Геометрия, 11 класс
Урок №14. Объем шара и его частей
Перечень вопросов, рассматриваемых в теме
- Доказательство теорем об объемах шара и его частей и площади сферы
- Определение частей шара
- Решение задач на нахождение объемов шара, его частей и площади сферы
Основная литература:
Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 10-11 учебник для общеобразов. учрежд.: база и профильн. М: Просвещение.2009
Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций : базовый и углубл. уровни и др. – М.: Просвещение, 2014. – 255, сс. 121-126.
Дополнительная литература:
Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб. для общеобразоват. учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 178-196.
Потоскуев Е.В., Звавич Л.И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 5-30.
Открытые электронные ресурсы:
Образовательный портал “Решу ЕГЭ”. https://mathb-ege.sdamgia.ru/test?theme=177
Теоретический материал для самостоятельного изучения
Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не больше данного R.
Радиусом шара называют всякий отрезок, соединяющий центр шара с точкой шаровой поверхности.
Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара.
Концы любого диаметра шара называются диаметрально противоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара.
Сферическим поясом (шаровым поясом) называют часть сферы, заключенную между двумя параллельными плоскостями
Шаровым слоем называют часть шара, заключенную между двумя параллельными плоскостями
Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость.
Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью.
Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы
Объем шара равен .
Объем шарового сегмента равен .
Объем шарового сектора равен .
Объем шарового слоя равен .
Площадь сферы равна S=4 πR2.
Примеры и разбор решения заданий тренировочного модуля
№1. Круговой сектор радиуса R с центральным углом 60 градусов вращается вокруг одного из радиусов, образующих этот угол. Найдите объем тела вращения.
Решение:
При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения – шаровой сектор радиуса R=ОА и высотой сектора h=DA. Объем его вычисляется по формуле: V= (2/3)*πR²*h. Рассмотрим сечение этого сектора (смотри рисунок): в прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.
№2. Найдите объем шарового сектора, если радиус шара равен 6 см, а высота конуса, образующего сектор, составляет треть диаметра шара.
Решение:
Шаровой сектор — это часть шара, ограниченная кривой поверхностью шарового сегмента и конической поверхностью, основанием которой служит основание сегмента, а вершиной — центр шара. Формула объема шарового сектора: V = (2/3)*πR²*h, где h – высота сегмента. В нашем случае R=H+h, где Н – высота конуса, а h- высота сегмента. Тогда h = R-H = 6-4 =2, так как Н = (1/3)*2*R (дано). Значит V = (2/3)*π*36*2 = 48π.
Ответ: объем шарового сектора равен 48π
№3.По разные стороны от центра шара проведены два параллельных сечения с площадью и см2. Расстояние между сечениями равно см. Определите объём получившегося шарового слоя.
Решение: запишем формулу для вычисления объема шарового слоя.
Чтобы найти объём шарового слоя нам необходимо знать его высоту и радиусы двух его оснований.
По условию задачи нам дано расстояние между сечениями, как раз-таки это расстояние и есть высота данного шарового слоя, и она равна .
Теперь найдём чему равны радиусы оснований шарового слоя. Напомню, что сечением шара плоскостью является круг. Площадь круга вычисляется по формуле . Отсюда найдём радиусы оснований шарового слоя. Тогда имеем, радиус одного основания равен (см), радиус второго основания равен (см).
Подставим радиусы оснований и высоту шарового слоя в формулу его объёма. Посчитаем. Получаем, что объём данного шарового слоя равен .
В данной публикации мы рассмотрим формулу, с помощью которой можно вычислить объем сектора шара, а также пример решения задачи для демонстрации ее применения на практике.
- Определение сектора шара
- Формула для нахождения объема сектора шара
- Пример задачи
Определение сектора шара
Сектор шара (или шаровый сектор) – это часть шара, состоящая из шарового сегмента и конуса, вершиной которого является центр шара, а основанием – основание соответствующего сегмента. На рисунке ниже сектор закрашен оранжевым цветом.
- R – радиус шара;
- r – радиус основания сегмента и конуса;
- h – высота сегмента; перпендикуляр от центра основания сегмента до точки на сфере.
Формула для нахождения объема сектора шара
Чтобы найти объем шарового сектора, необходимо знать радиус шара и высоту соответствующего сегмента.
Примечания:
- если вместо радиуса шара (R) дан его диаметр (d), последний следует разделить на два, чтобы найти требуемый радиус.
- π округленно равняется 3,14.
Пример задачи
Дан шар радиусом 12 см. Найдите объем шарового сектора, если высота сегмента, из которого состоит данный сектор, равняется 3 см.
Решение
Применим формулу, рассмотренную выше, подставив в нее известные по условиям задачи значения:
Если пересечь шар какой-либо плоскостью, то он разделиться на две части, каждая из которых и будет представлять собой шаровой сегмент. Иногда его также называют сферическим сегментом.
