Как найти объем фермы

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Расчёт фермы

Расчёт фермы

Информация

Для оценки потребности в металлической профильной трубе необходима специализированная программа для расчета. Профильная труба является универсальным материалом, она плохо деформируется даже под большими нагрузками, поэтому она качественно подходит для металлоконструкций.

Онлайн-калькулятор создан для расчёта длины и формы каждого элемента планируемой конструкции. Сложность выполнения этого вручную заключается в затратах времени. Остаётся вероятность ошибки – на её исправление потребуются дефицитное время и дополнительный металл. Калькулятор будет полезен специалистам по изготовлению металлоконструкций.

Достоинства

Калькулятор фермы из металлических труб отличается быстротой и наглядностью в работе:

  • он удобен и требует минимального количества данных;
  • практичен на всех этапах создания конструкции (от планирования материала и раскроя проката до проверки качества);
  • автоматическое обновление графического изображения после ввода всех параметров – удобная визуализация металлоконструкции.
  • можно посчить все для навесов из профильной трубы

Схема изделия технологична – ферма собирается с помощью сварки, точность – до миллиметра. Изделие обладает хорошей несущей способностью и симметрией.

Параметры

Расчет фермы из профильной трубы проводится по основным параметрам геометрии будущего изделия. От пользователя требуется ввести несколько значений размеров:

  • габаритные размеры внешнего пояса – длина, ширина и размеры поперечного сечения;
  • наличие стоек (расчёт фермы учитывает их симметричное расположение);
  • наличие раскосов (если они требуются).

Возможен расчет треугольной фермы: для этого следует выбрать «тип фермы» – в один или два ската. На выходе показывается геометрия, выводятся размеры и количество балок.

Добавить комментарий

Содержание:

  1. Ферма и их расчет
  2. Метод вырезания узлов
  3. Метод Риттера
  4. Расчет плоских ферм
  5. Основные понятия о плоских фермах
  6. Условие жесткости фермы
  7. Статически определенные фермы
  8. Метод вырезания узлов
  9. Метод Риттера
  10. Фермы. Способы определения усилий в стержнях ферм
  11. Простейшие фермы
  12. Определение усилий в стержнях фермы
  13. Способ вырезания узлов
  14. Способ Риттера

Фермой называется шарнирно-стержневая геометрически неизменяемая конструкция. 

Плоская ферма – частный случай пространственной конструкции, у которой один из поперечных размеров либо мал по сравнению с другими размерами, либо не существенен для распределения внутренних усилий.

Реальная ферма, может не иметь идеальных шарнирных соединений в узлах, соединения стержней между собой в узлах являются жесткими, а не шарнирными, с помощью сварки, заклепок, болтов или других скреплений.

Плоские фермы конструируют таким образом, что приложенная к ферме нагрузка передается в узлах, вследствие чего, в сечениях элементов ферм не возникают поперечные силы и изгибающие моменты, стержень работает только на продольные усилия – растяжение или сжатие, и, следовательно, реакции стержней будут направлены вдоль этих стержней.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Ферма и их расчет

Ферма — это жесткая конструкция, которая состоит из прямолинейных стержней, соединенных между собой шарнирами. Место, где стержни соединяются друг с другом, носит название узла фермы. Внешняя нагрузка прикладывается к ферме только в ее узлах. Ферма состоит из идеальных стержней, то есть тонких, однородных, невесомых
стержней, на концах которых шарниры, которые работают на растяжение или на сжатие.
Мы будем рассматривать фермы, в которых оси всех стержней и векторы внешних сил содержатся в одной плоскости, то есть, плоские фермы. Помимо этого, конструктивно ферма состоит из стержней, которые образуют собой треугольники, то есть в конструкции фермы нет лишних стержней. такие фермы являются жесткими и статически определенными. В них число стержней n и число узлов m всегда связано таким соотношением

n = 2m3 .

Расчет фермы сводится к определению ее опорных реакций и усилий в стержнях.

Рассмотрим простую плоскую ферму (рис. 1.26).

Как видно из схемы — это плоская конструкция, которая состоит из 7 стержней, которые соединяются в 5 узлах. В узлах I и V ферма имеет опоры (в I-ом узле — неподвижная шарнирная опора; в V-м — подвижная шарнирная опора), к II и к IV узлу фермы приложены внешние нагрузки в виде сосредоточенных сил Фермы и их расчёт и Фермы и их расчёт (Фермы и их расчёт = 30 kH; Фермы и их расчёт = 10 kH). Линейные и угловые размеры фермы данные на схеме (α = 45º). Оси плоской декартовой системы координат I xy показаны на схеме фермы.

Фермы и их расчёт

Первый этап расчета фермы — это определение ее опорных реакций. Определяют опорные реакции, рассматривая ферму в целом, как твердое тело с приложенными внешними силами. Тогда, условно освобождая ферму от связей (опор) и заменяя их соответствующими реакциями (в узле I это реакции Фермы и их расчётI, Фермы и их расчётI; в узле V — Фермы и их расчётV), имеем плоскую систему произвольных сил, для которой можно использовать условия равновесия и составить систему уравнений равновесия:

Фермы и их расчёт

Из первого уравнения системы вычисляем неизвестную реакцию XI. она равна

XI = P2 = 10 kH.

Из последнего уравнения вычисляем реакцию RV:

Фермы и их расчёт

Далее, из второго уравнения является возможность вычислить последнюю неизвестную
величину YI. Она будет равняться

YI = P1RV = 30 – 5 = 25 kH.

Таким образом, вычислено искомые реакции опор фермы. Теперь необходимо определить неизвестные усилия в стержнях фермы. существует несколько способов определения этих усилий, графические и аналитические. Мы рассмотрим два аналитические методы: метод вырезания узлов и метод сечений (или метод Риттера). Рассмотрим последовательно эти методы.

Метод вырезания узлов

Этот метод заключается в последовательном вырезании (мысленно) узлов фермы,
начиная с узла где совпадают два стержня с неизвестными внутренними усилиями. Таким образом, каждый узел — это плоская система сходящихся сил, для которой можно составить два уравнения равновесия, из которых определяют неизвестные усилия в этих двух стержнях.

При применении этого метода принимается правило, согласно которому реакции
стержней направляются от узлов. Если же при определении реакции стержня произойдет, что она имеет отрицательный знак, то этот стержень сжат и действительное направление его реакции ориентировано к узлу.

Фермы и их расчёт

Определим данным методом усилия в стержнях фермы, приведенной на рис. 1.26. Вырезаем сначала узел I (рис. 1.27). Кроме реакций Фермы и их расчётI и Фермы и их расчётI  к нему приложены неизвестные реакции стержней 1 и 2, которые обозначаются Фермы и их расчёт и Фермы и их расчёт и направление которых, по правилу, от узла. Покажем в этом вырезанном узле I оси координат xIy и угол α. Как видно из схемы, узел и находится в равновесии под действием плоской системы сходящихся сил с двумя неизвестными усилиями: Фермы и их расчёт и Фермы и их расчёт. Составим для узла и уравнения равновесия,
используя условия равновесия для плоской системы сходящихся сил в виде. Будем иметь

Фермы и их расчёт

Из второго уравнения определяем усилия S1. Оно равно

Фермы и их расчёт

Как видим, стержень 1 сжатый усилиям 35,3 kH. С первого уравнения определим неизвестное усилие S2

S2 = – XI S1 sinα = –10 – (– 35,3 · 0,707) = – 10 + 25,00 = 15,00 kH .

Таким образом, стержень 2 растянутый усилием 15,00 kH.

Далее вырезаем узел ІІ (рис. 1.28). В этом узле сосредоточены внешняя сила Фермы и их расчёт и усилия трех стержней Фермы и их расчётФермы и их расчёт и Фермы и их расчёт. Причем неизвестные усилия только в двух стержнях — в 3 (Фермы и их расчёт) и в 4 (Фермы и их расчёт). Также предварительно считаем, что стержни 3 и 4 растянуты, и их усилия Фермы и их расчёт и Фермы и их расчёт
направлены от узла ІІ. Усилия же в стержне 1 уже определено ранее, при вырезании первого узла, и не только установлено ​​его значение, но и то, что он сжат, поэтому направление его реакции Фермы и их расчёт будет к узлу ІІ. Проведем через узел ІІ оси координат xy и покажем угол α.

