Как найти объем через интеграл онлайн

Рассмотрим некоторую функцию
, непрерывную на отрезке
:

график некоторой функции f(x)

Если мы будем вращать данную функцию вокруг оси
, то образуется некоторое
тело вращения:

тело, полученное вращением функции f(x) вокруг оси х

Объём полученной фигуры можно посчитать, вычислив вот такой
интеграл:

Теперь рассмотрим некоторую функцию
, непрерывную на отрезке
:

график некоторой функции g(y)

На этот раз будем вращать данную функцию вокруг оси
. В результате получим следующее тело вращения:

тело, полученное вращением функции g(y) вокруг оси y

Его объём вычисляется по формуле:

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha позволяет вычислить объём тела вращения, заданного практически любой функцией. Для этого, в калькулятор нужно ввести саму функцию, границы в пределах которых будет вычисляться объём тела и выбрать ось вращения.

Онлайн калькулятор для нахождения, вычисления объема тела вращения вокруг оси, рисунок тела вращения.

Основные функции

left(a=operatorname{const} right)

  • x^{a}: x^a

модуль x: abs(x)

  • sqrt{x}: Sqrt[x]
  • sqrt[n]{x}: x^(1/n)
  • a^{x}: a^x
  • log_{a}x: Log[a, x]
  • ln x: Log[x]
  • cos x: cos[x] или Cos[x]
  • sin x: sin[x] или Sin[x]
  • operatorname{tg}x: tan[x] или Tan[x]
  • operatorname{ctg}x: cot[x] или Cot[x]
  • sec x: sec[x] или Sec[x]
  • operatorname{cosec} x: csc[x] или Csc[x]
  • arccos x: ArcCos[x]
  • arcsin x: ArcSin[x]
  • operatorname{arctg} x: ArcTan[x]
  • operatorname{arcctg} x: ArcCot[x]
  • operatorname{arcsec} x: ArcSec[x]
  • operatorname{arccosec} x: ArcCsc[x]
  • operatorname{ch} x: cosh[x] или Cosh[x]
  • operatorname{sh} x: sinh[x] или Sinh[x]
  • operatorname{th} x: tanh[x] или Tanh[x]
  • operatorname{cth} x: coth[x] или Coth[x]
  • operatorname{sech} x: sech[x] или Sech[x]
  • operatorname{cosech} x: csch[x] или Csch[е]
  • operatorname{areach} x: ArcCosh[x]
  • operatorname{areash} x: ArcSinh[x]
  • operatorname{areath} x: ArcTanh[x]
  • operatorname{areacth} x: ArcCoth[x]
  • operatorname{areasech} x: ArcSech[x]
  • operatorname{areacosech} x: ArcCsch[x]
  • [19.67] =19: integral part of (19.67) – выделяет целую часть числа (integerPart)
  • bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
    square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
    ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
    left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
    alpha beta gamma delta zeta eta theta iota kappa lambda mu
    nu xi pi rho sigma tau upsilon phi chi psi omega
    A B Gamma Delta E Z H Theta K Lambda M
    N Xi Pi P Sigma T Upsilon Phi X Psi Omega
    sin cos tan cot sec csc sinh cosh tanh coth sech
    arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
    begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
    (square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
    overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
    vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
    int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
    lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
    (2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
    (1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
    mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
    arcsin sin sqrt{square} 7 8 9 div
    arccos cos ln 4 5 6 times
    arctan tan log 1 2 3
    pi e x^{square} 0 . bold{=} +

    Подпишитесь, чтобы подтвердить свой ответ

    Подписаться

    Войдите, чтобы сохранять заметки

    Войти

    Номер Строки

    Примеры

    • объем:y=(3x+1)^{frac{1}{4}},:x=0,:x=8,:y=0

    • объем:y=sqrt{49-x^{2}},:y=0

    • объем:y=x+1,:y=0,:x=0,:x=2

    • объем:y=11e-x^{2},:y=0,:x=0,:x=1

    • объем:около:x=-1,:y=sqrt[3]{x},:y=1

    • Показать больше

    Описание

    Найдите объем тела вращения шаг за шагом

    volume-calculator

    объем y=(3x+1)^{frac{1}{4}}, x=0, x=8, y=0

    ru

    Блог-сообщения, имеющие отношение к Symbolab

  • My Notebook, the Symbolab way

    Math notebooks have been around for hundreds of years. You write down problems, solutions and notes to go back…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти


    18:22

    Объем тела вращения

    Объем тела вращения

    Вычисление объема тела вращения вокруг оси Ох

    Пусть график функции y = f(x) вращается вокруг оси Ox, образуя так называемую поверхность вращения. Определим объем тела, ограниченного этой поверхностью и плоскостями x = a, x = b.

