Как найти нули подмодульного выражения

Цели урока:  научить применять для решения
уравнений, содержащих несколько знаков модуля,
метод промежутков.

Тип урока: комбинированный с
использованием ИКТ.

Оборудование: доска, мел, ТСО.

Ход урока

1. Актуализация опорных знаний.

Слайд №1.

Вопросы для повторения темы “Модуль”,
“Решение уравнений с модулем”.

  • Происхождение слова “модуль”
  • Дать определение модуля: алгебраическую и
    геометрическую его интерпретацию.
  • Перечислить известные методы решения
    уравнений, содержащих знак абсолютной величины.

Слайд № 2.

Ответы на вопросы к слайду № 1.

1.Слово “модуль” произошло от латинского
слова “modulus”, что в переводе означает “мера”.
Это многозначное слово, которое имеет множество
значений и применяется не только в математике, но
и в архитектуре, физике, технике,
программировании и других точных науках.

2.1. Определение (алгебраическое).Модуль числа
а
или абсолютная величина числа а равна а,
если а больше или равно нулю и равна ,
если а меньше нуля:

Из определения следует, что для любого
действительного числа а, |а|>=0.

2.2. Определение (геометрическое). Модуль –
абсолютная величина числа, равная расстоянию от
начала отсчета до точки на числовой прямой. Любое
число можно изобразить точкой на координатной
прямой. Расстояние этой точкой от начала отсчёта
на этой прямой равно положительному числу или
нулю, если точка совпадает с началом отсчёта
числовой прямой.

3. а) Если f(х) проще, чем g(х), то
уравнение | f(х)| = g(х) принимает вид

| f(х) > 0
| f(х) = g(х)
|f(х)| = g(х) == > | f(х) < 0
| f(х) = – g(х).

При этом не надо решать неравенства, а надо
только подставить в них полученные решения
соответствующих уравнений.

Можно поступить и так: решить совокупность
уравнений

| f(х) = g(х)
| f(х) = – g(х), а затем просто сделать проверку.

3. б) Если g(х) проще, чем f(х), то
уравнение | f(х)| = g(х) решается так:

g(х) > 0
| f(х) = g(х)
|f(х)| = g(х) == > | f(х) = – g(х).

Изучение нового материала.

Учитель. Если левая часть уравнения F(х)=0
содержит модули некоторых функций, то для
решения таких уравнений обычно применяют метод
промежутков
, суть которого заключается в
следующем. По определенным соображениям
координатная ось разбивается на некоторое
количество промежутков, а затем на каждом из них
исследуется рассматриваемая задача.

Запишем алгоритм решения уравнений, содержащих
несколько модулей, затем на примере его применим.

Слайд № 3.


  1. Найти нули подмодульных выражений, то есть
    выражения в каждом модуле приравнять к нулю;
    решить каждое уравнение.
  2. Отметить корни каждого уравнения на
    координатной оси. Таким образом, вся
    координатная ось разбивается на некоторое число
    промежутков ( каждый из концов промежутков
    включают в один из двух соседних промежутков).
  3. Решать исходное уравнение в каждом промежутке,
    раскрывая все модули в уравнении для данного
    промежутка.
  4. На каждом промежутке отыскиваются корни того
    уравнения, которое на этом промежутке
    получается, и затем отбираются те из них, которые
    принадлежат данному промежутку. Они и будут
    корнями исходного уравнения на рассматриваемом
    промежутке.
  5. Объединить все корни, найденные на промежутках:
    они и есть корни исходного уравнения F(х)=0.

Решим уравнение | Х – 1| + | Х – 2| + | Х – 3| = 6 ,
используя данный алгоритм.

(Решение выполняет учитель с подробным
комментированием на доске на боковых досках, так
чтобы этими записями можно было пользоваться при
закреплении изученного материала)


  1. Найдем нули подмодульных выражений.
  2. Х – 1=0, Х – 2 = 0, Х – 3 = 0
    Х = 1, х = 2, х =3.

  3. Отметим нули подмодульных выражений на
    координатной оси, разделив его на промежутки.
  4. Получилось 4 промежутка: а) (- ; 1] б) (1; 2 ] в) (2; 3 ] г) (3; + ).

  5. 4. Решим исходное уравнение на каждом из
    промежутков, раскрывая модули для данного
    промежутка.
  6. а)( ; 1] |
    х – 1| = – (х – 1) ; |х – 2| = – (х – 2) | Х – 3| = – (х – 3 ).
    На данном промежутке

    уравнение | х – 1| + | х – 2| + |х – 3| = 6 равносильно
    уравнению – (х – 1) – (х – 2) – (х – 3) = 6. Решая это
    уравнение, получаем корень: х = 0. Этот корень
    принадлежит промежутку а)( – ; 1], следовательно на
    рассматриваемом промежутке исходное уравнение
    имеет единственный корень х = 0.

    б) (1; 2] |х – 1| = х – 1; |х – 2| = – (х – 2) |х – 3| = –
    (х – 3). На данном промежутке

    уравнение |х – 1| + |х – 2| + |х – 3| = 6 равносильно
    уравнению х – 1 – (х – 2) – (х – 3) = 6. Решая это
    уравнение, получаем корень: х = -2. Этот корень не
    принадлежит промежутку б) (1; 2] следовательно,
    на рассматриваемом промежутке исходное
    уравнение не имеет корней.

    в) (2; 3] | х – 1| = х – 1 ; | х – 2| = х – 2 | х – 3| = -(х
    – 3). На данном промежутке

    уравнение | Х – 1| + | Х – 2| + | Х – 3| = 6 равносильно
    уравнению Х – 1 + Х – 2 – ( Х – 3 ) = 6. Решая это
    уравнение, получаем корень: х = 6. Этот корень не
    принадлежит промежутку в) ( 2; 3] следовательно,
    на рассматриваемом промежутке исходное
    уравнение не имеет корней.

    г) ( 3; + ]
    | Х – 1| = Х – 1; | Х – 2| = Х – 2 | Х – 3| = Х – 3 . На данном
    промежутке

    уравнение | Х – 1| + | Х – 2| + | Х – 3| = 6 равносильно
    уравнению Х – 1 + Х – 2 + Х – 3 = 6. Решая это
    уравнение , получаем корень: х = 4 Этот корень
    принадлежит промежутку г) (3; + ), следовательно на
    рассматриваемом промежутке исходное уравнение
    имеет единственный корень х= 4.

  7. Таким образом, исходное уравнение | Х – 1| + | Х – 2|
    + | Х – 3| = 6 имеет два корня: х = 0 и х = 4.

Ответ: 0 ; 4.

Закрепление новой темы.

Учитель. (к доске вызывает сильного ученика
для решения уравнения ).

Решим еще одно уравнение с помощью образца, но
решать будет один из учеников на основной доске с
подробным комментированием. Класс будет
помогать и записывать решение в тетради с нами
вместе.

  1. |Х – 3| + |х + 3| = 8
  2. (ученик решает на доске с комментированием и
    оформлением поэтапно).

    Учитель подводит итоги решения ученика и
    вызывает еще одного менее сильного для решения
    другого уравнения.

    (ученик решает на доске с комментированием и
    оформлением поэтапно).

    2.| Х – 6| – |х + 6| = 8

    3. Уравнение | Х– 10| – |х + 10| = 2 класс решает
    самостоятельно по образцам на доске, затем
    учитель показывает верное решение на экране.

    Слайд № 4.

    Решите уравнение | Х – 10| – |х + 10| = 2

    1.Найдем нули подмодульных выражений: х – 10
    =0 и х + 10 = 0

    Х = 10 и х = -10.


  3. Отметим нули подмодульных выражений на
    координатной оси, разделив его на промежутки.
    Получается
    три промежутка: а) (– ; – 10 ] и б) (-10; 10 ] в) ( 10; +).