Онлайн-калькулятор объема шарового сегмента
Меньший из этих сегментов принято называть сферическим кругом. Если же центр сферы лежит на плоскости, пересекающей шар, то он делится на два равных полушара.
Формула объема шарового сегмента
Объем данного тела можно вычислить несколькими способами. Первая формула такова:
V=13⋅π⋅h2⋅(3⋅R−h)V=frac{1}{3}cdotpicdot h^2cdot(3cdot R-h)
hh —высота шарового сегмента;
RR — радиус шара.
Альтернативная формула:
V=16⋅π⋅h⋅(3⋅r2+h2)V=frac{1}{6}cdotpicdot hcdot(3cdot r^2+h^2)
hh —высота шарового сегмента;
rr — радиус основания шарового сегмента.
Вторую формулу можно получить из первой, если использовать связь между RR, hh и rr:
R=r2+h22⋅hR=frac{r^2+h^2}{2cdot h},
получаемую с помощью теоремы Пифагора для прямоугольного треугольника.
Ниже приведены примеры задач на нахождение объемов шарового сегмента.
Вычислите объем шарового сегмента, если известны его высота и радиус основания. Равны они, соответственно, 4 см4text{ см} и 8 см8text{ см}.
Решение
h=4h=4
r=8r=8
По второй формуле получаем:
V=16⋅π⋅h⋅(3⋅r2+h2)=16⋅π⋅4⋅(3⋅82+42)≈435.4 см3V=frac{1}{6}cdotpicdot hcdot(3cdot r^2+h^2)=frac{1}{6}cdotpicdot 4cdot(3cdot 8^2+4^2)approx435.4text{ см}^3
Ответ
435.4 см3.435.4text{ см}^3.
Рассмотрим предыдущую задачу, но проделаем вычисления по другой формуле. Для этого нам нужно найти радиус шара RR.
Решение
h=4h=4
r=8r=8
R=r2+h22⋅h=82+422⋅4=10R=frac{r^2+h^2}{2cdot h}=frac{8^2+4^2}{2cdot 4}=10
Объем сегмента:
V=13⋅π⋅h2⋅(3⋅R−h)=13⋅π⋅42⋅(3⋅10−4)≈435.4 см3V=frac{1}{3}cdotpicdot h^2cdot(3cdot R-h)=frac{1}{3}cdotpicdot 4^2cdot(3cdot 10-4)approx435.4text{ см}^3
Исходя из полученных ответов можно сделать вывод, что данная формула справедлива, так как ответы полученные разными формулами совпадают.
Ответ
435.4 см3.435.4text{ см}^3.
Определить объем шарового сегмента, если площадь его поверхности равна 64 см64text{ см}, а высота – 5см5text {см}.
Решение
S=64S=64
h=5h=5
Для начала найдем радиус RR шара. Площадь поверхности шарового сегмента можно найти так:
S=2⋅π⋅R⋅hS=2cdotpicdot Rcdot h.
Найдем отсюда радиус RR шара:
R=S2⋅π⋅h=642⋅π⋅5≈2R=frac{S}{2cdotpicdot h}=frac{64}{2cdotpicdot 5}approx2
Объем шарового сегмента по формуле:
V=13⋅π⋅h2⋅(3⋅R−h)≈13⋅π⋅52⋅(3⋅2−5)≈26 см3V=frac{1}{3}cdotpicdot h^2cdot(3cdot R-h)approxfrac{1}{3}cdotpicdot 5^2cdot(3cdot 2-5)approx26text{ см}^3
Ответ
26 см3.26text{ см}^3.
Хотите заказать выполнение контрольной работы у опытного исполнителя? Оформите заказ на нашей бирже!
Шаровой сектор – это часть шара, ограниченная кривой поверхностью шарового сегмента и конической
поверхностью, основанием которой служит основание сегмента, а вершиной центр шара. Другое
определение исходит из того, что шаровой сектор – тело вращения, т.е. образовано вращением
какой-либо плоской и ограниченной кривой геометрической фигуры вокруг лежащей в той же плоскости
оси. Объем шарового сегмента определяется рядом его размеров, ниже 2 формулы для вычисления
объема.
- Обьём шарового сектора через радиус шара и высоту шарового
сегмента - Обьём шарового сектора через радиус шара и угол между осью
и образующей конуса
Объём шарового сектора через радиус шара и высоту шарового сегмента
Зная радиус и высоту шарового сектора, можно найти его объем по следующей формуле:
V = 2/3 * π * R² * h
где R – радиус шара, h – высота шарового сегмента (или проекция хорды, стягивающей дугу сектора, на
ось вращения).
Цифр после
запятой:
Результат в:
Значение π примерно равно 3,14 – это числовая постоянная «число пи», одна из самых известных и чаще
всего использующихся, равная отношению длины окружности к ее диаметру; для всех окружностей это
отношение постоянно. «Пи» число иррациональное и трансцендентное, т.е. не может быть выражено
никакой рациональной дробью и не может быть корнем какого-либо многочлена с целыми
коэффициентами.
