов для них (также по договоренности между изготовителем и заказчиком): 37,5, 75 и 150 кА.

Значения Iн стандартизированы и прописаны в ГОСТ 6827-76.

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени.

Формула мощности по току и напряжению схемы

Мощность переменного тока через конденсатор.

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний.

Формула мощности по току и напряжению схемы

Напряжение на конденсаторе и сила тока через него.

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Принцип определения

Iн для жил проводов и кабелей определяют по таблицам «Правил устройства электроустановок», справочников и прочей специализированной литературы, в них учитываются:

Фото 4

  1. материал проводника (в основном указываются данные для меди и алюминия). Металлы и сплавы имеют разное сопротивление, а от него зависит баланс между выделением тепла (Q = I2 * R, где I — сила тока, R — электросопротивление проводника) и его отводом;
  2. площадь поперечного сечения жилы: от этого также зависит величина R;
  3. способ прокладки (открыто или в канале), число жил в кабеле и материал изоляции.

Для вычисления площади поперечного сечения жилы, измеряют штангенциркулем ее диаметр D, затем производят расчет по формуле: S = (3.14 * D2) / 4. Определив номинальный ток провода, сопоставляют его с номинальным током нагрузки.

Если последний окажется больше, берут провод с большей площадью сечения жил. Для определения номинального тока нагрузки, если таковая не указана на информационной табличке, необходимо знать формулы.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Формула расчета

Далеко не на всех устройствах, особенно бытовых, прописывают значение номинального тока. Но вот мощность, как правило, известна. К примеру, на лампочке накаливания написано: 60W, 230 V.
Номинальный ток потребителей с активным сопротивлением (лампы накаливания, электрочайники, бойлеры и обогреватели) определяется из формулы расчета мощности: W = U * I, отсюда: I = W / U

Для однофазной сети U = 220 В, следовательно, номинальный ток 60-ваттной лампы составляет: I = 60 / 220 = 0,27 А Аналогично рассчитывают номинальный ток предохранителя — на его корпусе также указывается мощность.

Номинальный ток группы потребителей рассчитывают с учетом коэффициента неодновременности «к». Такой подход обусловлен тем, что приборы никогда не работают одновременно в течение продолжительного периода.

К примеру, если на кухне имеются следующие электроприборы:

Фото 5

  • плита: 2000 Вт;
  • чайник: 1500 Вт;
  • микроволновка: 800 Вт;
  • кофеварка: 1000 Вт.

И коэффициент неодновременности принят равным к = 0,7 (устанавливается для разных ситуаций нормативными документами), то номинальный ток группы потребителей составит: I = (2000 + 1500 + 800 + 1000) * 0,7 / 220 = 3710 / 220 = 16,86 А.

Несколько сложнее определяется номинальный ток потребителей с индуктивным сопротивлением, основную часть которых составляют трансформаторы (блоки питания, стабилизаторы) и электродвигатели (холодильник, пылесос и пр.).

Полная потребляемая электрическая мощность Wпол в техдокументации на оборудование не указывается — только механическая на валу двигателя (ГОСТ Р 52776-2007, п. 5.5.3.).

Чтобы определить Wпол, следует обратить внимание на два параметра, приводимые на шильдике:

Фото 6

  • коэффициент полезного действия (КПД). Параметр, характеризующий величину потерь на трение в подшипниках, перемагничивание магнитопровода и прочее. Представляет собой отношение выходной мощности Wвых (именно ее указывают в паспорте) к активной мощности Wа: n = Wвых / Wа;
  • cosϕ определяет долю активной мощности Wа в полной потребляемой мощности Wпол. В потребителях со всевозможными катушками (обмотки двигателей, трансформаторов и т.д.) часть мощности (реактивная) тратится на преодоление индуктивного сопротивления. Суть этого явления состоит в возникновении ЭДС самоиндукции, направленной против тока. Поскольку cosϕ = Wа / Wпол, то Wпол = Wа / cosϕ.

Таким образом, полная потребляемая мощность Wпол при известной выходной мощности Wвых определяется по формуле: Wпол = Wвых / (КПД * cosϕ). Выходную мощность Wвых принято измерять в привычных ваттах (Вт), а полную Wпол, чтобы не было путаницы, — в вольт-амперах (ВА).

К примеру, на шильдике компрессора холодильника указаны такие характеристики:

  • мощность: 2 кВт;
  • КПД: 0,85;
  • cosϕ: 0,8.

Значит, полная потребляемая мощность составит: Wпол = 2 000 / (0,85 * 0,8) = 2941 ВА. Тогда потребляемый холодильником номинальный ток составит: I = Wпол / 220 = 2941 / 220 = 13,4 А. В случае с 3-фазным двигателем Iн определяют так: I = Wпол / (1,73 * U).

Фото 7

Трёхфазная система электроснабжения

Wпол рассчитывается так же, как для однофазного, напряжение U принимается равным:

  • при подключении к 3-фазной сети: U = 380 В;
  • к 1-фазной — U = 220 В.

Как узнать силу тока, зная мощность и напряжения.