  4. 4. Решим исходное уравнение на каждом из
    промежутков, раскрывая модули для данного
    промежутка.

а) (-; – 10 ] | Х–
10| =-(Х – 10) и |х + 10|= – (х + 10)

уравнение | Х– 10| – | х + 10| = 2 равносильно
уравнению –(Х – 10) + (х + 10) =2.

Данное уравнение не имеет корней,
следовательно, на рассматриваемом промежутке
исходное уравнение не имеет корней.

б) (-10; 10 ] | Х– 10| =-(Х – 10) и |х + 10|= х + 10

уравнение | Х– 10| – | х + 10| = 2 равносильно
уравнению –(Х – 10) – (х + 10) =2.

Корень этого уравнения х= 1 Этот корень
принадлежит промежутку б) ( – 10; 10] следовательно,
на рассматриваемом промежутке исходное
уравнение имеет корень х=1

в) (10; +). | Х– 10|
= Х – 10 и |х + 10|= х + 10

уравнение | Х– 10| – | х + 10| = 2 равносильно
уравнению (Х – 10) – (х + 10) =2.

Данное уравнение не имеет корней,
следовательно, на рассматриваемом промежутке
исходное уравнение не имеет корней.

5. Объединить все корни, найденные на
промежутках: они и есть корни исходного
уравнения: х=1 Ответ: х = 1.

Подведение итогов урока.

На данном уроке научились решать уравнения с
несколькими модулями методом промежутков.

Домашнее задание: решить уравнение |х + 1| + |х –
3| + | х – 5| = 7.

На этой странице вы узнаете

  • Как перевернуть график модуля?
  • Одной ногой тут, другой там: к какому промежутку относить граничные точки?
  • Может ли решением квадратного неравенства быть любое число, если дискриминант меньше 0? 

Модуль числа — это великая математическая мудрость, которая показывает дружбу и соперничество противоположных знаков: минуса и плюса. О том, что держит число в рамках, узнаем в статье.  

Модуль 

Мы легко можем найти расстояние от точки до точки, достаточно просто измерить его линейкой. Но можно ли найти расстояние от 0 до любого числа? 

Представим, что наш дом находится посередине между школой и магазином. И до школы, и до магазина 500 метров, но они стоят по разные стороны от дома. 

Расположим их на координатной прямой. Поскольку и школа, и магазин располагаются на одинаковом расстоянии, то от дома до них мы будем идти 500 метров. Но на координатной прямой до школы мы пройдем −500 метров, поскольку движемся против направления оси, а до магазина 500 метров. 

Будет ли являться полученный результат противоречием? Нет, поскольку когда мы ищем расстояние, нам неважно направление движения и знак. В математике существует специальное определение — это модуль, или абсолютная величина. 

Модуль — расстояние от любой точки на координатной прямой до начала координат. 

Поскольку на координатной прямой мы можем отложить расстояние в две стороны, то такое расстояние можно найти и с отрицательными точками, и с положительными. Расстояние измеряет длину отрезка, то есть оно всегда будет положительно. 

Можно сказать, что от любого числа модуль берет только цифры, а на знаки не обращает внимания. Например, |−8| = 8 и |8| = 8. 

Может возникнуть вопрос: куда исчезает минус? Чтобы избавиться от минуса, достаточно умножить число на −1: (-8) * (-1) = 8. Значит, модуль просто умножает число на -1. 

Отсюда получается, что модулем числа а называют выражение:

Возьмем два случая: a = 8 и a = -8. Для первого получаем |8| = 8, а для второго |-8| = -(-8) = 8, то есть определение выполняется. 

Можно ли взять модуль функции? Да. Модулем произвольной функции называют выражение:

Свойства модуля

Модуль, как и все понятия в математике, обладает своими свойствами

Свойство 1. |a| >= 0. 

Как мы уже говорили, модуль всегда будет положительным числом, поскольку он не обращает внимания на знак числа. 

Свойство 2. |a| = |-a|. 

Это свойство также подтверждает рассуждения выше. Модули противоположных чисел, то есть чисел с разными знаками, равны. 

Свойство 3. |a| >= a. 

Если число а будет положительным, например, 5, то неравенство |5| >= 5 (rightarrow) 5 >= 5  выполняется, поскольку знак неравенства нестрогий. 

Если число а будет отрицательным, например, -5, то неравенство |-5| >= -5 (rightarrow) 5 >= -5  выполняется, поскольку положительное число всегда больше отрицательного. 

Свойство 4. |a * b| = |a| * |b|. 

Пусть a = 5, b = -2, тогда |5 * (-2) | = |-10| = 10, и |5| * |-2| = 5 * 2 = 10, то есть выражения равны между собой. 

Свойство 5. (|frac{a}{b}| = frac{|a|}{|b|}). 

Рассуждения такие же, как и в предыдущем свойстве. Пусть a = 10, b = -5, тогда (|frac{10}{(-5)}| = |-2| = 2 и frac{|10|}{|-5|} = frac{10}{5} = 2). 

Свойство 6. |a + b| <= |a| + |b|.

Почему появилось неравенство, а не уравнение, как в предыдущих двух свойствах? Разберем два примера. 

Пусть a = 1, b = 2, тогда |1 + 2| = |3| = 3 и |1| + |2| = 1 + 2 = 3 — неравенство выполняется, поскольку знак нестрогий.

Но если a = -1, b = 2, тогда |-1 +2| = |1| = 1 и |-1| + |2| = 1 + 2 = 3, откуда получаем 1 < 3. 

Свойство 7. (sqrt{a^2} = |a|). 

Докажем это свойство. Пусть (sqrt{a^2} = x), тогда x0, поскольку квадратный «Корень» не может быть отрицательным. Возведем полученное уравнение в квадрат: a2 = x2 
a2 — x2 = 0
(a — x)(a + x) = 0

Из уравнения x = a,  из-за ограничений на x получаем a >= 0.

И x = -a,  из-за ограничений на x получаем a < 0. 

То есть получается выражение модуля. 

Свойство 8. |a|2 = a2.

Поскольку и модуль, и квадрат числа дают положительный результат, модуль в квадрате можно заменить просто квадратом числа. 

График модуля

Как изобразить функцию с модулем? Для начала разберемся, что делает модуль с графиком функции. 

Рассмотрим функцию y = x — это прямая. При этом у может быть и положительным, и отрицательным. 

Занесем х под знак модуля: y = |x|. Теперь у может быть только положительным. Что происходит с частью графика, которая лежит ниже оси х? Она зеркально отражается. В итоге мы получаем галочку: 

Модуль отражает любой график относительно оси х

Что будет, если перед х будет стоять коэффициент? Построим графики: 

Галочка будет сужаться и расширяться. Причем чем больше коэффициент перед х, тем ýже будет галочка. 

Попробуем добавить слагаемое к подмодульному выражению. 

График модуля будет двигаться вдоль оси х. Причем:

  • если мы прибавляем число, то график сдвигается влево;
  • если мы вычитаем число, то график сдвигается вправо. 

Добавим число к модулю, а не подмодульному выражению:

График будет двигаться вдоль оси у

Как перевернуть график модуля?

Для этого достаточно добавить перед модулем минус. Важно, чтобы минус стоял именно перед модулем, а не внутри него. Тогда график будет отзеркален относительно оси х и лежать только ниже нее. 

Это легко проследить с помощью уравнений: если y = -|x|, то, при x = 3 получаем:
y = -|3| = -3

Уравнения с модулем

1. Возьмем уравнение вида |f(x)| = a. Поскольку модуль не может быть отрицательным, то и а  не может быть отрицательным. Получаем следующий переход:

Пример 1. Решите уравнение |4x + 5| = 7. 