Пример. Радиус R = 5 м; h = 1,5 м. Рассчитываем объем: V = 2 * π * R² * h / 3 = 2 * 3,14 * 5² * 1,5 / 3 = 78,5 м³.
Объём шарового сектора через радиус шара и угол между осью и образующей конуса
При известном радиусе шара и угла между осью и образующей конуса можно так же найти объем шарового
сектора. Для это применяется формула:
V = 2/3 * π * R³ * (1 — cos α/2)
где R – радиус шара, cos α – угол между осью и образующей конуса.
Цифр после
запятой:
Результат в:
Пример. Вафельный рожок для мороженого, при заполнении мороженым имеющий форму
шарового сектора, имеет такие размеры: радиус R = 11 см, угол α = 26°. Необходимо рассчитать объем
мороженого в рожке при его заполнении. V = 2/3 * 3,14 * 11³ * (1 — cos 26º/2) = 71 см³.
Шаровой сектор – это геометрическое тело, возникающее при вращении сектора вокруг одного из его
радиусов. Форму, близкую к шаровому сектору, имеют, в качестве примера, современные воздушные шары и
мороженое в вафельном рожке.
У этого термина существуют и другие значения, см. сегмент.
Пример сферического сегмента (окрашен синим цветом). Вторая половина сферы также представляет собой сферический сегмент
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом[1].
Если секущая плоскость проходит через центр сферы, то высота обоих сегментов равна радиусу сферы, и каждый из таких сферических сегментов называют полусферой.
Шарово́й сегме́нт — геометрическое тело, часть шара, отсекаемая от него некоторой плоскостью. Поверхностью шарового сегмента является объединение сферического сегмента и круга (основания шарового сегмента), границы которых совпадают.
Объём и площадь поверхности[править | править код]
Если радиус основания сегмента равен , высота сегмента равна , тогда объём шарового сегмента равен [2]
площадь поверхности сегмента равна
или
Параметры , и связаны соотношениями
Подстановка последнего выражения в первую формулу для вычисления площади приводит к равенству
Заметим, что в верхней части сферы (синий сегмент на рисунке) в нижней части сферы следовательно, для обоих сегментов справедливо выражение и можно привести другое выражение для объёма:
Формула для определения объёма также может быть получена при интегрировании поверхности вращения:
Применение[править | править код]
Объём объединения и пересечения двух пересекающихся сфер[править | править код]
Объём объединения двух сфер радиусов r1 и r2 равен
[3]
- ,
где
является суммой объёмов двух сфер по отдельности, а
является суммой объёмов двух сферических сегментов, образующих пересечение данных сфер. Пусть d < r1 + r2 — расстояние между центрами сфер, тогда исключение величин h1 и h2 приводит к выражению [4][5]
Площадь поверхности, ограниченной кругами разных широт[править | править код]
Площадь поверхности, ограниченной кругами разных широт, является разностью площадей поверхности двух соответствующих сферических сегментов. Для сферы радиуса r и широт φ1 и φ2 данная площадь равна [6]
Площадь квадратного участка поверхности шара[править | править код]
Участок, вырезанный на сфере радиуса r четырьмя дугами больших кругов, имеющими одинаковую угловую длину θ и попарно перпендикулярными (сферический квадрат, аналог квадрата на плоскости), имеет площадь
Если угол θ мал (по сравнению с 1 радианом), то справедливо приближённое равенство, основывающееся на приближении при
Например, площадь квадратного участка поверхности Земли (R⊕ = 6378 км) со сторонами, равными 1 градусу, составляет
1 квадратная секунда поверхности Земли имеет площадь в 36002 раз меньше: A(1′′) ≈ 12 391 км2 / (60 · 60)2 ≈ 956 м2.
Обобщения[править | править код]
Сечения других тел[править | править код]
Сфероидальный сегмент получается при отсечении части сфероида таким образом, что она обладает круговой симметрией (обладает осью вращения). Аналогичным образом определяют эллипсоидальный сегмент.
Сегмент гиперсферы[править | править код]
Объём -мерного сегмента гиперсферы высотой и радиуса в -мерном евклидовом пространстве определяется по формуле [7]
где (гамма-функция) задаётся выражением
Выражение для объёма можно переписать в терминах объёма единичного -мерного шара и гипергеометрической функции или регуляризованной неполной бета-функции как
Формула для площади поверхности может быть записана в терминах площади поверхности единичного -мерного шара как
где
Также справедливы следующие формулы[8]:
где
При
Было показано[9], что при и где — стандартное нормальное распределение.
Литература[править | править код]
- А. И. Маркушевич, А. Я. Хинчин, П. С. Александров. Основные понятия сферической геометрии // Энциклопедия элементарной математики. Книга 4 – Геометрия. — Москва: ГИФМЛ, 1963.