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Формула мощности по току и напряжению схемы

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формула мощности по току и напряжению схемы

Выбор автоматов защиты

Поскольку возрастание силы тока свыше номинального значения (перегрузка) влечет за собой нарушения в работе устройств, на этот случай требуется предусмотреть обесточивание цепи.

Задачу выполняют такие аппараты защиты:

Фото 8

  • предохранители: содержат легкоплавкую вставку — при перегреве она расплавляется и цепь размыкается;
  • выключатели автоматические (ВА).

ВА состоит из двух частей:

  1. тепловой расцепитель. Биметаллическая пластина, размыкающая контакты при нагреве. Время срабатывания может составлять десятки минут;
  2. электромагнитный расцепитель (катушка с соленоидом). Срабатывает практически мгновенно (0,02 с) при достижении силой тока определенного значения.

Порог срабатывания электромагнитного расцепителя для разных потребителей также требуется индивидуальный. Некоторые выходят из строя даже при самой незначительной перегрузке, другие выдерживают 14-кратное превышение Iн. Потому выпускают 4 класса ВА, отличающиеся настройкой электромагнитного приспособления размыкания цепи (уставка тока отсечки): A, B, C и D.

Класс подбирается соответственно виду потребителей:

  1. полупроводниковые элементы. Класс А, наиболее чувствительный: ток отсечки — в 2 раза выше номинального;
  2. розетки, осветительные цепи и прочие, где пусковые токи отсутствуют или невелики. Класс В: ток отсечки — в 3 раза больше номинального;
  3. Фото 9

  4. вводные устройства сетей зданий и сооружений, цепи с большими пусковыми токами (в качестве потребителей выступают электродвигатели). Класс D: ток отсечки — в 10 раз выше номинального. На вводе в здание такой ВА также играет роль селективного — страхует автоматы защиты на этажах и в отдельных помещениях.

При перегрузке менее уставки тока отсечки по цепи какое-то время протекает ток свыше номинального (до срабатывания теплового расцепителя).

Это учитывают, например, при выборе УЗО, официально именуемого «выключателем дифференциального тока». Это еще один аппарат защиты, обесточивающий цепь при обнаружении утечки тока и предотвращающий тем самым электротравму пользователя.

УЗО подбирают с номинальным током, на ступень превышающим соответствующий параметр защищающего его ВА.

Мощность тока через резистор

Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:

Поэтому для мгновенной мощности получаем:

(2)

Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Формула мощности по току и напряжению схемы

Мощность переменного тока через резистор.

Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно .

Формула мощности по току и напряжению схемы

Среднее значение квадрата синуса равно

Итак, для среднего значения мощности тока на резисторе имеем:

(3)

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

(4)

Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.

Номинальные токи разных устройств

Вот какой ток потребляют некоторые приборы:

  1. электроплита: мощность — от 1,2 до 6 кВт, cosϕ = Номинальный ток: от 1200 / 220 = 5,45 А до 6000 / 220 = 27,25 А;
  2. обогреватель: 0,5 — 2 кВт, cosϕ = 1. Ток — от 2,3 А до 9,2 А;
  3. пылесос: 0,5 – 2 кВт, cosϕ = 0,9. Ток: от 500 / (220 * 0,9) = 2,52 А до 2000 / (220 * 0,9) = 10,1 А;
  4. утюг: 1–2 кВт, cosϕ = 1. Ток: 4,6–9,2 А;
  5. фен для волос: 0,6–2 кВт, cosϕ = 1. Ток: 2,76–9,2 А;
  6. телевизор: 0,1–0,4 кВт, cosϕ = 1. Ток: 0,46–1,84 А.

Мощность тока через катушку

Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :

Для мгновенной мощности получаем:

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Формула мощности по току и напряжению схемы

Напряжение на катушке и сила тока через неё.

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

Как разными способами найти силу тока

Содержание

  • 1 Зачем нужно находить силу тока
  • 2 Вычисление тока, если известны мощность и напряжение
  • 3 Определение мощности прибора
  • 4 Вычисление тока при известных значениях напряжения и сопротивления
  • 5 Использование мощности и сопротивления
  • 6 Непосредственное измерение силы тока
  • 7 Видео по теме

Знание силы тока в электрической цепи является в некоторых случаях необходимым. Ее определяют не только с помощью непосредственного измерения, но и расчетов. В последнем случае нужную информацию можно получить на основе технических характеристик оборудования.

Зависимости между основными электрическими величинами

Зависимости между основными электрическими величинами

Зачем нужно находить силу тока

Любое вещество состоит из атомов, которые включают в себя положительно заряженное ядро и вращающиеся вокруг него электроны. При отсутствии электрического поля движение этих частиц является хаотичным. Но как только проводник становится частью электрической цепи, подключённой к источнику питания, электроны начинают двигаться по направлению к положительному полюсу.

Ток проявляется через заряд. Каждый электрон несёт в себе элементарный отрицательный электрический заряд. Сила тока — это количество электронов, проходящих через поперечное сечение проводника за какой-то отрезок времени. Следовательно, можно сделать вывод, что рассматриваемый параметр определяют заряд и время.