Решение. В уравнении f(x) = 4x + 5, a = 7. Воспользуемся переходом:

Из первого уравнения x = 0,5, а из второго уравнения x = -3. 

Ответ: 0,5: -3. 

2. В уравнениях и неравенствах можно встретить два разных модуля. Как быть в этом случае? 

Алгоритм решения уравнений с несколькими модулями 

Шаг 1. Находим нули подмодульных выражений. 

Шаг 2. Чертим числовую прямую и ищем знаки на промежутках для каждого модуля. Если подмодульное выражение отрицательно на промежутке, то ставится минус, если положительно — ставится плюс. 

Шаг 3. Для каждого промежутка раскрываем модули. Если подмодульное выражение на промежутке отрицательно, то модуль раскрывается со знаком минус. Если положительно — модуль раскрывается со знаком плюс. Важно: полученные корни должны принадлежать промежуткам, на которых раскрывается модуль, иначе они не будут решениями уравнения. 

Шаг 4. Записать все полученные корни в ответ. 

Пример 2. Решите уравнение |x — 2| — |x + 2| = 4x — 5.

Решение. Найдем, в каких точках модули будут равны 0. Для этого подмодульное выражение также должно быть равно 0:

x — 2 = 0 (rightarrow) x = 2
x + 2 = 0 (rightarrow) x = -2

Нарисуем числовую прямую с этими точками: 

У нас получилось три промежутка: 

  • (-(infty);-2)
  • [-2;2)
  • [2;+(infty))

Обратим внимание, какие знаки имеет первый модуль на промежутках: x — 2 > 0 при x > 2. Следовательно, на первых двух промежутках модуль будет отрицательным, а на третьем положительным. Расставим его знаки красным цветом. 

Проанализируем второй модуль: x + 2 > 0 (rightarrow) x>-2. Получается, подмодульное выражение будет положительно на втором и третьем промежутке, и отрицательным на первом промежутке. Расставим его знаки синим цветом. 

Теперь мы можем рассмотреть уравнение на всех трех промежутках. Однако для этого обязательно ввести ограничения: полученные точки должны принадлежать только этому промежутку, поскольку на следующем модули будут раскрываться уже по-другому. 

2. Рассмотрим первый промежуток: x<-2. Оба модуля раскрываются с отрицательным знаком, и мы получаем следующее уравнение:

-(x — 2) — (-(x + 2)) = 4x — 5
-x + 2 + x + 2 = 4x — 5
4 = 4x — 5
4x = 9
x = 2,25

Точка не удовлетворяет ограничению, поскольку не лежит в промежутке (-(infty);-2):

Рассмотрим второй промежуток: [-2;2). Первый модуль раскрывается с минусом, а второй с плюсом:

-(x — 2) — (x + 2) = 4x — 5
-x + 2 — x — 2 = 4x — 5
-2x = 4x — 5
6x = 5
(x = frac{5}{6})

Эта точка лежит в заданном промежутке и является решением уравнения. 

Рассмотрим третий промежуток [2;+(infty)). Оба модуля раскрываются со знаком плюс, мы получаем уравнение:

(x — 2) — (x + 2) = 4x — 5
x — 2 — x — 2 = 4x — 5
-4 = 4x — 5
4x = 1

x = 0,25 — эта точка не лежит в промежутке, то есть не является решением уравнения. 

Решением уравнения будет только (x = frac{5}{6}). 

Ответ: (frac{5}{6})

Одной ногой тут, другой там: к какому промежутку относить граничные точки?

Разбивая прямую на промежутки, может возникнуть вопрос: а что делать с точками, в которых модуль равен 0? Их обязательно нужно проверять. Можно сделать это как отдельно, подставив точки в уравнение, так и сразу включить их в условие раскрытия модуля. 

Если точки включаются в условие раскрытия модуля, то достаточно включить их только в один из двух промежутков. Включать их в два промежутка нецелесообразно: одна и та же точка будет проверяться дважды. 

3. Уравнения вида |f(x)| = g(x)

Поскольку вместо функций могут стоять любые выражения, раскрыть модуль можно двумя способами. Выбор одного из них зависит от того, какая функция проще: f(x) или g(x). 

Как можно раскрыть модуль?

  • Можно раскрыть его в зависимости от знаков подмодульного выражения: если подмодульное выражение отрицательное, то модуль раскрывается с минусом, если положительное, то с плюсом. 
  • Можно возвести уравнение в квадрат. Но здесь необходимо ввести ограничения на g(x) — поскольку функция равна модулю, она не может быть отрицательной. 

Для удобства можно пользоваться следующей схемой: 

Пример 3. Решите уравнение |8 — x| = x2 — 5x + 11.

Решение. Заметим, что подмодульное выражение значительно проще функции справа, в этом случае удобнее будет раскрыть модуль. Получаем совокупность двух систем: 

Рассмотрим первую систему.

8 — x >= 0 (rightarrow) x <= 8

Решим уравнение:

8 — x = x2 — 5x + 11
x2 — 4x + 3 = 0
D = 16 — 12 = 4
(x_1 = frac{4 + 2}{2} = 3)
(x_2 = frac{4 — 2}{2} = 1)

Оба корня уравнения удовлетворяют условию x <= 8, значит, решением системы будут 1 и 3. 

Рассмотрим вторую систему. 

8 — x < 0 (rightarrow) x > 8

Решим уравнение: 

8 — x = -x2 + 5x — 11
x2 — 6x + 19 = 0
D = 36 — 76 = -40 — при отрицательном дискриминанте решения уравнений нет. 

Решением всего уравнения будут x = 1 и x = 3. 

Ответ: 1, 3

4. Разберем еще один тип уравнений, когда модуль равен модулю. Неужели придется рассматривать целых 4 случая раскрытия модуля? Нет, достаточно будет возвести в квадрат обе части уравнения. Таким образом, мы получаем следующий переход: 

Пример 4. Решите уравнение |x — 2| = |2x + 8|.

Решение. Возведем обе части уравнения в квадрат. Для этого воспользуемся свойством 8.

(x — 2)2 = (2x + 8)2
(x — 2)2 — (2x + 8)2 = 0

Воспользуемся формулой сокращенного умножения:

((x — 2) — (2x + 8))((x — 2) + (2x + 8) = 0

Если произведение множителей равно 0, то каждый множитель равен 0. Тогда:

x — 2 — (2x + 8) = 0 (rightarrow) x — 2 = 2x + 8
x — 2 + (2x + 8) = 0 (rightarrow) x — 2 = -(2x + 8)

Получаем совокупность: 

Решим первое уравнение совокупности:

x — 2 = 2x + 8
x = -10

Решим второе уравнение совокупности:

x — 2 = -2x — 8
3x = -6
x = -2

Решением уравнения будут x = -10 и x = -2

Ответ: -2, -10

Неравенства с модулем

Разобравшись, как решаются уравнения с модулем, можно приступать к неравенствам. 

Пример 5. Решите неравенство x2 — |3x — 7| + 7 >= 0. 

Решение. Найдем, при каких значениях х модуль равен 0. Получаем 3x = 7 (rightarrow) (x = frac{7}{3}). 

Определим, с какими знаками модуль будет раскрываться на каждом промежутке. 

Осталось рассмотреть неравенство на двух промежутках. 

1. (x leq frac{7}{3}), тогда
x2 — (-(3x — 7)) + 7 >= 0
x2 + 3x — 7 + 7 >= 0
x2 + 3x >= 0
x(x + 3) >= 0

Решим это неравенство «Методом интервалов». Сразу учтем ограничение (x leq frac{7}{3}). 

Получаем, что решением неравенства на заданном промежутке будет (x in (-infty; -3] U[0; frac{7}{3}]). 