    Объем тела вращения, образованного вращением графика y=f(x) вокруг оси Ox, может быть вычислен по формуле

    Пример 1. Вычислить объем тела, образованного вращением дуги кривой y=x2, x∈[1,3] вокруг оси Оx.

    Решение. Данные a=1, b=3,  f(x)=x2, подставляем в формулу, получаем

    С помощью калькулятора проверяем правильность вычисления объема , а также получаем рисунок тела вращения.

    Вычисление объема тела вращения вокруг оси Оy

    Пусть график функции x=φ(y) вращается вокруг оси Oy, образуя так называемую поверхность вращения. Определим объем тела, ограниченного этой поверхностью и плоскостями y = c, y = d.

    Объем тела вращения, образованного вращением графика x=φ(y) вокруг оси Oy, может быть вычислен по формуле

    Пример 2. Вычислить объем тела, образованного вращением дуги кривой x=3y-y2, x[1,2] вокруг оси Оx.

    Решение. Данные c=1, d=2,  φ(y)=3y-y2, подставляем в формулу, получаем

    В калькулятор вставляем функцию x=3y-y2,  x меняем на y, границы  от 1 до 2, проверяем правильность вычисления объема , а также получаем рисунок тела вращения.

    Следующая тема: Вычислить длину кривой

    • 1
    • 2
    • 3
    • 4
    • 5

    Категория: Вычислить интеграл | Просмотров: 109978 | | Теги: приложение интегралов | Рейтинг: 3.6/17

    Тройной интеграл по-шагам

    Примеры тройных интегралов

    • С квадратом и кубом
    • y^2 - x*y*z/2 - y^3/3 - 2*y - (4-x-z)^3/6
    • С квадратным корнем
    • z*sqrt(x^2+y^2)

    Указанные выше примеры содержат также:

    • модуль или абсолютное значение: absolute(x) или |x|
    • квадратные корни sqrt(x),
      кубические корни cbrt(x)
    • тригонометрические функции:
      синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
    • показательные функции и экспоненты exp(x)
    • обратные тригонометрические функции:
      арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
      арккотангенс acot(x)
    • натуральные логарифмы ln(x),
      десятичные логарифмы log(x)
    • гиперболические функции:
      гиперболический синус sh(x), гиперболический косинус ch(x),
      гиперболический тангенс и котангенс tanh(x), ctanh(x)
    • обратные гиперболические функции:
      гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
      гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
    • другие тригонометрические и гиперболические функции:
      секанс sec(x), косеканс csc(x), арксеканс asec(x),
      арккосеканс acsc(x), гиперболический секанс sech(x),
      гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
      гиперболический арккосеканс acsch(x)
    • функции округления:
      в меньшую сторону floor(x), в большую сторону ceiling(x)
    • знак числа:
      sign(x)
    • для теории вероятности:
      функция ошибок erf(x) (интеграл вероятности),
      функция Лапласа laplace(x)
    • Факториал от x:
      x! или factorial(x)
    • Гамма-функция gamma(x)
    • Функция Ламберта LambertW(x)
    • Тригонометрические интегралы: Si(x),
      Ci(x),
      Shi(x),
      Chi(x)

    Правила ввода

    Можно делать следующие операции

    2*x
    – умножение
    3/x
    – деление
    x^2
    – возведение в квадрат
    x^3
    – возведение в куб
    x^5
    – возведение в степень
    x + 7
    – сложение
    x – 6
    – вычитание
    Действительные числа
    вводить в виде 7.5, не 7,5

    Постоянные

    pi
    – число Пи
    e
    – основание натурального логарифма
    i
    – комплексное число
    oo
    – символ бесконечности

    Данные примеры также можно применять при вводе верхних и нижних пределов в тройном интеграле.

    Добавить комментарий