Фермы и их расчёт

Составим для узла ІІ уравнения равновесия, также используя условия, аналогичные предыдущим.

Фермы и их расчёт

Из второго уравнения определяем усилия S3. Оно будет равняться

Фермы и их расчёт

Как видим, стержень 3 сжатый усилиям 7,00 kH. Направление реакции S3 — к узлу ІІ.

Из первого уравнения находим усилия S4. Оно равно

S= –Ssinα – Scosα = – 35,30 · 0,707 – (–7,00)0,707 = – 25,00 + 5,0 = – 20,00 kH.

Таким образом, стержень 4 сжатый усилием 20,00 kH.

Фермы и их расчёт

Далее вырезаем узел IV (рис. 1.29). Он находится под действием внешней силы Фермы и их расчёт и усилий в стержнях 4, 5 и 7. Усилия в стержне 4 определено и его направление — к узлу, а потому неизвестны — только усилия Фермы и их расчёт и Фермы и их расчёт. Проведем через узел IV оси координат xy и покажем угол α. Направления усилий в стержнях 5 и 7 – от узла IV. Составим для узла IV уравнения равновесия, также используя условия равновесия:

Фермы и их расчёт

Решаем систему, для чего из второго уравнения выразим усилия S5 через усилия S7. Оно будет равняться

Фермы и их расчёт

Теперь подставим значение S5 в первое уравнение системы. Будем иметь

S7 cosα – (– S7)cosαP2 + S4 = 0.

Отсюда

Фермы и их расчёт

Стержень 7 сжатый усилием 7,00 kH. Теперь есть возможность найти усилие S5. Оно равно

S5 = – S7 = 7,00 kH.

Стержень 5 растянутый усилием 7,00 kH.

Фермы и их расчёт

Теперь, для окончательного определения усилий в стержнях фермы, что рассматривается, необходимо вырезать узел V. К узлу V приложена реакция Фермы и их расчёт, усилия Фермы и их расчёт, которое направлено к узлу, и неизвестно усилию Фермы и их расчёт, которое направляем от узла. Составим для узла V уравнения равновесия, используя условия равновесия:

Фермы и их расчёт

Как видим, для определения последнего неизвестного усилия S6  достаточно решить первое уравнение системы. Найдем S:

S = S7 cosα = 7,00 · 0,707 = 5,00 kH.

Стержень 6 растянутый усилием 5,00 kH.

Данные расчетов заносим в таблицу 1.1. Знак при определенном усилии в стержне показывает характер его нагрузки. Если он положительный (“+”), То стержень растянут, если отрицательный (“–”), то стержень сжат.

Фермы и их расчёт

Метод Риттера

Рассмотрим второй аналитический метод определения усилий в стержнях плоской фермы. Это метод Риттера, или метод сечений.

Данный метод имеет несколько преимуществ по сравнению с рассмотренным ранее
методом вырезания узлов. Здесь нет необходимости составлять большое количество уравнений равновесия узлов, особенно когда ферма многостержневая. Кроме того, в случае неточности расчета какого-то стержня, в дальнейшем эта ошибка накапливается при расчетах других стержней. Метод Риттера лишен этих неудобств.

Особенность применения этого метода состоит в том, что условно делается сечение всей фермы, при этом в сечении должно быть не больше, чем три стержня с неизвестными усилиями. Тогда рассматривается равновесие одной из частей фермы, а вторая часть отбрасывается. Действие стержней, которые попали в сечение, заменяем их реакциями. предварительно считается, что эти стержни также растянуты, то есть их усилия направлены от узлов. Опорные реакции фермы определяются так же, как и при
применении метода вырезания узлов.

Определим усилия в 4, 5 и 6 стержнях фермы, сделав сечение и рассматривая равновесие правой части фермы (рис. 1.31). Вместо указанных стержней прикладываем в узле IV усилия Фермы и их расчёт и Фермы и их расчёт а в узле V — усилие Фермы и их расчёт. Направления указанных усилий — от узлов. К данной части фермы приложена внешняя сила Фермы и их расчёт и реакция Фермы и их расчёт. Покажем оси прямоугольной декартовой системы координат Vxy и угол α. Как видим, данная часть
фермы находится в равновесии под действием плоской системы произвольных сил, а
для этого составим для нее уравнения равновесия, используя условия равновесия. Согласно методу Риттера надо составлять уравнения равновесия, как суммы моментов сил относительно тех точек, где пересекаются линии действия большего количества неизвестных усилий. В данном случае такими точками будут точки ІІІ и IV. В отношении этих точек возьмем моменты сил.

Будем иметь

Фермы и их расчёт

Вычислим неизвестные усилия. Из первого уравнения — усилия S5:

Фермы и их расчёт

Из второго уравнения — усилия S4. Оно будет равняться

Фермы и их расчёт

Таким образом, стержень 4 сжатый усилиям 20,00 kH, направление усилия S4 будет противоположный тому, который был показан на рис. 1.31.

Фермы и их расчёт

Расчет плоских ферм

Фермой называется конструкция, состоящая из стержней, соединённых между собой на концах шарнирами и образующих геометрически неизменяемую систему. Шарнирные соединения стержней фермы называют её узлами. Если оси всех стержней фермы лежат в одной плоскости, то ферма называется плоской.

Основные понятия о плоских фермах

Фермой называется геометрически неизменная конструкция, состоящая из прямолинейных стержней, соединенных в узлах шарнирами (рис. 8.1).

Основная задача, о которой будет идти речь далее, заключается в определении внутренних усилий, возникающих в стержнях фермы под действием внешних активных сил.

Приведенное определение фермы имеет одно существенное упрощение, которое позволяет усилия в стержнях фермы находить методами теоретической механики. Этим упрощением является допущение о шарнирном соединение стержней фермы.

В реальных фермах стержни соединены жестко с помощью электросварки, клепки и тому подобное. Однако, как показывают исследования в строительной механике, сделано допущение о способе соединения стержней фермы  позволяет найти приближенное значение усилий с достаточной точностью.

Фермы используются в качестве несущих конструкций в различных сооружениях: в мостах, в перекрытиях зданий, в подъемных кранах, каркасах самолетов тому подобное.

Места соединения стержней фермы называются узлами, а те узлы, которыми ферма опирается на основу – опорными узлами. Стержни, размещены по верхнему контуру фермы, образуют верхний пояс, а по нижнем – нижний пояс (См. Рис. 8.1).

Фермы и их расчёт

Вертикальные стержни называются стойками, а наклонены – раскосами.

Фермы бывают пространственные и плоские. Если оси всех стержней фермы лежат в одной плоскости, такая ферма называется плоской, если нет – то пространственной. В этом разделе ограничимся рассмотрением только плоских ферм.

Расчет ферм существенно упрощается, если сделать такие допущения:
1) трения в шарнирах отсутствует;
2) заданные силы, действующие на ферму, лежат в плоскости фермы и приложенные в узлах;
3) собственный вес стержней малый по сравнению с заданными силами и ею можно пренебречь.

Если выполнять эти условия, каждый стержень фермы будет работать на растяжение или сжатие и не испытывать деформации изгиба, в чем и есть преимущество фермы как строительной конструкции. Действительно, при условии, что все усилия приложены в узлах фермы и отсутствует трение в шарнирах, каждый стержень будет находиться под действием только двух сил, которые приложены к его концов. Согласно с первой аксиомой статики, при равновесии линия действия этих сил должна проходить через их точки приложения. Итак, силы, приложенные к стержню фермы, будут обязательно направлены вдоль стержня, и поэтому приводить его сжатие или растяжение.

Сделанные допущения оправданы тем, что, во-первых, трения в шарнирах малое по сравнению с заданными силами и им можно пренебречь; во-вторых, если сила приложена не у узле фермы, то ее можно разложить на составляющие, которые будут приложены в узлах.

Для того чтобы ферму можно было использовать как несущую конструкцию в инженерных сооружениях, необходимо обеспечить ее жесткость.

Определим условия, при которых ферма будет жесткой (геометрически неизменной).

Условие жесткости фермы

Найдем наименьшее число стержней N, необходимых для построения геометрически неизменяемой (жесткой) фермы, которая имеет n узлов.