2. (x > frac{7}{3}), тогда 
x2 — 3x + 7 + 7 >= 0
x2 — 3x + 14 >= 0
x2 — 3x + 14 = 0
D = 9 — 56 = -47 — корней на заданном отрезке не будет. 

Может ли решением квадратного неравенства быть любое число, если дискриминант меньше 0? 

Вспомним, что корни квадратного уравнения — это точки пересечения параболы и оси х. Если парабола не пересекает ось х, то неизбежно лежит выше или ниже ее. Поскольку в нашем случае ветви параболы направлены вверх, мы можем нарисовать ее примерный график. 

Так как парабола задается функцией y = x2 — 3x + 14, то неравенство будет выполняться при всех y >= 0. Парабола целиком попадает в эту область, а решением неравенства будет любое х

Однако не стоит забывать про ограничение (x > frac{7}{3}). Накладывая его, получаем решение ((frac{7}{3}; + infty)). 

Осталось только объединить полученные на промежутках решения: 

Получаем, что (x in (-infty;- 3] U [0; +infty)).

Ответ: (x in (-infty;- 3] U [0; +infty))

Рассмотрим неравенства вида |f(x)| > a и |f(x)| < a, где а — некоторое число и a >= 0. Модуль можно раскрыть двумя способами и получить два неравенства. Но будет это совокупность или система?

Это зависит от знака. Разберем случай |f(x)| > a. Заметим, что строгость знака может быть любой. Тогда модуль раскрывается как: 

f(x) > a и -f(x) > a (rightarrow) f(x) < -a. 

Отметим эти промежутки на числовой прямой:

В ответе должны оказаться оба промежутка — их нужно объединить. В этом случае модуль раскрывается в совокупности. 

Рассмотрим случай |f(x)| < a, здесь строгость знака также может быть любой. Раскроем модуль: f(x) < 0 и -f(x) < a (rightarrow) f(x) > -a. На числовой прямой это будет выглядеть следующим образом: 

В в ответе должен оказаться промежуток от —а до а. Следовательно, необходимо воспользоваться системой, чтобы “отсечь” лишние промежутки. 

Можно ли обойтись в этом случае без раскрытия модуля? Да, но необходимо возвести неравенство в квадрат. 

|f(x)| ⋁ a | (uparrow) 2 — вместо ⋁ может стоять любой знак неравенства. 
f2(x) ⋁ a2
f2(x) — a2 ⋁ 0

Воспользуемся формулой сокращенного умножения:

(f(x) — a)(f(x) + a) ⋁ 0

Однако стоит помнить, что обе части неравенства можно возвести в квадрат только в том случае, если они неотрицательны. То есть обязательно должно выполняться условие a0. 

Мы получили равносильный переход. Но существуют ли равносильные переходы, если вместо числа а стоит другая функция или даже модуль? Да. Они выводятся таким же способом, как и переход для неравенства с числом. Получаем еще два равносильных перехода:

  • |f(x)| ⋁ g(x) (rightarrow) (f(x) — g(x))(f(x) + g(x)) ⋁ 0  

g(x) обязательно должно быть неотрицательным, чтобы можно было возвести неравенства в квадрат. 

  • |f(x)| ⋁ |g(x)| (rightarrow) (f(x) — g(x))(f(x) + g(x)) ⋁ 0

Разберем на примере, как можно использовать равносильный переход. Для этого возьмем то же неравенство, что и в примере 5, но решим его по-другому. 

Пример 6. Решите неравенство x2 — |3x — 7| + 7 >= 0. 

Решение. Перенесем модуль в другую часть неравенства:

|3x — 7| <= x2 + 7. Модуль всегда неотрицателен. Правая часть неравенства неотрицательна, поскольку число в квадрате всегда положительно. 

Повторим действия, чтобы прийти к равносильному переходу:

(3x — 7)2 <= (x2+7)2
(3x-7)2 — (x2 + 7)2 <= 0
(3x — 7 — (x2 + 7))(3x — 7 + x2 + 7) <= 0
(3x — 7 — x2 — 7)(3x + x2) <= 0
(-x2 + 3x — 14) * x(3 + x) <= 0
-(x2 — 3x + 14) * x(3 + x) <= 0
(x2 — 3x + 14) * x(3 + x) <= 0

Рассмотрим первую скобку:

x2 — 3x + 14 = 0

D = 9 — 56 = -47 — корней нет. Выражение всегда будет положительно, то есть на него можно разделить все неравенство. Получаем:

x(3 + x) <= 0

Тогда (x in (-infty;- 3] U [0; +infty))

Ответ: (x in (-infty;- 3] U [0; +infty))

При решении можно сразу использовать равносильный переход, не расписывая его. 

Итак, неравенства с модулем можно решить двумя способами: раскрывать модуль и воспользоваться равносильным переходом. Выбор способа зависит от личных предпочтений и удобства решения.

Фактчек

  • Модуль расстояние от любой точки на координатной прямой до начала координат. Модуль обозначается двумя вертикальными черточками: |a| = a и |-a| = a. 
  • Модулем числа называют выражение: 
  • График модуля представляет собой “галочку”, которая лежит выше оси х. Модуль отражает график любой функции зеркально оси х так, что значения у всегда больше 0. 
  • Модуль можно раскрыть двумя способами. Этим свойством можно пользоваться при решении уравнений с модулем. 
  • При решении неравенств с модулем можно раскрывать его, либо воспользоваться равносильным переходом, если в неравенстве выполняются все условия для него. 

Проверь себя

Задание 1. 
Чему равно выражение |-16 * 2|?

  1. 32
  2. −32
  3. −16
  4. 16

Задание 2. 
Какой график имеет функция y = |x|?

  1. Парабола
  2. Гипербола
  3. Прямая
  4. Галочка

Задание 3. 
Решите уравнение |x| = -3. 

  1. 3
  2. −3
  3. Решений нет
  4. 3 и −3 

Задание 4. 
Решите уравнение |x + 2| = 15. 

  1. −13
  2. 17
  3. 13 и -17
  4. Решений нет 

Задание 5.
Какой равносильный переход можно использовать для неравенства вида |f(x) |⋁ |g(x)|?

  1. f(x) ⋁ g(x)
  2. f(x) ⋀ g(x)
  3. f2(x) — 2 * f(x) * g(x) + g2(x) ⋁ 0
  4. (f(x) — g(x))(f(x) + g(x)) ⋁ 0 

Ответы: 1. — 1 2. — 4 3. — 3 4. — 3 5. — 4

Для того, чтобы научиться решать уравнения с модулем, надо вспомнить и выучить определение модуля.

undefined

Из определения видно, что модуль любого числа неотрицателен. Кроме того, определение показывает как можно избавляться от знака модуля в уравнении.

На практике это делается так:

1) Находят значения переменной, при которых выражения стоящие под знаком модуля обращаются в нуль.

2) Отмечают все нули на числовой прямой. Они разобьют эту прямую на лучи и промежутки, на которых все подмодульные выражения имеют постоянный знак.

3) Определяем знаки подмодульных выражений на каждом промежутке и раскрываем все модули (заменяя их подмодульными выражениями со знаком плюс или со знаком минус в зависимости от знака подмодульного выражения).

4) Решаем получившиеся уравнения на каждом промежутке (сколько промежутков, столько и уравнений).Обратите внимание, что обязательно выбираем только те решения, которые находятся в данном промежуток (полученные решения могут и не принадлежать промежутку).

Хватит уже теории, пора на примерах посмотреть как решаются уравнения с модулем. Начнем с более простого.

Решение уравнений с модулями

Пример 1. Решить уравнение  .

Решение.  Так как  , то  . Если  , то  ,  и  уравнение принимает вид  .

Отсюда получаем  .

Ответ:  .  

Пример 2. Решить уравнение  .

Решение.  Из уравнения следует, что  .

Поэтому  , , , и уравнение принимает вид  или  .

