Как найти объем если есть масса плотность

Найти массу, плотность или объем онлайн

На данной странице калькулятор поможет найти плотность, массу или объем вещества онлайн. Для расчета введите значения в калькулятор.

Объем, масса и плотность


Найти

Масса:

Объем:

Плотность:


Ответы:

Формула для нахождения массы тела через плотность и объем:

m – масса; V – объем; p – плотность.

Формула для нахождения объема тела через плотность и массу:

m – масса; V – объем; p – плотность.

Формула для нахождения плотности тела через объем и массу:

m – масса; V – объем; p – плотность.

Калькулятор

Объем через массу и плотность, формула

Объем тела выражается через массу и плотность следующей формулой:
Объем тела — есть отношение массы тела к плотности вещества из которого состоит тело.

[ V = frac{m}{ρ} ]

Здесь:
V — объем тела (м³),
m — масса тела, (килограмм),
ρ — плотность вещества, (кг/м³).

Вычислить, найти объем твердых тел или жидкостей через массу и плотность по формуле (1)

Выберите вещество ▼

m (масса, килограмм) 
ρ (плотность вещества, x103 кг/м³) 

Вычислить

нажмите кнопку для расчета

Вычислить, найти объем газа через массу и плотность по формуле (1)

Выберите вещество ▼

m (масса газа, килограмм) 
ρ (плотность газа, кг/м³) 

Вычислить

нажмите кнопку для расчета

Объем через массу и плотность

стр. 444

По какой формуле можно найти объем?

Анонимный вопрос

1 ноября 2018  · 65,8 K

Смотря что известно о теле, объем которого вы хотите вычислить.

  • Зная массу и плотность V = m/ρ, где m – масса, а ρ – плотность
  • Для геометрических фигур, например куб V = a^3 перемножить три стороны, а для цилиндра V = S*H площадь основания помножить на высоту

Для остальных фигур часто фигурирует площадь, которую тоже предстоит вычислить, например площадь круга S = 2πR^2

На практике можно использовать закон Архимеда, тело погруженное в жидкость вытеснет свой объем.

61,6 K

вообще не понимаю, за что минусовали ответ))

Комментировать ответ…Комментировать…

На прошлом уроке мы познакомились с определением плотности тела, узнали формулу, по которой можно ее рассчитать: $rho = frac{m}{V}$.

Сейчас нам предстоит взглянуть на эту формулу с других сторон. Мы научимся находить объем и массу по известной плотности материала тела, решать задачи, используя полученные знания.

Расчет массы тела по его плотности

Знание плотности веществ очень важно для многих практических целей. Для инженеров и строителей, например, знание плотности имеет колоссальное значение — так они могут рассчитать массу будущего механизма или строения.

Как вычисляется масса тела по его плотности и объему?

Плотность определяется по формуле  $rho = frac{m}{V}$. Выразим отсюда массу:

$m = rho V$.

Чтобы рассчитать массу тела, если известны его объем и плотность, нужно плотность умножить на объем.

Задача на расчет массы

Рассмотрим пример задачи на расчет массы.

Рассчитайте массу детали, изготовленной из латуни, объемом $0.15 space м^3$.

Из таблицы 1 предыдущего урока берем значение плотности латуни. Она равна $8500 frac{кг}{м^3}$.

Дано:
$rho = 8500 frac{кг}{м^3}$
$V = 0.15 space м^3$

$m -?$

Показать решение и ответ

Скрыть

Решение:

$m = rho cdot V$,
$m = 8500 frac{кг}{м^3} cdot 0.15 space м^3 = 1275 space кг approx 1.3 space т$.

Ответ: $m = 1275 space кг approx 1.3 space т$.

Расчет объема тела по его плотности

По какой формуле можно определить объем тела?

Подобным образом выразим из формулы плотности объем:

$V = frac{m}{rho}$.

Чтобы рассчитать объем тела, если известны его масса и плотность, нужно массу разделить на плотность.

Данной формулой для определения объема часто пользуются в тех случаях, когда тела имеют сложную неправильную форму. 

Задача на расчет объема

Рассмотрим пример задачи на расчет объема.

Молоко в бутылке имеет массу $1.03 space кг$. Рассчитайте объем бутылки.

В таблице 2 прошлого параграфа находим молоко: его плотность равна $1030 frac{кг}{м^3}$.

Дано:
$rho = 1030 frac{кг}{м^3}$
$m = 1.03 space кг$

$V -?$

Решение:

$V = frac{m}{rho}$,
$V = frac{1.03 space кг}{1030 frac{кг}{м^3}} = 0.001 space м^3 = 1 space л$.

Ответ: $V = 1 space л$.

Дополнительные задачи

Задача №1

На рисунке 1 изображен кусок хозяйственного мыла в упаковке. По данным производителя размеры размеры его полиэтиленовой упаковки составляют 6 см x 9 см x 5,5 см.