Простой, геометрически неизменной фермой является конструкция, состоит из трех узлов, соединенных тремя стержнями. для жесткого присоединения каждого из последующих Фермы и их расчётузлов необходимо два стержня (Рис. 8.2). Полученная таким образом новая конструкция  также будет геометрически неизменной фермой.

Фермы и их расчёт

Следовательно, для обеспечения жесткости фермы (т.е. исключения относительных
перемещений стержней) необходимо, чтобы число стержней равнялось

Фермы и их расчёт

то есть Фермы и их расчёт

Пример неизменной жесткой фермы показано на рис. 8.3, а.

Если число стержней Фермы и их расчёт то конструкция будет геометрически переменной (рис. 8.3, б), а если Фермы и их расчётто ферма будет содержать лишние стержни (рис. 8.3, в).

Уравнение (8.1) называется условием жесткости фермы. Заметим, что равенство (8.1) является необходимым условием жесткости фермы, но не достаточным. Для конструкции, изображенной на рис. 8.3, г, условие (8.1) выполняется, но эта система геометрически переменная. Для обеспечения геометрической неизменности фермы условие (8.1) должно выполняться как для всей фермы, так и для отдельных ее частей (решеток).

Фермы и их расчёт

Статически определенные фермы

Статическую определенность фермы устанавливают по количеству реакций опор и числом стержней фермы.

Заметим, что ферма является неизменной системой, поэтому, как известно из предыдущего, неизвестных опорных реакций не должно быть более трех. В противном случае задача определения опорных реакций для данной фермы является статически неопределенной.

Рассчитывая фермы, кроме трех неизвестных реакций, нужно еще определить усилия в стержнях фермы. Выясним, сколько независимых уравнений статики можно составить для определения этих неизвестных сил. для этого используем метод вырезания узлов.

На каждый вырезанный узел фермы будет действовать плоская система сходящихся сил, которая состоит из внешних сил (активных и реакций связей) и внутренних усилий в стержнях. Поэтому система сил, приложенная к узлу, должна удовлетворять двум уравнениям равновесия Фермы и их расчёт Фермы и их расчёт

Следовательно, при равновесии фермы, которая имеет n узлов, все действующие на ферму
внешние силы и усилия в стержнях должны удовлетворять 2n уравнением.

С равновесия отдельных узлов фермы следует равновесие фермы в целом, а потому три уравнения равновесия Фермы и их расчёт записанные для всей фермы, будут линейными комбинациями первых уравнений, которые являются независимыми.

К 2n уравнениям будут входить три неизвестные реакции связей и внутренние усилия в стержнях. Из этих уравнений можно найти Фермы и их расчёт – неизвестных внутренних усилий в стержнях. Если число стержней фермы Фермы и их расчёт эти усилия могут быть определены из уравнений статики, и такая ферма называется статически определенной; если Фермы и их расчёт усилия в стержнях с помощью одних лишь уравнений статики абсолютно твердого тела определить невозможно и ферма будет статически неопределенной. Заметим, что условие жесткости фермы (8.1) действительно для плоской фермы и является условием статической определенности.

Методы нахождения усилий в стержнях статически неопределенных ферм рассматриваются в курсах сопротивления материалов и строительной механики. В курсе
теоретической механики рассматривают только статически определенные фермы.

Существует три основных метода нахождения усилий в стержнях статически определенных ферм: вырезания узлов Риттера и графический (построения
диаграммы Максвелла-Кремоны).
Остановимся только на двух аналитических методах.

Метод вырезания узлов

Суть метода вырезания узлов заключается в том, что рассматриваем равновесие каждого узла в отдельности. Для этого вырезаем узлы фермы, прикладываем к ним соответствующие внешние силы и реакции стержней и составляем уравнение
равновесия сил, приложенных к каждому узлу. Поскольку в начале расчета фермы неизвестно, какие стержни фермы растянуты, а какие сжаты, условно допускаем, что все стержни растянуты. В этом случае реакции стержней направляем от узлов. Если в результате вычислений получим значение реакций некоторых стержней со знаком минус, то это будет означать, что эти стержни сжаты. Найденные реакции стержней по модулю равны внутренним усилием в стержнях.

Последовательность рассмотрения узлов определяется по условию: число неизвестных сил, приложенных к узлу, не должно превышать количества уравнений равновесия сил, то есть двух.

Проиллюстрируем этот метод на конкретном примере.

Задача 1. Найти усилия в стержнях фермы, изображенной на рис. 8.4, методом вырезания узлов, если к узлу D фермы приложено вертикальную силуФермы и их расчёт

Фермы и их расчёт

Решение. В этой ферме число узлов n = 8, а число стержней N = 13. Итак, условие (8.1) выполняется и ферма является жесткой без лишних стержней, то есть статически определенной.

Составим уравнения равновесия для всей фермы и найдем реакции опор А и В:

Фермы и их расчёт

Фермы и их расчёт

Переходим к определению усилий в стержнях. Условно вырежем все узлы фермы, сохраняя последовательность, указанную выше. реакции стержней обозначим через Фермы и их расчёт(рис. 8.5). На основе закона равенства действия и противодействия Фермы и их расчёт

Для сил, которые совпадают в каждом узле, составим последовательно уравнения равновесия. Расчет начнем с узла А, в котором приложены только две неизвестные силы Фермы и их расчёти Фермы и их расчёт

Фермы и их расчёт

Фермы и их расчёт

Фермы и их расчёт

Фермы и их расчёт

Фермы и их расчёт

Фермы и их расчёт

Фермы и их расчёт

Равновесие последнего узла В можно не рассматривать, поскольку все усилия Фермы и их расчёт найдены. Если правильно найдены все усилия, то условия равновесия узла В будут выполняться тождественно.

Полученные усилия в стержнях 1, 4, 8 и 12 отрицательные, и это означает, что стержни сжаты.

Усилия в отдельных стержнях загруженной фермы, как видно из приведенного примера, могут равняться нулю. Такие стержни принято называть нулевыми.

Сформулируем леммы, которые позволяют найти нулевые стержни плоской фермы, не проводя ее расчета.

Лемма 1. Если в незагруженном узле плоской фермы сходятся два стержни, то усилия в этих стержнях равны нулю.
Лемма 2. Если в незагруженном узле плоской фермы сходятся три стержни, два из которых расположены на одной прямой, то усилия в третьем стержни равна нулю. Усилия в первых двух стержнях равны между собой.
Лемма 3. Если в узле плоской фермы сходятся два стержня и к узлу приложена внешняя сила, линия действия которой совпадает с осью одного из стержней, то усилия в этом стержни равна по модулю приложенной силе, а усилия во втором стержне равна нулю.

Довести эти леммы предлагается самостоятельно.

Методом вырезания узлов выгодно пользоваться тогда, когда нужно найти усилия во всех стержнях фермы. Этот метод хоть и простой, но громоздкий и нерациональный в тех случаях, когда нужно найти усилия не во всех стержнях фермы, а только в отдельных. Например, для нахождения усилий только в одном стержне приходится рассматривать
последовательно равновесие определенного количества узлов, пока не будет найдено усилия в нужном стержни. Этот недостаток отсутствует в методе Риттера.

Метод Риттера

Метод Риттера состоит в том, что после нахождения реакций опор ферму условно разрезают на две части так, чтобы в сечении было не более трех стержней с неизвестными усилиями, и рассматривают равновесие одной из частей фермы. Действие отброшенной части заменяют соответствующими силами, направляя их вдоль разрезанных стержней от узлов, то есть считают, что стержни розтянути (как в методе вырезания узлов).

На часть фермы, которую рассматриваем в равновесии, будут действовать внешние силы и реакции разрезанных стержней. Для полученной плоской системы сил составляем три уравнения равновесия.

Уравнение выгодно записывать в виде равенства нулю суммы моментов всех сил относительно трех разных центров,которые являются точками, в которых попарно пересекаются разрезанные стержни или их продолжение. Эти точки носят название точек Риттера. В каждое из уравнений моментов относительно трех точек Риттера будет входить лишь одно неизвестное, а именно усилия в том стержни, ось которого через эту точку не проходит. Покажем это на примере.

Задача 2. Методом Риттера найти усилия в стержнях 4, 5 и 6 фермы, изображенной на рис. 8.4.