Так как  , то исходное уравнение корней не имеет.

Ответ:  корней нет.

Пример 3. Решить уравнение  .

Решение. Перепишем уравнение в равносильном виде .

Полученное уравнение относится к уравнениям типа .

Известно, что уравнение такого типа равносильно неравенству . Следовательно, здесь имеем   или   .

Ответ:  .

Думаю, как решать такого вида уравнения с модулем вы уже разобрались. Попробуем разобраться с более сложным уравнением.

Пример 4. Решить уравнение: |x2 + 2x|  |2 – x| = |x2 – x|

Находим нули подмодульных выражений:

х2  + 2х = 0, х(х + 2) = 0, х = 0 или х = ‒ 2. При этом парабола у = х2  + 2х положительна на промежутках (–∞; –2 ) и (0; +∞), а на промежутке (–2; 0 ) она отрицательна (см. рисунок).

 undefined

х2  ‒ х = 0, х(х – 1) =0, х = 0 или х = 1. Эта парабола у = х2 ‒ х положительна на промежутках (–∞; 0 ) и (1; +∞), а на промежутке (0; 1) она отрицательна (см. рисунок).

undefined

2 – х = 0, х = 2, модуль положителен на промежутке (–∞; 0) и принимает отрицательные значения на промежутке (2; +∞) (см. рисунок).

undefined

Теперь решаем уравнения на промежутках:

1)   х ≤ ‒2:   х2  + 2х – (2 – х) = х2  ‒ х, х2  + 2х – 2 + х = х2  ‒ х, 4х = 2, х = 1/2 (не входит в рассматриваемый промежуток)

2)   –2 ≤ x <0:   ‒(х2  + 2х) – (2 – х) = х2  ‒ х, ‒х2  ‒ 2х – 2 + х = х2 ‒ х, ‒2 х2 = 2, х2 = ‒1, решений нет.

3)    0 ≤ x <1:   х2  + 2х ‒ (2 – х) = ‒ (х2  ‒ х), х2  + 2х ‒ 2 + х = ‒х2  + х, 2х2  + 2х – 2 = 0, х2  + х – 1 = 0, √D = √5,
х1 = (‒1 ‒ √5)/2 и х2 = (‒1 + √5)/2.

Так как первый корень отрицательный, то он не принадлежит нашему промежутку, а второй корень больше нуля и меньше единицы это и есть наше решение на данном промежутке.

4)    1 ≤ x <2:   х2 + 2х – (2 – х) = х2 ‒ х, х2 + 2х – 2 + х = х2 ‒ х, 4х = 2, х= 1/2 (не входит в рассматриваемый промежуток)

5)    х ≥ 2:   х2 + 2х –(‒(2 – х)) = х2 ‒ х, х2 + 2х + 2 ‒ х = х2 ‒ х, 2х = ‒ 2, х = ‒1 (не входит в рассматриваемый промежуток).

Ответ: (‒1 + √5)/2.

Вы заметили, что решается это уравнение также как и предыдущие, отличие в количестве промежутков. Так как под модулем стоят квадратные выражения то корней получилось больше, а соответственно и больше промежутков.

А как же решать уравнение в котором модуль стоит под модулем? Давайте посмотрим на примере.

Пример 5. Решите уравнение |3 – |x – 2|| = 1

Подмодульное выражение может принимать значение либо 1 либо – 1. Получаем два уравнения:

3 ‒ |х ‒ 2|= ‒1 или 3 ‒ |х ‒ 2|= 1

Решаем каждое уравнение отдельно.

1)  3 ‒ |х ‒ 2|= ‒1, ‒|х ‒ 2|= ‒1 – 3, ‒|х ‒ 2|= ‒4, |х ‒ 2|= 4,
х ‒ 2= 4 или х ‒ 2= ‒ 4, откуда получаем х1 = 6, х2 = ‒2.

2)  3 ‒ |х ‒ 2|= 1, ‒|х ‒ 2|= 1 ‒ 3, ‒|х – 2|= ‒2, |х – 2|= 2,
х – 2 = 2 или х – 2 = ‒2,  
х3 = 4 , х4 = 0.

Надеюсь, после изучения данной статьи вы будете успешно решать уравнения с модулем. Если остались вопросы, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

21
Июн 2013

Категория: Модуль

Неравенство с двумя модулями. Часть II

2013-06-21
2014-09-26

«Неравенство с двумя модулями. Часть I» смотрим здесь.

Решим неравенство |4-x|+|x^2+x-6|geq 7

Правило раскрытия модуля говорит, что раскрытие модуля зависит от того, какой знак имеет подмодульное выражение. Стало быть, нас будут интересовать нули подмодульных выражений, – смена знака подмодульного выражения возможна только в них.

В нашем случае нуль первого модуля – это 4,  нули второго подмодульного выражения – это -3 и 2.

Вся числовая ось указанными точками разбивается на 4 промежутка. Нам предстоит поработать с неравенством в каждом из них.

Если у вас возник вопрос, почему, например, в крайнем левом промежутке у нас число -3 не включено, а на следующем включено (аналогично с другими), – ответим на него. На самом деле,  – все равно, куда именно вы включите концы промежутков. Лишь бы при склейке все промежутки давали бы нам всю числовую прямую, если мы работаем на R.

promezutki

Выясним, как распределяются знаки подмодульных выражений на каждом из промежутков.

Начнем с первого подмодульного выражения. Очевидно, что при x>4 знак выражения 4-x – минус, то есть 4-x<0, а при xleq 4    4-xgeq0.

9

«Переключателями» же знака второго подмодульного выражения из неравенства являются точки -3 и 2. Если -3leq xleq 2, то  x^2+x-6leq 0, при остальных x имеем: x^2+x-6>0. Если вам не кажутся очевидными знаки этого подмодульного выражения на указанных промежутках, загляните сюда (метод интервалов).

е

Мы замечаем, что на двух промежутках (первом и третьем слева) знаки подмодульных выражений распределены одинаково.

Итак, первый случай:

Предстоит решить систему (мы объединили первый и третий промежутки в совокупность):

begin{cases} left[begin{gathered} x<-3, & 2<xleq 4; end{gathered} right& & 4-x+x^2+x-6geq 7; end{cases}

Во второй строке системы приводим подобные слагаемые и раскладываем на множители:

begin{cases} left[begin{gathered} x<-3, & 2<xleq 4; end{gathered} right& & (x-3)(x+3)geq 0; end{cases}

Теперь переходим на ось, пересекаем два множества между собой:

7

xin(-infty;-3)cup[3;4].

Второй случай: 

begin{cases} -3leq xleq 2,& &  4-x-x^2-x+6geq 7; end{cases}

begin{cases} -3leq xleq 2,& &  x^2+2x-3leq 0; end{cases}

begin{cases} -3leq xleq 2,& & (x-1)(x+3)leq 0; end{cases}

лт

xin[-3;1].

Третий случай: 

begin{cases} x>4,& & -4+x+x^2+x-6geq 7; end{cases}

begin{cases} x>4,& & x^2+2x-17geq 0; end{cases}

begin{cases} x>4,& & (x-(-1+3sqrt2))(x-(-1-3sqrt2))geq 0; end{cases}

76п

xin(4;+infty).

Нам осталось объединить решения каждого из случаев  между собой:

ь

Ответ: (-infty;1]cup[3;+infty)

Для тренировки предлагаю Вам решить следующее неравенство:

|x^2-3x+2|+|2x+1|leq 5

Ответ: + показать

Автор: egeMax |

комментариев 5
| Метки: модуль

Печать страницы

Как решать уравнения с модулем: основные правила

30 декабря 2016

Модуль — одна из тех вещей, о которых вроде-бы все слышали, но в действительности никто нормально не понимает. Поэтому сегодня будет большой урок, посвящённый решению уравнений с модулями.