Электроток выраженный через заряд и время

Электроток, выраженный через заряд и время

Найти силу тока в проводнике можно только в том случае, когда электрическая цепь подключена к источнику питания. Например, это может быть включение бытового прибора в электросеть с переменным напряжением, равным 220 В. Разным приборам для работы нужна разная мощность. В некоторых случаях даже выключенное оборудование может потреблять небольшое количество электричества, если оставить его вилку в розетке. Поэтому рассчитать силу тока в цепи можно через мощность и напряжение.

Слишком интенсивный электроток способен создавать проблемы. Он может, например, привести к перегреву деталей или к их разрушению. Если большой ток пройдёт через человека, то это нанесет серьёзный вред его здоровью или даже станет опасным для жизни. Для нормального и безопасного функционирования оборудования важно, чтобы электроток соответствовал установленным нормативам. Определение силы тока по мощности и напряжению позволяет проверить, насколько она соответствует требованиям.

Вычисление тока, если известны мощность и напряжение

Есть простой способ, как узнать ток, зная мощность и напряжение. В данном случае рассчитать постоянный ток можно по формуле:

Вычисление электротока при известных значениях напряжения и мощности

Расчет для переменного тока через мощность усложняется, поскольку его величина и направление постоянно меняются. Это обстоятельство нужно учитывать при расчетах. Если питание однофазное, то используется такая формула:

Формула электротока для однофазной сети

Чтобы определить силу переменного тока в трехфазной сети, следует воспользоваться формулой:

Расчет для трехфазной сети

При рассмотрении переменного тока нужно учитывать не только активную, но и реактивную мощность. Первая связана с активным сопротивлением, а вторая — с реактивным (ёмкостным и индуктивным). Соотношение между различными видами отражается с помощью cos φ.

Косинус угла «фи» обычно указывают в технической документации прибора. Если эту информацию нельзя получить из документации, то в расчетах очень мощных устройств принимают значение 0.8. Для большинства обычных бытовых приборов в вычислениях используют 0.95.

Подставив в формулу, применяемую для определения силы тока на участке цепи, значения напряжения U = 220 В для однофазной цепи и 380 В для трехфазной, а также cos φ = 0.95, получим следующие выражения:

Вычисление силы тока для однофазной и трехфазной сети

Как видим, сила тока в трехфазной и однофазной сети при одинаковой нагрузке будет разной. В однофазной она втрое больше, чем в трехфазной.

Определение мощности прибора

Перед тем как найти силу электрического тока, нужно определить величину используемой мощности:

  • Ее значение должно указываться в технической документации. Однако она не всегда доступна. В частности, документация может быть утеряна.
  • На задней панели приборов часто имеется наклейка, на которой приведены важнейшие характеристики устройства. В числе прочих обычно указывают мощность.

Задняя панель прибора с указанием основных данных

Задняя панель прибора с указанием основных данных

  • Можно воспользоваться таблицей с указанием средних значений мощности для различных видов устройств.

Мощность разных приборов

Мощность разных приборов

При вычислениях необходимо помнить, что пусковая мощность может превышать рабочую. Расчёт силы тока должен учитывать обе этих величины. Когда пусковая мощность вызывает резкое мгновенное увеличение силы тока, оно не должно превышать допустимой величины. Для бытовой техники пусковую мощность указывают редко. Поэтому перед тем как рассчитать силу тока, необходимо обратиться к соответствующим справочникам, чтобы найти определенное значение мощности. Для получения ее точной величины следует провести измерение ваттметром.

Вычисление тока при известных значениях напряжения и сопротивления

Если известно напряжение и сопротивление, то сила тока вычисляется по формуле, вытекающей из закона Ома:

Вычисление электротока согласно закону Ома

Если известны значения ЭДС, внутреннего сопротивления и нагрузки, то можно найти силу тока, используя закон Ома для полной цепи:

Определение электротока через эдс

Использование мощности и сопротивления

Как известно, мощность можно находить по формуле.

Определение мощности

Применив в данном выражении закон Ома, можно привести его к следующему виду:

Преобразованная формула мощности

Теперь силу тока можно выразить так:

Вычисление электротока если известны мощность и сопротивление

Следовательно, вычислить силу тока можно разными способами.

Непосредственное измерение силы тока

Величину силы тока можно не только рассчитывать, но и измерять, используя такие приборы, как амперметр или мультиметр. Любой из них при измерениях должен стать частью электрической цепи. Поэтому прибор нужно подключать последовательно.

Использование амперметра и вольтметра

Если нет большой нужды измерять силу тока амперметром, то лучше вычислить этот параметр, используя формулы, даже если для этого придется измерить напряжение. Вольтметром эта процедура осуществляется без разрыва электроцепи, чего нельзя сделать при использовании амперметра.

Также применяется магнитометрический способ. Примером его использования являются токовые клещи. Перед тем как определить силу электротока, их устанавливают так, чтобы они охватывали провод. Поскольку вокруг проводника при протекании тока образуется магнитное поле, которое клещи улавливают, то по его характеристикам прибор определяет силу тока в цепи.

Видео по теме

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Добавить комментарий