Решение.Реакции опор фермы найдены в предыдущем примере Фермы и их расчёт Условным сечением Фермы и их расчёт разделим ферму на две части по стержнях 4, 5, 6 (рис. 8.4) и рассмотрим равновесие левой от сечения части фермы.

Действие правой части на левую заменяем реакциями Фермы и их расчётиФермы и их расчёт(Рис. 8.6).

Фермы и их расчёт

Для плоской системы сил, которая действует на левую часть фермы, составляем три уравнения равновесия:

Фермы и их расчёт

где Фермы и их расчёти Фермы и их расчёт – точки Риттера, которые показаны на рис. 8.6.

Индексация точек Риттера Фермы и их расчёт выбрана так, что уравнение моментов, записанное относительно каждой точки Фермы и их расчёт, содержит только одно неизвестное усилиеФермы и их расчётв стержне под номером Фермы и их расчёт

Фермы и их расчёт

Решая эту систему уравнений, получим:

Фермы и их расчёт

Величины найденных усилийФермы и их расчёт совпадают с полученными ранее методом вырезания узлов.

Аналогично можно найти усилия и в других стержнях фермы. Из приведенного примера видно, что уравнение равновесия не связаны между собой, а потому для нахождения усилий в одном стержне достаточно составить лишь одно из этих уравнений.

Фермы. Способы определения усилий в стержнях ферм

Основными способами определения усилий в стержнях ферм являются: – способ вырезания узлов; – способ сечений Риттера; – графический способ определения усилий в стержнях фермы с помощью построения диаграммы Максвелла-Кремоны; – метод построения веревочного многоугольника.

Простейшие фермы

Фермами называются конструкции, которые состоят из прямолинейных стержней, которые соединены между собой шарнирами и образуют неизменную геометрическую фигуру (рис. 4.1). При расчете ферм весом стержней пренебрегают и считают, что шарниры размещены только на концах стержней; нагрузки, действующие на ферму, приложенные в шарнирах (т.е. в узлах фермы). В этом случае каждый стержень фермы испытывает усилия, действующие вдоль оси стержня, то есть будет растянут или сжат.

С всего класса геометрически неизменных ферм без лишних стержней выделим простые фермы. Их построение происходит так: рассматривается основной треугольник, к нему двумя стержнями присоединяется новый шарнир (узел) и и. д. В дальнейшем будем изучать простые, плоские фермы, где их стержни расположены в одной плоскости.
 По своему назначению зачастую фермы делятся на мостовые, стропильные и крановые (рис. 4.1). Установим зависимость между количеством Фермы и их расчёт стержней и количеством Фермы и их расчёт шарниров (узлов) в простых фермах.
 Рассуждаем так: для образования основного треугольника нужно три стержня и три шарнира. Для образования каждого из остальных Фермы и их расчётшарниров (узлов) необходимо два стержня для постоянного соединения с основой фермы. Итак, общее количество стержней в простой ферме с учетом трех стержней основного треугольника определяется так:

Фермы и их расчёт                                                                                                             (4.1)

Основной задачей расчета простых ферм является определение усилий в стержнях фермы, которые являются внутренними силами, возникающими в стержнях под действием внешних сил. Эту задачу можно решить методами теоретической механики.

Фермы и их расчёт

Определение усилий в стержнях фермы

Ограничимся двумя способами определения усилий в стержнях простой фермы: способом
вырезания узлов (графически-аналитический метод) и способом Риттера (аналитический метод).

Способ вырезания узлов

Этот способ заключается в том, что каждый узел вырезается из
фермы и рассматривается отдельно как таковой, что находится в равновесии под действием приложенных к нему внешних сил и усилий разрезанных стержней. Система сил, действующей на узел, является плоской системой сходящихся сил, которая находится в равновесии; следовательно, силовой многоугольник, построенный из этих сил, должен быть замкнутым. Построение силовых многоугольников (треугольников) следует начинать с узла, в которых сходятся два стержня, тогда построением замкнутого треугольника (третья сторона отвечает известной заданной силе, прилагаемой в узле) найдутся усилия в этих двух стержнях. После этого можно переходить к следующему узлу и т. Д. Каждый следующий узел выбирается так, чтобы в нем сходилось не более двух стержней с неизвестными усилиями. Так графически будут определены усилия во всех стержнях. Если усилия разрезанных стержней направлены по стержнях в сторону узла, то они сжимающие, в противном случае – растяжимые.
 Формально условия равновесия узлов фермы включают в себя условия равновесия фермы в целом, то есть позволяют найти и внешние реакции. Более того, предварительное определение внешних реакций фермы существенно упрощает решения задачи. Рассмотрим способ вырезания узлов на примере расчета усилий в стержнях фермы, показанной на рис. 4.2.

Пример 1. В узле В фермы приложена сила Фермы и их расчёт Опорами фермы будут шарнир А и каток С. Определить: реакции опор Фермы и их расчёт, усилия стержней в узлах А и D.
 Решение. Рассмотрим ферму как твердое тело, которое находится в равновесии под действием плоской системы параллельных сил Фермы и их расчёт (в этом случае реакция шарнира Фермы и их расчёт будет параллельная силам Фермы и их расчёт и Фермы и их расчёт, иначе система сил Фермы и их расчёт, а следовательно, сама ферма не была бы в равновесии). Проведем ось Фермы и их расчёт параллельно силам системы и составим условия равновесия в виде (3.21)

Фермы и их расчёт

откуда найдем Фермы и их расчёт

Фермы и их расчёт

Определение усилий в стержнях начнем с рассмотрения узла А, в котором сходятся два стержня: 1 и 7. Строим замкнутый треугольник из сил Фермы и их расчёт, Фермы и их расчёт (рис. 4.2). Для этого в соответствующем масштабе строим вектор, равный вектору реакции Фермы и их расчёт, с конца которого проводим прямую, параллельную стержню АВ, а с начала – прямую, параллельную стержню AD. С построенного треугольника находим усилия Фермы и их расчёт и Фермы и их расчёт. Изображая эти усилия в узле А,  видим, что Фермы и их расчёт направлено к узлу А по стержню АВ, следовательно, оно – тяговое, а усилия S7 направлено от узла А по стержню , то есть оно – растяжимое. Растяжимое усилия обозначается знаком плюс, а сжимающее – знаком минус. Теперь рассмотрим равновесие сил в узле Фермы и их расчёт, в котором остаются только две неизвестные силы:  Фермы и их расчёт и Фермы и их расчёт. Реакция стержня 7, который выходящий из узла Фермы и их расчёт равна и противоположная по направлению его же реакции, но приложена в узле А. Опять строим замкнутый треугольник сил: откладываем силу  Фермы и их расчёт, с ее конца проводим прямую, параллельную стержню 2, сначала – прямую, параллельную стержню 6, и определяем величины и направления усилий Фермы и их расчёт и Фермы и их расчёт. Аналогично можно определить другие усилия: Фермы и их расчёт

Неудобство этого способа заключается в его громоздкости, поскольку приходится строить  столько многоугольников, сколько узлов в ферме. Объединение разных многоугольников сил в одну диаграмму осуществили независимо друг от друга английский физик Максвелл и итальянский геометр Кремона, в честь которых эту диаграмму назван диаграммой Максвелла – Кремоны.

Способ Риттера

Этот способ позволяет найти усилия в любом стержни фермы независимо от усилий в других стержнях. Однако предварительно необходимо определить реакции опор фермы.
Способ Риттера состоит в том, что ферма рассекается на две части так, чтобы в сечении было не более трех стержней с неизвестными усилиями,  которые не сходятся в одном узле. Отвергая отсеченную часть фермы и рассматривая равновесие той части, оставшейся под действием приложенных внешних сил и усилий, которые заменяют действие рассеченных стержней, получим для этой части фермы три уравнения равновесия с тремя неизвестными усилиями. Чаще всего эти уравнения являются условиями равенства нулю алгебраических сумм моментов  сил относительно  трех разных центров моментов, за которые выбирают точки парного пересечения рассеченных стержней с числа перерезанных. Эти точки называются точками Риттера.
Если два стержня из трех рассеченных параллельны, то одна точка Риттера удаляется в бесконечность. Тогда  составляют два уравнение моментов сил и одно уравнение проекций сил на ось,  перпендикулярную к параллельным стержням.