Сразу скажу: урок будет несложный. И вообще модули — вообще тема относительно несложная. «Да конечно, несложная! У меня от неё мозг разрывается!» — скажут многие ученики, но все эти разрывы мозга происходят из-за того, что у большинства людей в голове не знания, а какая-то хрень. И цель этого урока — превратить хрень в знания.:)

Немного теории

Итак, поехали. Начнём с самого важного: что такое модуль? Напомню, что модуль числа — это просто то же самое число, но взятое без знака «минус». Т.е., например, $left| -5 right|=5$. Или $left| -129,5 right|=129,5$.

Вот так всё просто? Да, просто. А чему тогда равен модуль положительного числа? Тут ещё проще: модуль положительного числа равен самому этому числу: $left| 5 right|=5$; $left| 129,5 right|=129,5$ и т.д.

Получается любопытная вещь: разные числа могут иметь один тот же модуль. Например: $left| -5 right|=left| 5 right|=5$; $left| -129,5 right|=left| 129,5 right|=129,5$. Нетрудно заметить, что это за числа, у которых модули одинаковые: эти числа противоположны. Таким образом, отметим для себя, что модули противоположных чисел равны:

[left| -a right|=left| a right|]

Ещё один важный факт: модуль никогда не бывает отрицательным. Какое бы число мы ни взяли — хоть положительное, хоть отрицательное — его модуль всегда оказывается положительным (или в крайнем случае нулём). Именно поэтому модуль часто называют абсолютной величиной числа.

Кроме того, если объединить определение модуля для положительного и отрицательного числа, то получим глобальное определение модуля для всех чисел. А именно: модуль числа равен самому этому числу, если число положительное (или ноль), либо равен противоположному числу, если число отрицательное. Можно записать это в виде формулы:

[left| a right|=left{ begin{align}& a,quad age 0, \& -a,quad a lt 0. \end{align} right.]

Ещё есть модуль нуля, но он всегда равен нулю. Кроме того, ноль — единственное число, которое не имеет противоположного.

Таким образом, если рассмотреть функцию $y=left| x right|$ и попробовать нарисовать её график, то получится вот такая «галка»:

График функции-модуля и его пересечение с горизонтальной линией

График модуля и пример решения уравнения

Из этой картинки сразу видно, что $left| -m right|=left| m right|$, а график модуля никогда не опускается ниже оси абсцисс. Но это ещё не всё: красной линией отмечена прямая $y=a$, которая при положительных $a$ даёт нам сразу два корня: ${{x}_{1}}$ и ${{x}_{2}}$, но об этом мы поговорим позже.:)

Помимо чисто алгебраического определения, есть геометрическое. Допустим, есть две точки на числовой прямой: ${{x}_{1}}$ и ${{x}_{2}}$. В этом случае выражение $left| {{x}_{1}}-{{x}_{2}} right|$ — это просто расстояние между указанными точками. Или, если угодно, длина отрезка, соединяющего эти точки:

Определение модуля через расстояние

Модуль — это расстояние между точками на числовой прямой

Из этого определения также следует, что модуль всегда неотрицателен. Но хватит определений и теории — перейдём к настоящим уравнениям.:)

Основная формула

Ну хорошо, с определением разобрались. Но легче-то от этого не стало. Как решать уравнения, содержащие этот самый модуль?

Спокойствие, только спокойствие. Начнём с самых простых вещей. Рассмотрим что-нибудь типа такого:

[left| x right|=3]

Итак, модуль$x$ равен 3. Чему может быть равен $x$? Ну, судя по определению, нас вполне устроит $x=3$. Действительно:

[left| 3 right|=3]

А есть ли другие числа? Кэп как бы намекает, что есть. Например, $x=-3$ — для него тоже $left| -3 right|=3$, т.е. требуемое равенство выполняется.

Так может, если поискать, подумать, мы найдём ещё числа? А вот обломитесь: больше чисел нет. Уравнение $left| x right|=3$ имеет лишь два корня: $x=3$ и $x=-3$.

Теперь немного усложним задачу. Пусть вместо переменной $x$ под знаком модуля тусуется функция $fleft( x right)$, а справа вместо тройки поставим произвольное число $a$. Получим уравнение:

[left| fleft( x right) right|=a]

Ну и как такое решать? Напомню: $fleft( x right)$ — произвольная функция, $a$ — любое число. Т.е. вообще любое! Например:

[left| 2x+1 right|=5]

или:

[left| 10x-5 right|=-65]

Обратим внимание на второе уравнение. Про него сразу можно сказать: корней у него нет. Почему? Всё правильно: потому что в нём требуется, чтобы модуль был равен отрицательному числу, чего никогда не бывает, поскольку мы уже знаем, что модуль — число всегда положительное или в крайнем случае ноль.

А вот с первым уравнением всё веселее. Тут два варианта: либо под знаком модуля стоит положительное выражение, и тогда$left| 2x+1 right|=2x+1$, либо это выражение всё-таки отрицательное, и тогда $left| 2x+1 right|=-left( 2x+1 right)=-2x-1$. В первом случае наше уравнение перепишется так:

[left| 2x+1 right|=5Rightarrow 2x+1=5]

И внезапно получается, что подмодульное выражение $2x+1$ действительно положительно — оно равно числу 5. Т.е. мы можем спокойно решать это уравнение — полученный корень будет кусочком ответа:

[2x+1=5Rightarrow 2x=4Rightarrow x=2]

Особо недоверчивые могут попробовать подставить найденный корень в исходное уравнение и убедиться, что действительно под модулем будет положительное число.

Теперь разберём случай отрицательного подмодульного выражения:

[left{ begin{align}& left| 2x+1 right|=5 \& 2x+1 lt 0 \end{align} right.Rightarrow -2x-1=5Rightarrow 2x+1=-5]

Опа! Снова всё чётко: мы предположили, что $2x+1 lt 0$, и в результате получили, что $2x+1=-5$ — действительно, это выражение меньше нуля. Решаем полученное уравнение, при этом уже точно зная, что найденный корень нас устроит:

[2x+1=-5Rightarrow 2x=-6Rightarrow x=-3]

Итого мы вновь получили два ответа: $x=2$ и $x=3$. Да, объём вычислений оказался малость побольше, чем в совсем уж простом уравнении $left| x right|=3$, но принципиально ничего не изменилось. Так может, существует какой-то универсальный алгоритм?

Да, такой алгоритм существует. И сейчас мы его разберём.

Избавление от знака модуля

Пусть нам дано уравнение $left| fleft( x right) right|=a$, причём $age 0$ (иначе, как мы уже знаем, корней нет). Тогда можно избавиться от знака модуля по следующему правилу:

[left| fleft( x right) right|=aRightarrow fleft( x right)=pm a]

Таким образом, наше уравнение с модулем распадается на два, но уже без модуля. Вот и вся технология! Попробуем решить парочку уравнений. Начнём вот с такого

[left| 5x+4 right|=10Rightarrow 5x+4=pm 10]

Отдельно рассмотрим, когда справа стоит десятка с плюсом, и отдельно — когда с минусом. Имеем:

[begin{align}& 5x+4=10Rightarrow 5x=6Rightarrow x=frac{6}{5}=1,2; \& 5x+4=-10Rightarrow 5x=-14Rightarrow x=-frac{14}{5}=-2,8. \end{align}]

Вот и всё! Получили два корня: $x=1,2$ и $x=-2,8$. Всё решение заняло буквально две строчки.

Ок, не вопрос, давайте рассмотрим что-нибудь чуть посерьёзнее:

[left| 7-5x right|=13]

Опять раскрываем модуль с плюсом и минусом:

[begin{align}& 7-5x=13Rightarrow -5x=6Rightarrow x=-frac{6}{5}=-1,2; \& 7-5x=-13Rightarrow -5x=-20Rightarrow x=4. \end{align}]

Опять пара строчек — и ответ готов! Как я и говорил, в модулях нет ничего сложного. Нужно лишь запомнить несколько правил. Поэтому идём дальше и приступаем с действительно более сложным задачам.