Масса одного куска 200 г. Масса брутто (масса товара вместе с упаковкой) указан 211 г. Найдите объем куска мыла без упаковки. Выразите ответ в СИ.

Рисунок 1. Хозяйственное мыло

Обозначим стороны упаковки как $a, b space и space с$, массу куска была $m_м$, массу куска мыла в упаковке  — $m$, а общую массу мыла в упаковке — $m_{уп}$.

Объем куска мыла будем обозначать как $V_м$, а вместе с упаковкой  — $V$.

Дано:
$a = 6 space см$
$b = 9 space см$
$c = 5.5 space см$
$m_м = 200 space г$
$m = 211 space г$

$V_м -?$

Показать решение и ответ

Срыть

Решение:

Найдем массу упаковки:
$m_{уп} = m — m_м$,
$m_{уп} = 211 space г — 200 space г = 11 space г$.

Общий объем упаковки и мыла:
$V = a cdot b cdot c$,
$V = 6 space см cdot 9 space см cdot 5.5 space см = 297 space см^3$.

Указано, что упаковка изготовлена из полиэтилена (из таблицы 1 предыдущего параграфа его плотность $rho_п$ равна $0.92 frac{г}{см^3}$).

Найдем объем упаковки $V_{уп}$:
$V_{уп} =  frac{m_{уп}}{rho_{уп}}$,
$V_{уп} = frac{11 space г}{0.92 frac{г}{см^3}} approx 12 space см^3$.

Общий объем куска мыла в упаковке складывается из объема самого куска и объема упаковки. Так мы можем найти объем куска мыла:
$V_м  = V — V_{уп}$,
$V_м = 297 space см^3 — 12 space см^3 = 285 space см^3$.

Выразим в СИ:
$285 space см^3 = 285 cdot 1 space см cdot 1 space см cdot 1 space см = 285 cdot 0.01 space м cdot 0.01 space м cdot 0.01 space м = 285 cdot 0.000001 space м^3 = 0.000285 space м^3$.

Ответ: $V_м = 0.000285 space м^3$

Задача №2

Масса чугунного шара составляет 800 г. Его объем — $125 space см^3$. Будет ли этот шар сплошным (отлитым полностью из одного материала) или полым (иметь пространство внутри, заполненное, например, воздухом)? 

Показать решение

Скрыть

Проверить это достаточно просто: рассчитаем плотность этого шара:

$rho = frac{m}{V}$,
$rho = frac{800 г}{125 space см^3} = 6.4 frac{г}{см^3}$.

Сравним полученное значение с табличной плотностью чугуна:
$rho = 7 frac{г}{см^3}$
Сколько бы тогда весил сплошной шар?

$m = rho V$,
$m = 7 frac{г}{см^3} cdot 125 space см^3 = 875 space г$.

Разница между массами реального и предполагаемого сплошного шара составляет 75 г.  

Следовательно, реальный шар имеет внутри какую-то полость, он не полностью выполнен из чугуна.

Задача №3

В грузовой автомобиль загрузили 48 сосновых бревен. Масса каждого соснового бревна составляет $20 space дм^3$. На сколько увеличилась масса автомобиля после загрузки?

Из таблицы 1 предыдущего параграфа возьмем плотность сухой сосны ($400 frac{кг}{м^3}$). Переведем $20 space дм^3$ в $м^3$:

$20 space дм^3 = 20 cdot 0.1 space м cdot 0.1 space м cdot 0.1 space м = 20 cdot 0.001 space м^3 = 0.02 space м^3$.

Количество брусков — $n$.

Дано:
$V = 20 space дм^3$
$rho = 400 frac{кг}{м^3}$
$n = 48$

СИ:
$V = 0.02 space м^3$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем массу одного соснового бревна:
$m = rho cdot V$,
$m = 400 frac{кг}{м^3} cdot 0.02 space м^3 = 8 space кг$.

Масса всех сосновых бревен (M) будет равна:
$M = n cdot m$,
$M = 48 cdot 8 space кг = 384 space кг$

Ответ: масса автомобиля после загрузки увеличится на 384 кг.

Упражнения

Упражнение №1

Какова масса $0.5 space л$ спирта, молока, ртути?

Дано:
$V = 0.5 space л$
$rho_1 = 800 frac{кг}{м^3}$
$rho_2 = 1030 frac{кг}{м^3}$
$rho_3 = 13600 frac{кг}{м^3}$

СИ:
$V = 5 cdot 10^{-4} space м^3$

$m_1 — ?$
$m_2 — ?$
$m_3 — ?$

Показать решение и ответ

Скрыть

Решение:

Зная объем и плотность тела, мы может рассчитать его массу по формуле: $m = rho V$.

Рассчитаем массу спирта:
$m_1 = rho_1 V$,
$m_1 = 800 frac{кг}{м^3} cdot 5 cdot 10^{-4} space м^3 = 0.4 space кг$.