Пример 2. Определить усилия в стержнях 1, 2, 3 фермы, еслиФермы и их расчёт Фермы и их расчёт а другие размеры показано на рис. 4.3.
 Решение. Найдем реакции в опорах фермы Фермы и их расчёт и Фермы и их расчёт. Реакция катка В направлена ​​по нормали к опорной плоскости, а поскольку на ферму действует система параллельных сил Фермы и их расчёт то и реакция Фермы и их расчёт шарнира А будет параллельной этим:
Фермы и их расчёт

Отсюда находим Фермы и их расчёт Проведем сечение через стержни 1,2,3 и рассмотрим равновесие той части рассеченной фермы, в которой приложено меньшее количество сил. В рассматриваемом случае – это правая часть фермы. Усилия в рассеченных стержнях условно считаем растяжимыми и направлением в сторону части, отбрасываются. Итак, в отсеченной части фермы уравновешивается плоская система сил  Фермы и их расчётФермы и их расчёт

Для определения усилия Фермы и их расчёт соответствующей точкой Риттера будет точка К, а уравнение равновесия примет вид:

Фермы и их расчёт

Для определения усилия Фермы и их расчёт точкой Риттера является точка В, для определения усилия Фермы и их расчёт – точка D, а соответствующие уравнения равновесия имеют вид:

Фермы и их расчёт

Подставляя необходимые данные, находим Фермы и их расчёт
Итак, усилия Фермы и их расчёт – растяжимое, Фермы и их расчёт– сжимающее (тяговое) , Фермы и их расчёт – нулевое (при заданной нагрузке стержень 2 не работает, но с конструкции его изъять нельзя, поскольку нарушится жесткость конструкции и не выполнится условие (4.1)). В завершение сравним методы Максвелла – Кремоны и Риттера, несмотря на их различие, которое заключается в том, что первый метод относится к графическим, а второй – к аналитическим. Как видно из предыдущего изложения, усилия методом вырезания узлов определяются последовательно, переходя от одного узла к соседнему. Поэтому неизбежно накопление ошибок, связанных с неточностью проведение параллельных прямых. Следует отметить, что накопление этих ошибок можно избежать при решении задачи чисто аналитическим способом, составляя уравнения равновесия для системы сходящихся сил, приложенных в узлах фермы.

Но, с другой стороны, взаимосвязь между построением новых вершин диаграммы Максвелла – Кремоны и положением предыдущих, следует рассматривать как определенное ограничение погрешностей, позволяет избежать грубых
ошибок.
 Метод Риттера в отличие от предыдущего не приводит к накоплению ошибок, так как все усилия определяются независимо друг от друга, но одновременно не дает возможности заметить грубые ошибки, которые могут случиться при исчислении.

Очевидно, лучшая методика определения усилий в стержнях фермы заключаться в сочетании методов Максвелла – Кремоны и Риттера. Например, все усилия определяются по методу Максвелла – Кремоны и некоторые из них проверяются методом Риттера.

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет усилий в стержнях фермы
  9. Пространственная система сил
  10. Произвольная пространственная система сил
  11. Плоская система сходящихся сил
  12. Пространственная система сходящихся сил
  13. Равновесие тела под действием пространственной системы сил
  14. Естественный способ задания движения точки
  15. Центр параллельных сил
  16. Параллельные силы
  17. Система произвольно расположенных сил
  18. Сосредоточенные силы и распределенные нагрузки
  19. Кинематика
  20. Кинематика твердого тела
  21. Движения твердого тела
  22. Динамика материальной точки
  23. Динамика механической системы
  24. Динамика плоского движения твердого тела
  25. Динамика относительного движения материальной точки
  26. Динамика твердого тела
  27. Кинематика простейших движений твердого тела
  28. Общее уравнение динамики
  29. Работа и мощность силы
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Металлические фермы не являются редкостью в условиях современного строительства. Такие конструкции особенно востребованы при обустройстве помещений с большими размерами или в случае необходимости получить стропильную систему с наиболее высоким уровнем прочности и надёжности. Кроме того, металл обладает характеристиками, позволяющими оформлять конструкции из профильных труб для монтажа пролётов с длиной более десяти метров.

Содержание

  • 1 Преимущество стропильных ферм из труб
  • 2 Инструкция для калькулятора расчета треугольной фермы
  • 3 Разновидности ферм из профильных труб
  • 4 Технические особенности каркасов
  • 5 Классификация ферм из профильной трубы
  • 6 Изготовление стропильного изделия
  • 7 Область применения
  • 8 Делаем простой каркас х м
  • 9 Принципы проведения сварочных работ
  • 10 Подготовка к постройке конструкции
  • 11 Как рассчитываются веранды
  • 12 Полезные советы по изготовлению своими руками ферм из профильных труб
  • 13 Подробнее о фермах
  • 14 Определение усилий
  • 15 Рекомендации перед постройкой
  • 16 Достоинства и недостатки металлических ферм
  • 17 Требования к расчету профильной трубы для строительства фермы

Преимущество стропильных ферм из труб

  • стабильно высокие прочностные характеристики, которые позволяют обеспечить максимально долгую эксплуатацию всей конструкции;

Преимущество стропильных ферм из труб

Преимущество стропильных ферм из труб

  • использование металлического профиля значительно облегчает сооружение наиболее сложных конструкций с минимальными затратами времени и сил;

Преимущество стропильных ферм из труб

Преимущество стропильных ферм из труб

  • фермы из профильных труб отличаются вполне доступной стоимостью;

Преимущество стропильных ферм из труб

Преимущество стропильных ферм из труб

  • фермы из профилей обладают незначительным весом;

Преимущество стропильных ферм из труб

Преимущество стропильных ферм из труб

  • конструкции, изготовленные с использованием профильных труб, отличаются устойчивостью к деформационным изменениях и испытывают минимальные последействия вследствие механических ударов или других повреждений.

Преимущество стропильных ферм из труб

Преимущество стропильных ферм из труб

Кроме того фермы, выполненные на основе металлических профилей можно окрашивать, что позволяет получить очень качественную и внешне эстетичную конструкцию.

Преимущество стропильных ферм из труб

Инструкция для калькулятора расчета треугольной фермы

Введите значения размеров в миллиметрах:

X – Длина треугольной стропильной фермы зависит от размера пролета, который необходимо накрыть и способа ее крепления к стенам. Деревянные треугольные фермы применяют для пролетов длиной 6000-12000 мм. При выборе значения X нужно учитывать рекомендации СП «Деревянные конструкции» (актуализированная редакция СНиП II-25-80).

Инструкция для калькулятора расчета треугольной фермы

Y – Высота треугольной фермы задается соотношением 1/5-1/6 длины X.

Z – Толщина, W – Ширина бруса для изготовления фермы. Искомое сечение бруса зависит от: нагрузок (постоянные – собственный вес конструкции и кровельного пирога, а также временно действующие – снеговые, ветровые), качества применяемого материала, длины перекрываемого пролета. Подробные рекомендации о выборе сечения бруса для изготовления фермы, наведены в СП «Деревянные конструкции», также следует учитывать СП «Нагрузки и воздействия». Древесина для несущих элементов деревянных конструкций должна удовлетворять требованиям 1, 2 и 3-го сорта по ГОСТ 8486-86 «Пиломатериалы хвойных пород. Технические условия».

S – Количество стоек (внутренних вертикальных балок). Чем больше стоек, тем выше расход материала, вес и несущая способность фермы.

Если необходимы подкосы для фермы (актуально для ферм большой протяженности) и нумерация деталей отметьте соответствующие пункты.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Инструкция для калькулятора расчета треугольной фермы

Нажмите «Рассчитать».

Треугольные деревянные фермы применяют в основном для кровель из материалов требующих значительного уклона. Онлайн калькулятор для расчета деревянной треугольной фермы поможет определить необходимое количество материала, выполнит чертежи фермы с указанием размеров и нумерацией деталей для упрощения процесса сборки. Также с помощью данного калькулятора Вы сможете узнать общую длину и объем пиломатериалов для стропильной фермы.