Случай переменной правой части

А теперь рассмотрим вот такое уравнение:

[left| 3x-2 right|=2x]

Это уравнение принципиально отличается от всех предыдущих. Чем? А тем, что справа от знака равенства стоит выражение $2x$ — и мы не можем заранее знать, положительное оно или отрицательное.

Как быть в таком случае? Во-первых, надо раз и навсегда понять, что если правая часть уравнения окажется отрицательной, то уравнение не будет иметь корней — мы уже знаем, что модуль не может быть равен отрицательному числу.

А во-вторых, если права часть всё-таки положительна (или равна нулю), то можно действовать точно так же, как раньше: просто раскрыть модуль отдельно со знаком «плюс» и отдельно — со знаком «минус».

Таким образом, сформулируем правило для произвольных функций $fleft( x right)$ и $gleft( x right)$ :

[left| fleft( x right) right|=gleft( x right)Rightarrow left{ begin{align}& fleft( x right)=pm gleft( x right), \& gleft( x right)ge 0. \end{align} right.]

Применительно к нашему уравнению получим:

[left| 3x-2 right|=2xRightarrow left{ begin{align}& 3x-2=pm 2x, \& 2xge 0. \end{align} right.]

Ну, с требованием $2xge 0$ мы как-нибудь справимся. В конце концов, можно тупо подставить корни, которые мы получим из первого уравнения, и проверить: выполняется неравенство или нет.

Поэтому решим-ка само уравнение:

[begin{align}& 3x-2=2xRightarrow 3x-2x=2Rightarrow x=2; \& 3x-2=-2xRightarrow 5x=2Rightarrow x=frac{2}{5}. \end{align}]

Ну и какой их этих двух корней удовлетворяет требованию $2xge 0$? Да оба! Поэтому в ответ пойдут два числа: $x=2$ и $x={2}/{5};$. Вот и всё решение.:)

Подозреваю, что кто-то из учеников уже начал скучать? Что ж, рассмотрим ещё более сложное уравнение:

[left| {{x}^{3}}-3{{x}^{2}}+x right|=x-{{x}^{3}}]

Хоть оно и выглядит злобно, по факту это всё то же самое уравнение вида «модуль равен функции»:

[left| fleft( x right) right|=gleft( x right)]

И решается оно точно так же:

[left| {{x}^{3}}-3{{x}^{2}}+x right|=x-{{x}^{3}}Rightarrow left{ begin{align}& {{x}^{3}}-3{{x}^{2}}+x=pm left( x-{{x}^{3}} right), \& x-{{x}^{3}}ge 0. \end{align} right.]

С неравенством мы потом разберёмся — оно какое-то уж слишком злобное (на самом деле простое, но мы его решать не будем). Пока лучше займёмся полученными уравнениями. Рассмотрим первый случай — это когда модуль раскрывается со знаком «плюс»:

[{{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}]

Ну, тут и ежу понятно, что нужно всё собрать слева, привести подобные и посмотреть, что получится. А получится вот что:

[begin{align}& {{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}; \& 2{{x}^{3}}-3{{x}^{2}}=0; \end{align}]

Выносим общий множитель ${{x}^{2}}$ за скобку и получаем очень простое уравнение:

[{{x}^{2}}left( 2x-3 right)=0Rightarrow left[ begin{align}& {{x}^{2}}=0 \& 2x-3=0 \end{align} right.]

[{{x}_{1}}=0;quad {{x}_{2}}=frac{3}{2}=1,5.]

Тут мы воспользовались важным свойством произведения, ради которого мы и раскладывали исходный многочлен на множители: произведение равно нулю, когда хотя бы один из множителей равен нулю.

Теперь точно так же разберёмся со вторым уравнением, которое получается при раскрытии модуля со знаком «минус»:

[begin{align}& {{x}^{3}}-3{{x}^{2}}+x=-left( x-{{x}^{3}} right); \& {{x}^{3}}-3{{x}^{2}}+x=-x+{{x}^{3}}; \& -3{{x}^{2}}+2x=0; \& xleft( -3x+2 right)=0. \end{align}]

Опять то же самое: произведение равно нулю, когда равен нулю хотя бы один из множителей. Имеем:

[left[ begin{align}& x=0 \& -3x+2=0 \end{align} right.]

[{{x}_{1}}=0;quad {{x}_{2}}=frac{2}{3}.]

Ну вот мы получили три корня: $x=0$, $x=1,5$ и $x={2}/{3};$. Ну и что из этого набора пойдёт в окончательный ответ? Для этого вспомним, что у нас есть дополнительное ограничение в виде неравенства:

[x-{{x}^{3}}ge 0]

Как учесть это требование? Да просто подставим найденные корни и проверим: выполняется неравенство при этих $x$ или нет. Имеем:

[begin{align}& x=0Rightarrow x-{{x}^{3}}=0-0=0ge 0; \& x=1,5Rightarrow x-{{x}^{3}}=1,5-{{1,5}^{3}} lt 0; \& x=frac{2}{3}Rightarrow x-{{x}^{3}}=frac{2}{3}-frac{8}{27}=frac{10}{27}ge 0; \end{align}]

Таким образом, корень $x=1,5$ нас не устраивает. И в ответ пойдут лишь два корня:

[{{x}_{1}}=0;quad {{x}_{2}}=frac{2}{3}.]

Как видите, даже в этом случае ничего сложного не было — уравнения с модулями всегда решаются по алгоритму. Нужно лишь хорошо разбираться в многочленах и неравенствах. Поэтому переходим к более сложным задачам — там уже будет не один, а два модуля.

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $left| fleft( x right) right|=gleft( x right)$ или даже более простому $left| fleft( x right) right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

[left| fleft( x right) right|=left| gleft( x right) right|]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

[left| fleft( x right) right|=left| gleft( x right) right|Rightarrow fleft( x right)=pm gleft( x right)]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

[left| 2x+3 right|=left| 2x-7 right|]

Элементарно, Ватсон! Раскрываем модули:

[left| 2x+3 right|=left| 2x-7 right|Rightarrow 2x+3=pm left( 2x-7 right)]

Рассмотрим отдельно каждый случай:

[begin{align}& 2x+3=2x-7Rightarrow 3=-7Rightarrow emptyset ; \& 2x+3=-left( 2x-7 right)Rightarrow 2x+3=-2x+7. \end{align}]

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

[2x+3=-2x+7Rightarrow 4x=4Rightarrow x=1]

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|]

Опять у нас уравнение вида $left| fleft( x right) right|=left| gleft( x right) right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

[{{x}^{2}}-3x+2=pm left( x-1 right)]

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

[x-1=pm left( {{x}^{2}}-3x+2 right)]

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|Rightarrow left| {{x}^{2}}-3x+2 right|=left| x-1 right|]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

[begin{align}& {{x}^{2}}-3x+2=x-1Rightarrow {{x}^{2}}-4x+3=0; \& {{x}^{2}}-3x+2=-left( x-1 right)Rightarrow {{x}^{2}}-2x+1=0. \end{align}]

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

[{{x}^{2}}-2x+1={{left( x-1 right)}^{2}}]

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

[{{x}_{1}}=3;quad {{x}_{2}}=1.]