Рассчитаем массу молока:
$m_2 = rho_2 V$,
$m_2 = 1030 frac{кг}{м^3} cdot 5 cdot 10^{-4} space м^3 = 0.515 space кг$.

Рассчитаем массу ртути:
$m_3 = rho_3 V$,
$m_3 = 13600 frac{кг}{м^3} cdot 5 cdot 10^{-4} space м^3 = 6.8 space кг$.

Ответ: $m_1 = 0.4 space кг$, $m_2 = 0.515 space кг$, $m_3 = 6.8 space кг$.

Упражнение №2

Определите объем льдинки, масса которой $108 space г$.

Дано:
$m = 108 space г$
$rho = 900 frac{кг}{м^3}$

СИ:
$m = 0.108 space кг$

$V — ?$

Показать решение и ответ

Скрыть

Решение:

Зная массу и плотность льда, рассчитаем его объем:
$V = frac{m}{rho}$,
$V = frac{0.108 space кг}{900 frac{кг}{м^3}} = 0.00012 space м^3 = 120 space см^3$.

Ответ: $V = 120 space см^3$.

Упражнение №3

Сколько килограммов керосина входит в пятилитровую бутыль?

Дано:
$V = 5 space л$
$rho = 800 frac{кг}{м^3}$

СИ:
$V = 5 cdot 10^{-3} space м^3$

$m — ?$

Показать решение и ответ

Скрыть

Решение:

Зная плотность и объем, найдем массу керосина:
$m = rho V$,
$m = 800 frac{кг}{м^3} cdot 5 cdot 10^{-3} space м^3 = 4 space кг$.

Ответ: $m = 4 space кг$.

Упражнение №4

Грузоподъемность лифта составляет $3 space т$. Сколько листов железа можно погрузить в лифт, если длина каждого листа равна $3 space м$, ширина — $60 space см$ и толщина — $4 space мм$?

Дано:
$M = 3 space т$
$a = 60 space см$
$b = 4 space мм$
$c = 3 space м$
$rho = 7800 frac{кг}{м^3}$

СИ:
$M = 3000 space кг$
$a = 0.6 space м$
$b = 0.004 space м$

$n — ?$

Показать решение и ответ

Скрыть

Решение:

Сначала рассчитаем массу одного железного листа. Для этого нам нужно знать его объем (плотность мы взяли из таблицы). Объем мы может вычислить, перемножив друг на друга ширину, высоту и длину: $V = a cdot b cdot c$.

Масса железного листа:
$m = rho V = rho cdot a cdot b cdot c$,
$m = 7800 frac{кг}{м^3} cdot 0.6 space м cdot 0.004 space м cdot 3 space м = 56.16 space кг$.

Теперь разделим грузоподъемность лифта на массу одного лифта. Полученное целое число и будет ответом на вопрос задачи:
$n = frac{M}{m}$,
$n = frac{3000 space кг}{56.16 space кг} approx 53$.

Ответ: $n = 53$.

Упражнение №5

Кружка доверху наполнена молоком. Определите объем кружки, если масса молока в кружке $515 space г$, плотность молока найдите в таблице.

Дано:
$m = 515 space г$
$rho = 1030 frac{кг}{м^3}$

СИ:
$m = 0.515 space кг$

$V — ?$

Показать решение и ответ

Скрыть

Решение:

Зная массу и плотность молока, найдем объем, который оно занимает в кружке:
$V = frac{m}{rho}$,
$V = frac{0.515 space кг}{1030 frac{кг}{м^3}} = 0.0005 space м^3 = 0.5 space л$.

Ответ: $V = 0.5 space л$.

Задание

Возьмите баночку из-под меда. Рассмотрите внимательно этикетку. Найдите на ней, какова масса меда и объем баночки. Затем рассчитайте плотность меда. Полученный результат проверьте по таблице.

Дано:
$m = 800 space г$
$V = 500 space мл$

СИ:
$m = 0.8 space кг$
$V = 0.0005 space м^3$

$rho — ?$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем плотность меда:
$rho = frac{m}{V}$,
$rho = frac{0.8 space кг}{0.0005 space м^3} = 1600 frac{кг}{м^3}$.

По таблице плотность меда составляет $1350 frac{кг}{м^3}$. Существует множество различных сортов меда, плотность которых отличается друг от друга. Наше значение плотности не сильно отличается от табличного, поэтому можно сказать, что результат получен правильный.

Ответ: $rho = 1600 frac{кг}{м^3}$.

Онлайн калькулятор поможет перевести объём в массу и наоборот массу перевести в объём. Для произведения расчетов необходимо знать объём (в см3, дм3, м3, мл, л на выбор) и плотность (в г/см3, г/м3, кг/см3, кг/м3, т/м3, кг/л на выбор).

Определить плотность некоторых веществ можно в таблице под калькулятором.
Формула для перевода объёма в массу: M = V × P
Формула для перевода массы в объём: V = M / P
Где: M – масса; V – объем; P – плотность.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Добавить комментарий