Разновидности ферм из профильных труб

Ферменная конструкция состоит из верхнего и нижнего поясов и решетки между ними. Компонентами решетки выступают следующие детали: расположенная перпендикулярно оси стойка; установленный под наклоном к оси раскос (подкос); вспомогательный шпренгель.

Разновидности ферм из профильных труб

Пояса конструкции отличаются очертаниями:

Разновидности ферм из профильных труб

  • Треугольная односкатная ферма. Отличается выдерживающей способностью к высоким нагрузкам с малой емкостью материалов;
  • Треугольная двускатная ферма. Устанавливается на большескатных кровлях. Недостатки: сложное устройство опорных узлов, перерасход материалов. Альтернативное решение – ферменные двускатные конструкции из профильного трубного проката треугольной формы.
  • Сегментная ферма. Нередко используется для установки кровель со покрытием светопрозрачного типа (сотовый или монолитный поликарбонат);
  • Полигональная ферма. Плюс: выдерживающая способность к значительным нагрузкам, начиная тяжелым настилом и мощным снеговым покровом. Дополнительное преимущество: – экономное использование профиля. Минус: сложный монтаж;
  • Ферма с параллельными поясами. Является более простым и экономичным решением. Для возведения необходимо наличие стоек и раскосов с одинаковым размером. Фермы из профильных труб такой формы легко возводятся. Это достигается благодаря следующим факторам: унифицированная конструкция, большое количество деталей с одним размером и минимальное количество стыков. Годятся для кровель мягкого и светопрозрачного типов;
  • Трапециевидная ферма. Похожа на полигональную, однако обладает упрощенной схемой сооружения;
  • Арочная ферма с параллельными поясами вверху и внизу. Такой тип популярен при монтаже навесов для авто, теплиц, беседок.

Разновидности ферм из профильных труб

Разновидности конструкций решеток выделяют следующие: треугольные для каркасов с параллельными поясами, редко – для треугольных или трапециевидных ферм; раскосные с большой материалоемкостью и сложным монтажом (как вариант шпренгельный и полураскосный типы); индивидуальный вариант.

Технические особенности каркасов

Для того чтобы подробно описать характеристики навесов из профильных труб, необходимо составить определение понятию “навес”. Он представляет собой малую архитектурную форму, зачастую выступает в роли составляющей крытого участка, при этом, имеет важное архитектурное, либо декоративное значение. Главное предназначение навесов — защита определённой территории от осадков и внешних влияний окружающей среды.

Правила расчета и установки фермы из профильной трубы – Проф Трубы

Правила расчета и установки фермы из профильной трубы. Ферма из профильной трубы

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Правила расчета и установки фермы из профильной трубы. Ферма из профильной трубы

Изготовление ферм из профильной трубы своими руками – Трубы

Высокая устойчивость к биологическим, физическим и химическим воздействиям позволяет металлопрофилю не только серьёзно отличаться от других материалов по функциональности, но и быть довольно выгодным при пользовании и массовом потреблении. Все виды каркасов, возводимые из данного материала, легко поддаются монтажу и сечению.

Классификация ферм из профильной трубы

Все металлические конструкции фермы имеют несколько общих параметров, которые и обеспечивают деление ферм на виды.

Классификация ферм из профильной трубы

К этим параметрам относятся:

Классификация ферм из профильной трубы

  1. Количество поясов. Металлические фермы могут иметь лишь один пояс, и тогда вся конструкция будет лежать в одной плоскости, или два пояса. В последнем случае ферма будет называться висячей. Конструкция висячей фермы включает в себя два пояса – верхнего и нижнего.
  2. Форма. Существует арочная ферма, прямая, односкатная и двухскатная.
  3. Контур.
  4. Угол наклона.

Классификация ферм из профильной трубы

Классификация ферм из профильной трубы

В зависимости от контуров выделяют следующие виды металлоконструкций:

Классификация ферм из профильной трубы

  1. Фермы с параллельным поясом. Такие конструкции чаще всего используются в качестве опоры для обустройства крыши из мягких кровельных материалов. Ферма с параллельным поясом создается из одинаковых деталей с идентичными габаритами.
  2. Односкатные фермы. Конструкции с одним скатом обходятся недорого, поскольку для их изготовления требуется немного материалов. Готовая конструкция получается довольно выносливой, что обеспечивается жесткостью узлов.
  3. Полигональные фермы. Данные конструкции отличаются очень хорошей несущей способностью, но за него приходится расплачиваться – полигональные металлоконструкции очень неудобны в монтаже.
  4. Треугольные фермы. Как правило, фермы с треугольным контуром используются для монтажа крыш, расположенных под большим наклоном. Из недостатков таких ферм стоит отметить большое количество лишних затрат, связанных с массой отходов при производстве.

Классификация ферм из профильной трубы

Классификация ферм из профильной трубы

Изготовление стропильного изделия

При изготовлении системы из ЛСТК главные связки выполняют, прихватывая трубы двойными уголками.

К верхнему поясу перемычки и раскосы монтируют с помощью уголков с неравными сторонами, стыкуя их по короткой стороне.

Детали нижнего пояса тоже стыкуют уголками с неравными сторонами. Главные элементы соединяют с помощью накладных пластин.

Рассмотрим подробнее изготовление ферм из профильной трубы сварным методом.

Если вы не знаете, как сварить ферму из профильной трубы, потому что вообще никогда не имели дела со сваркой, то придется обратиться к специалисту, так как стропильная ферма — не та конструкция, на которой можно «набивать руку». От качества швов на стропильной ферме зависит прочность кровли.

Фермы лучше изготавливать из прямоугольных или квадратных труб, так как имеющиеся у них ребра обеспечат конструкции хорошую устойчивость.

Стропильную ферму нужно изготавливать только из стали, устойчивой к окислению и другим агрессивным атмосферным факторам.

Толщина металла и сечение трубы должны соответствовать параметрам, заложенным в проекте. Соблюдение этих условий обеспечит стропильной конструкции нужную несущую способность.

Каждый сварочный шов проверяют на качество, поскольку именно от него будет зависеть надежность будущей конструкции.

Видео:

Когда сварка ферм из профильной трубы закончится, останется только обработать швы антикоррозийным составом и покрыть их краской.

Этапы сваривания кровельной системы из металлических профильных труб:

  1. выравнивают верхний и нижний пояс;
  2. вваривают между поясами перемычки;
  3. на конструкцию из двух поясов и расположенных к ним под углом 90о перемычек приваривают раскосы — отрезки трубы, срезанные под углом.

Первую ферму можно использовать как шаблон для изготовления остальных.

Совет: резать металлопрофиль под углом удобнее всего с помощью резочного станка. Такое устройство можно взять напрокат или сделать самостоятельно из болгарки.

При небольшом объеме работ, например, при изготовлении системы для навеса или ворот, резать металлопрофиль можно просто болгаркой.

После завершения сварки остается только поднять конструкцию наверх и закрепить по верхней обвязке согласно размеченным линиям.

Для подъема системы из профильных труб на высоту придется использовать подъемные механизмы: кран или лебедку. Стропы закрепляют в узлах верхнего пояса в 2 или 4 местах.

Для временного закрепления ставят парные расчалки под углом к горизонту не больше 45о. Затем трубы приваривают к колоннам, предварительно проверив вертикальность системы.

Сваривание труб из металлопрофиля – еще одна актуальная тема. Для соединения металлопластиковых труб можно использовать ручную, дуговую и газовую сварку.

Видео:

Так как профильные трубы делают из углеродистой и низколегированной стали (нержавейку используют редко), сваривать их можно по обычным технологиям.

Любые виды решетчатых конструкций, в том числе и кровельные фермы, изготавливают из стали толщиной не более 1 см. Длина соединений не должна превышать 40 см.

Сварные соединения фермы по-разному расположены в пространстве, поэтому сварку удобно выполнять полуавтоматом со шлангом, проволокой, заполненной флюсом, или проволокой с самозащитой.

В индивидуальном строительстве используют ручную сварку отдельными электродами. Автоматическое сваривание использовать не экономично.

В серийном изготовлении используют контактную точечную сварку с увеличением давления. Специалисты не рекомендуют выполнять соединение прерывистым способом.

Первым делом варят стыковочные швы, а затем угловые. Такой порядок позволяет избежать напряжения металла в узле.