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание. Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

[begin{align}& left| x-1 right|=left| {{x}^{2}}-3x+2 right|; \& left| x-1 right|=left| left( x-1 right)left( x-2 right) right|. \end{align}]

Одно из свойств модуля: $left| acdot b right|=left| a right|cdot left| b right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

[left| x-1 right|=left| x-1 right|cdot left| x-2 right|]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

[begin{align}& left| x-1 right|=left| x-1 right|cdot left| x-2 right|; \& left| x-1 right|-left| x-1 right|cdot left| x-2 right|=0; \& left| x-1 right|cdot left( 1-left| x-2 right| right)=0. \end{align}]

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

[left[ begin{align}& left| x-1 right|=0, \& left| x-2 right|=1. \end{align} right.]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Итак, уравнение:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0]

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

[begin{align}& 5+7=12 gt 0; \& 0,004+0,0001=0,0041 gt 0; \& 5+0=5 gt 0. \end{align}]

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0Rightarrow left{ begin{align}& left| x-{{x}^{3}} right|=0, \& left| {{x}^{2}}+x-2 right|=0. \end{align} right.]

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

[x-{{x}^{3}}=0Rightarrow xleft( 1-{{x}^{2}} right)=0Rightarrow left[ begin{align}& x=0 \& x=pm 1 \end{align} right.]

[{{x}^{2}}+x-2=0Rightarrow left( x+2 right)left( x-1 right)=0Rightarrow left[ begin{align}& x=-2 \& x=1 \end{align} right.]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Метод расщепления

Что ж, мы уже рассмотрели кучу задач и изучили множество приёмов. Думаете, на этом всё? А вот и нет! Сейчас мы рассмотрим заключительный приём — и одновременно самый важный. Речь пойдёт о расщеплении уравнений с модулем. О чём вообще пойдёт речь? Давайте вернёмся немного назад и рассмотрим какое-нибудь простое уравнение. Например, это:

[left| 3x-5 right|=5-3x]

В принципе, мы уже знаем, как решать такое уравнение, потому что это стандартная конструкция вида $left| fleft( x right) right|=gleft( x right)$. Но попробуем взглянуть на это уравнение немного под другим углом. Точнее, рассмотрим выражение, стоящее под знаком модуля. Напомню, что модуль любого числа может быть равен самому числу, а может быть противоположен этому числу:

[left| a right|=left{ begin{align}& a,quad age 0, \& -a,quad a lt 0. \end{align} right.]

Собственно, в этой неоднозначности и состоит вся проблема: поскольку число под модулем меняется (оно зависит от переменной), нам неясно — положительное оно или отрицательное.

Но что если изначально потребовать, чтобы это число было положительным? Например, потребуем, чтобы $3x-5 gt 0$ — в этом случае мы гарантированно получим положительное число под знаком модуля, и от этого самого модуля можно полностью избавиться:

[3x-5 gt 0Rightarrow left| 3x-5 right|=3x-5]

Таким образом, наше уравнение превратится в линейное, которое легко решается:

[3x-5=5-3xRightarrow 6x=10Rightarrow x=frac{5}{3}]

Правда, все эти размышления имеют смысл только при условии $3x-5 gt 0$ — мы сами ввели это требование, дабы однозначно раскрыть модуль. Поэтому давайте подставим найденный $x=frac{5}{3}$ в это условие и проверим:

[x=frac{5}{3}Rightarrow 3x-5=3cdot frac{5}{3}-5=5-5=0]

Получается, что при указанном значении $x$ наше требование не выполняется, т.к. выражение оказалось равно нулю, а нам нужно, чтобы оно было строго больше нуля. Печалька.:(

Но ничего страшного! Ведь есть ещё вариант $3x-5 lt 0$. Более того: есть ещё и случай $3x-5=0$ — это тоже нужно рассмотреть, иначе решение будет неполным. Итак, рассмотрим случай $3x-5 lt 0$:

[3x-5 lt 0Rightarrow left| 3x-5 right|=5-3x]

Очевидно, что в модуль раскроется со знаком «минус». Но тогда возникает странная ситуация: и слева, и справа в исходном уравнении будет торчать одно и то же выражение:

[5-3x=5-3x]

Интересно, при каких таких $x$ выражение $5-3x$ будет равно выражению $5-3x$? От таких уравнений даже Капитан очевидность подавился бы слюной, но мы-то знаем: это уравнение является тождеством, т.е. оно верно при любых значениях переменной!

А это значит, что нас устроят любые $x$. Вместе с тем у нас есть ограничение:

[3x-5 lt 0Rightarrow 3x lt 5Rightarrow x lt frac{5}{3}]

Другими словами, ответом будет не какое-то отдельное число, а целый интервал:

[xin left( -infty ;frac{5}{3} right)]

Наконец, осталось рассмотреть ещё один случай: $3x-5=0$. Тут всё просто: под модулем будет ноль, а модуль нуля тоже равен нулю (это прямо следует из определения):

[3x-5=0Rightarrow left| 3x-5 right|=0]

Но тогда исходное уравнение $left| 3x-5 right|=5-3x$ перепишется следующим образом:

[0=3x-5Rightarrow 3x=5Rightarrow x=frac{5}{3}]

Этот корень мы уже получали выше, когда рассматривали случай $3x-5 gt 0$. Более того, это корень является решением уравнения $3x-5=0$ — это ограничение, которое мы сами же и ввели, чтобы обнулить модуль.:)

Таким образом, помимо интервала нас устроит ещё и число, лежащее на самом конце этого интервала:

Объединение корней уравнения, полученных методом расщепления

Объединение корней в уравнениях с модулем

Итого окончательный ответ: $xin left( -infty ;frac{5}{3} right]$. Не очень-то привычно видеть такую хрень в ответе к довольно простому (по сути — линейному) уравнению с модулем, правда? Что ж, привыкайте: в том и состоит сложность модуля, что ответы в таких уравнениях могут оказаться совершенно непредсказуемыми.

Куда важнее другое: мы только что разобрали универсальный алгоритм решения уравнения с модуляем! И состоит этот алгоритм из следующих шагов:

  1. Приравнять каждый модуль, имеющийся в уравнении, к нулю. Получим несколько уравнений;
  2. Решить все эти уравнения и отметить корни на числовой прямой. В результате прямая разобьётся на несколько интервалов, на каждом из которых все модули однозначно раскрываются;
  3. Решить исходное уравнение для каждого интервала и объединить полученные ответы.

Вот и всё! Остаётся лишь один вопрос: куда девать сами корни, полученные на 1-м шаге? Допустим, у нас получилось два корня: $x=1$ и $x=5$. Они разобьют числовую прямую на 3 куска:

Разбиение числовой прямой на интервалы

Разбиение числовой оси на интервалы с помощью точек

Ну и какие тут интервалы? Понятно, что их три:

  1. Самый левый: $x lt 1$ — сама единица в интервал не входит;
  2. Центральный: $1le x lt 5$ — вот тут единица в интервал входит, однако не входит пятёрка;
  3. Самый правый: $xge 5$ — пятёрка входит только сюда!

Я думаю, вы уже поняли закономерность. Каждый интервал включает в себя левый конец и не включает правый.

На первый взгляд, такая запись может показаться неудобной, нелогичной и вообще какой-то бредовой. Но поверьте: после небольшой тренировки вы обнаружите, что именно такой подход наиболее надёжен и при этом не мешает однозначно раскрывать модули. Лучше уж использовать такую схему, чем каждый раз думать: отдавать левый/правый конец в текущий интервал или «перекидывать» его в следующий.

На этом урок заканчивается. Скачивайте задачи для самостоятельного решения, тренируйтесь, сравнивайте с ответами — и увидимся в следующем уроке, который будет посвящён неравенствам с модулями.:)

Смотрите также:

  1. Простейшие уравнения с модулем
  2. Уравнение с двумя модулями
  3. Сложные выражения с дробями. Порядок действий
  4. Сводный тест по задачам B15 (2 вариант)
  5. Как решать биквадратное уравнение
  6. B4: счетчики на электричество

Добавить комментарий