Если швы расположены поблизости друг от друга, то перед выполнением второго шва нужно охладить металл для предупреждения пластических деформаций.

Узлы сваривают, начиная от середины. В начале накладывают швы большего сечения, затем меньшего. Каждый элемент системы прихватывают с двух сторон.

Длина соединения не должна быть меньше 3 см, катет соединения — не меньше 0,5 см. Прихваты и сварной шов должны быть выполнены из одного материала — это нужно для постоянства напряжения металла в шве.

Видео:

Строительные технологии быстро развиваются. Еще недавно здания строили только из камня или дерева, сейчас же востребованы сооружения, которые можно возвести максимально быстро.

Это можно сделать, используя профилированные трубы из металла и современные материалы: поликарбонат, пластик, профилированный лист, плитные утеплители.

Без металлических ферм из профильной трубы строительство таких конструкций было бы невозможно.

Область применения

Схема несущего кузова автомобиля. Роль элементов фермы играют приваренные к оболочке кузова усилители и выштамповки на ней. Фермы широко используются в современном строительстве, в основном для перекрытия больших пролётов с целью уменьшения расхода применяемых материалов и облегчения конструкций, например — в строительных большепролётных конструкциях, типа мостов, стропильных систем промышленных зданий, спортивных сооружений, а также при возведении небольших лёгких строительных и декоративных конструкций: павильонов, сценических конструкций, тентов и подиумов;

Область применения

Фюзеляж самолёта, корпус корабля, несущий кузов автомобиля (кроме открытых кузовов, работающих как простая балка), автобуса или тепловоза, вагонная рама со шпренгелем — с точки зрения сопромата являются фермами (даже если у них отсутствует как таковой каркас — ферменную конструкцию в этом случае образуют подкрепляющие обшивку выштамповки и усилители), соответственно, в их расчётах на прочность применяются соответствующие методики[10].

Делаем простой каркас х м

Чтобы изготовить несложную конструкцию, надежно укрывающую автомобиль от непогоды, можно воспользоваться распространенными вариантами. Первый вопрос у начинающего строителя-сварщика, это: сварка ферм из профильной трубы — как правильно рассчитать материалы? В стандартной схеме 4 х 6 метров используется профиль 30 х 30 мм, с толщиной стенки 1,2 мм.

Это будет односкатный вариант, где балки верхнего пояса имеют длину 390 см, а нижнего 310 см. Между ними устанавливаются вертикальные стойки каркаса, из того же профиля. Высота самой большой составляет 60 см. Остальные вырезаются по мере убывания. Достаточно три стойки, расположенные в первой части от высокого ската. Образованные участки усиливаются раскосыми перемычками из профиля 20 х 20 мм. Там, где верхняя и нижняя балки сходятся, вертикальных стоек не требуется. На одну ферму достаточно семь раскосов.

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Основы расчета и сварки фермы из профильной трубы. Расчет и изготовление ферм из профильной трубы Как рассчитать ферму из профильной трубы

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Металлическая ферма из профильной трубы: расчет, чертеж, конструкция

Ферма квадратного сечения – Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление — НА ВЕТКАХ — ПРИКОЛЫ, ФОТКИ, АНЕКДОТЫ — приходите к нам посидеть на ветках, будет интересно

Получилась первая ферма. На длину навеса в шесть метров потребуется пять таких конструкций. Расстояние между ними составит 150 см. Этого достаточно для перекрытия поликарбонатом. Сами фермы соединяются дополнительными перемычками поперечного расположения по верхнему поясу, которые послужат основой для панелей кровли. Для этого подойдет труба 20 х 20 мм. Расстояние между ними составит 50 см.

Принципы проведения сварочных работ

Многие не знают, как сварить ферму из профильной трубы. Для выполнения работ понадобится сварочный аппарат, электроды. При сборке конструкции нужно:

  1. Зависимо от выполненных расчетов, составленного чертежа, нарезать трубки.
  2. Очистить трубки от мусора, пыли. Крупные заусенцы зачистить болгаркой или напильником.
  3. С рабочего места убрать любые воспламеняемые материалы, жидкости.
  4. При работе со сварочным оборудованием использовать маску, защитные перчатки, робу. Отдавать предпочтение одежде из прочных негорючих материалов.
  5. Подготовить шаблон, чтобы две фермы получились идентичными друг другу.
  6. При скреплении контролировать отдельные элементы с помощью строительного уровня или угольника. Это поможет избежать неровностей.
  7. Сразу исправлять перекосы. Если этого не сделать, придется выравнивать отдельные элементы после монтажа, что вызовет множество трудностей.

После изготовления отдельные конструкции нужно сложить друг на друга. Это требуется, чтобы проверить их идентичность относительно друг друга.

Фермы из профильных труб нужны, чтобы усилить несущие стойки, крышу. Их часто изготавливают из дерева, но этот материал не подходит для сборки основательных конструкций.

Подготовка к постройке конструкции

До того, как приступить к проведению работ по установке, следует:

  • произвести расчет предполагаемых нагрузок – в случае необходимости;
  • составить подробные чертежи каркаса навеса из профильной трубы – размеры на них также нужно указать;
  • подготовить набор инструментов;
  • выбрать и приобрести стройматериалы.

Подготовка к постройке конструкции

Самостоятельно из профильных изделий можно возвести несколько вариантов навесов, а именно:

  • арочный;
  • односкатный;
  • двускатный.

Внешний вид и форма будущей конструкции во многом зависят от личных предпочтений владельца дачи или дома и размера незанятого пространства на земельном участке. Наиболее быстровозводимым и самым компактным относительно занимаемой площади считается навес из профтрубы односкатный.

Как рассчитываются веранды

Обычно такие строения находятся вдоль стены здания. Для них остаются актуальными несколько видов конструкций:

  • Балочно-опорные;
  • Консольные.

Самая маленькая глубина равняется 1200 мм. Идеальной считается 2000 мм. Такое расстояние соответствует месту расположения опорного столба.

Расчет крыши согласно перпендикуляру будет иметь вид 2000+300 мм. Однако плоская кровля больше подходит для тех областей, где количество осадков имеет минимальное значение.

Если угол уклона = 30 о. прилегающий к нему катет (глубина крыши навеса по перпендикуляру) – 2300 мм, второй угол 60 о. Возьмем 2 катет за Х, он лежит напротив угла в 30 о. и по теореме равен половине гипотенузы, отсюда гипотенуза равна 2*Х, подставляем данные в формулу:

(2*Х) 2 = 2300 2 + Х 2

4*Х 2 — Х 2 = 5290000

Х 2 (4-1) = 5290000

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Расчет и изготовление ферм из профильной трубы

Металлическая ферма из профильной трубы: расчет, чертеж, конструкция

Правила расчета и установки фермы из профильной трубы. Ферма из профильной трубы

Изготовление ферм из профильной трубы своими руками – Трубы

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

3*Х 2 = 5290000

Х 2 = 5290000. 3

Х 2 = 1763333, (3)

Х = √1763333, (3) = 1327 мм – катет, который будет прилегать к стене дома.

Расчет гипотенузы (длины крыши с уклоном):

С 2 = 1327 2 + 2300 2 = 1763333 + 5290000 = 7053333

С = √7053333 = 2656 мм, проверяем: катет, лежащий против угла 30 о равен половине гипотенузы = 1327*2 = 2654, следовательно, расчет верен.

Отсюда рассчитываем общую высоту навеса: 2000-2400 мм – это минимальная эргономичная высота, рассчитываем с учетом наклона: 2000/2400 + 1327 = 3327/3737 мм – высота стены навеса возле дома.

Полезные советы по изготовлению своими руками ферм из профильных труб

  • Для облегчения конструкций, используемых для устройства крыш с минимальным уклоном скатов, используют дополнительные решетки.
  • Для снижения массы каркасов, устанавливаемых для организации скатов с диапазоном углов наклона 15-22°, нижний пояс изготавливают ломаным.
  • При длине прогонов от 20 м применяют каркасы Полонсо, состоящие из двух треугольных конструкций, соединенных стяжкой. Такой конструктивный вариант позволяет избежать монтажа в раскос большой длины.
  • Дистанция между ферменными конструкциями в общем случае не должна превышать 1,75 м.
  • При выборе труб для сложных эксплуатационных условий необходимо учитывать марку стали, из которой они изготовлены. Для регионов с холодным климатом используют трубные изделия из низколегированных сталей, проявляющих высокую устойчивость к низким температурам. При высокой коррозионной опасности следует применять оцинкованную продукцию.

Подробнее о фермах

Фермы — это специальный каркас, включающий несколько постоянных элементов. Основу составляют два пояса (верхний и нижний), укрепляющие стойки с вертикальным расположением, и усиливающие раскосы, устанавливаемые по диагонали. Все элементы соединяются посредством сварки. Правильно сваренные фермы как из профильной трубы, так и из уголка, способны выдерживать большие нагрузки, и служить длительное время.

Это изделие можно сделать своими руками из квадратного профиля. Сечение выбирается исходя из длины пролета между опорами и высоты фермы. Для небольшого навеса, под которым будет стоять машина, подойдет труба 30 х 30 мм или 50 х 50 мм. Из нее свариваются верхний и нижний пояс, а также вертикальные стойки внутри конструкции. Раскосые перемычки можно выполнить из профиля меньшего сечения. Альтернативным вариантом материала может послужить уголок с шириной стенки 30 — 50 мм.

Расчет и изготовление ферм из профильной трубы

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Металлическая ферма из профильной трубы: расчет, чертеж, конструкция

Правила расчета и установки фермы из профильной трубы. Ферма из профильной трубы

Расчет и изготовление ферм из профильной трубы

Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление

Такие фермы успешно подойдут, чтобы:

  • укрыть автомобиль от непогоды;
  • создать крышу над беседкой в саду;
  • накрыть бассейн от мусора;
  • обустроить домашнее хозяйство (птиц, поросят, корову);
  • создать аккуратный козырек над порогом.

Определение усилий

При проектирование трубчатых стропильных ферм следует учитывать их повышенную жесткость на изгиб и значительное влияние жесткости соединений в узлах. Поэтому для трубчатых профилей расчет ферм по шарнирной схеме допускается при отношении высоты сечения к длине не более 1/10 для конструкции, которые будут эксплуатироваться при расчетной температуре ниже -40 градусов.

В других случаях необходим расчет на изгибающие моменты в стержнях, возникающие из-за жесткости узлов. При этом можно осевые усилия вычислять по шарнирной схеме, а дополнительные моменты находить приближенно.

Рекомендации перед постройкой

Требования, предъявляемые к навесам, отражены в СНИП В документе указано как правильно определить нагрузки и их величины, которые должна выдерживать конструкция. Помимо этого нужно учитывать климатические особенности региона. Если зимы снежные и случаются сильные порывы ветра сечение профиля увеличивается.

Также следует учитывать размеры навеса. При увеличении расстояния между опорами сечение профиля выбирается больше. Шаг установки ферм регламентируется СНИП, однако, следует учитывать ширину кровельного материала. При использовании ондулина или поликарбоната чертеж составляется с учетом размера их листов.

Правила расчета и установки фермы из профильной трубы. Ферма из профильной трубы

как сварить ферму своими руками часть 2 – YouTube

Основы расчета и сварки фермы из профильной трубы. Расчет и изготовление ферм из профильной трубы Как рассчитать ферму из профильной трубы

Фермы из профильной трубы | Строительный портал

Ферма квадратного сечения – Фермы из профильной трубы: расчет, сварка, самостоятельное изотовление — НА ВЕТКАХ — ПРИКОЛЫ, ФОТКИ, АНЕКДОТЫ — приходите к нам посидеть на ветках, будет интересно

Сварка ферм из профильной трубы снип. Металлические фермы из профильной трубы

От величины угла наклона навеса зависит количество скапливающегося снега. С крутой крыши он скатывается самопроизвольно, но для такой конструкции увеличивается расход материала. Для регионов с обильным выпадением снега угол делается не менее 25 30⁰.

Достоинства и недостатки металлических ферм

Металлические фермы обладают следующими плюсами: Минимальный вес конструкции; Срок службы на протяжении 30 лет; Высокие показатели к механическим нагрузкам, в том числе за счет крепких узлов; Можно сооружать конструкции, имеющие сложную геометрию; Приемлемая стоимость материала и услуг монтажа позволяет решать широкий круг задач по возведению построек любого типа.

Но металлические фермы имеют и свои недостатки, заключающиеся в следующем:

Для подъема и монтажа единой конструкции необходимо использовать подъемный кран; Низкие коэффициенты сопротивления повышенным температурам, из-за чего во время пожара кровля может обрушиться.

Требования к расчету профильной трубы для строительства фермы

Основные требования:

  • Расчеты производятся при использовании всех замеров длины конструкции и угла наклона кровельного материала. Подготовка фермы должна начинаться только после снятия четких замеров показателей.
  • Точные размеры зависят от многих факторов. Определенная разновидность конструкции будет определена исходя из веса всего изделия, нагрузки, высоты расположения кровельного материала, а также способов его перемещения. Только длину заготовки определяет угол наклона крыши.
  • В расчеты изначально необходимо включать опоры и четко определять их пояса. Длина имеет значение. Контуры также зависят от уклона и вида конструкции.

Правила расчета и установки фермы из профильной трубы. Ферма из профильной трубы

Основы расчета и сварки фермы из профильной трубы. Расчет и изготовление ферм из профильной трубы Как рассчитать ферму из профильной трубы

Правила расчета и установки фермы из профильной трубы – Проф Трубы

Фермы из профильной трубы

Фермы из профильной трубы | Строительный портал

Расчет и изготовление ферм из профильной трубы

В основном за это отвечает два законодательных документа, которые определяют порядок расчета. Один вмещает информацию о нормах воздействия и допустимых нагрузках, а другой поможет определиться с типом стальной конструкции. С их помощью расчет фермы из профильной трубы можно осуществить быстро и максимально корректно.

Самое главное, что необходимо учесть – расчет производится по принципу экономии. После определения высоты пролета, длины и угла наклона всей конструкции расчет заканчивается последним пунктом – установлением оптимального расстояния между всеми комплектующими частями. Нагрузка пролета влияет на количество материала и его расположение.

Заполните размеры в мм:

Длина фермы: X

Высота фермы: Y

Толщина бруса: Z

Ширина бруса: W

Количество стоек: S

Подкосы:

Нумерация деталей:

Инструкция для калькулятора расчета треугольной фермы

Введите значения размеров в миллиметрах:

X – Длина треугольной стропильной фермы зависит от размера пролета, который необходимо накрыть и способа ее крепления к стенам. Деревянные треугольные фермы применяют для пролетов длиной 6000-12000 мм. При выборе значения X нужно учитывать рекомендации СП 64.13330.2011 «Деревянные конструкции» (актуализированная редакция СНиП II-25-80).

Y – Высота треугольной фермы задается соотношением 1/5-1/6 длины X.

Z – Толщина, W – Ширина бруса для изготовления фермы. Искомое сечение бруса зависит от: нагрузок (постоянные – собственный вес конструкции и кровельного пирога, а также временно действующие – снеговые, ветровые), качества применяемого материала, длины перекрываемого пролета. Подробные рекомендации о выборе сечения бруса для изготовления фермы, наведены в СП 64.13330.2011 «Деревянные конструкции», также следует учитывать СП 20.13330.2011 «Нагрузки и воздействия». Древесина для несущих элементов деревянных конструкций должна удовлетворять требованиям 1, 2 и 3-го сорта по ГОСТ 8486-86 «Пиломатериалы хвойных пород. Технические условия».

S – Количество стоек (внутренних вертикальных балок). Чем больше стоек, тем выше расход материала, вес и несущая способность фермы.

Если необходимы подкосы для фермы (актуально для ферм большой протяженности) и нумерация деталей отметьте соответствующие пункты.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Нажмите «Рассчитать».

Треугольные деревянные фермы применяют в основном для кровель из материалов требующих значительного уклона. Онлайн калькулятор для расчета деревянной треугольной фермы поможет определить необходимое количество материала, выполнит чертежи фермы с указанием размеров и нумерацией деталей для упрощения процесса сборки. Также с помощью данного калькулятора Вы сможете узнать общую длину и объем пиломатериалов для стропильной фермы.

Добавить комментарий