Как найти объем конуса вписанного в шар

В данной статье рассмотрим четыре задачи по стереометрии. Дана комбинация тел – конус и шар. Во всех заданиях речь идёт о конусе, который вписан в шар. Отмечу, что в условии взаимное расположение данных тел озвучено может быть по разному, например: «Конус вписан в шар» или  «Около конуса описана сфера».

Суть одна – если сказать простым (нематематическим) языком, то конус находится «внутри» сферы, она содержит окружность его основания и вершину. Посмотрите на эскиз:

Конус вписан в шар

При решении необходимо знать формулы объёмов шара и конуса.

Объём шара:

Объём конуса:

*Эти формулы необходимо знать!

Площадь основания конуса является кругом, она равна:

Рассмотрим частный случай! Если высота конуса будет равна радиусу его основания, то формула объёма конуса будет иметь вид:

Эскиз:

Понятно, что центральным сечением такого конуса будет являться прямоугольный равнобедренный треугольник, причём высота проведённая из прямого угла разбивает его также на два прямоугольных равнобедренных треугольника:

Вспомним понятие образующей, оно часто используется в задачах с конусами, будет и в заданиях ниже.

Образующая конуса  – это отрезок, соединяющий вершину конуса с точкой его основания. На предыдущем эскизе она обозначена буквой  l.

Напрашивается простой вывод: образующих у конуса имеется бесконечное количество и все они равны.

На блоге, кстати, уже есть пара статей с шарами, можете посмотреть их «Задачи с шарами. Это просто!» и «Цилиндр описан около шара. Три задачи».

Теперь рассмотрим задачи:

245351. Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 28. Найдите объем конуса.

Так как сказано, что радиус основания конуса равен радиусу шара, то становится понятно, что основание конуса совпадает с плоскостью центрального сечения шара.

Построим эскиз данной комбинации для наглядности (это осевое сечение):

Сказано, что высота конуса равна радиусу его основания (и, разумеется, радиусу шара). Запишем формулы объёмов шара и конуса:

Так как объём шара известен (он равен 28), можем вычислить радиус. Вернее, нам понадобится не сам радиус, а его куб:

Таким образом, объём конуса будет равен:

*Можно было обойтись без вычислений. Посмотрите, если сопоставить две формулы:

то видно, что объём шара в 4 раза больше объёма конуса.

Значит объём конуса будет равен 28/4 = 7.

То есть,  задача решается практически устно.

Ответ: 7

245352. Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем конуса равен 6. Найдите объем шара.

Задача обратная предыдущей, рисунок тот же.

Формулы:

Из формул понятно, что объём шара в 4 раза больше объёма конуса:

Таким образом, искомый объём равен 24.

Ответ: 24

316555. Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы находится в центре основания конуса. Образующая конуса равна  . Найдите радиус сферы.

Здесь условие звучит по-другому, но тела расположены относительно друг друга абсолютно также, как и в предыдущих задачах – конус вписан в сферу, основание конуса совпадает с центральным сечением сферы.

Эскиз тот же, отметим радиус, высоту равную радиусу и образующую:

Задача сводится к использованию одной формулы. Рассмотрим прямоугольный треугольник (выделен жёлтым). По теореме Пифагора:

Радиус сферы равен семи.

Ответ: 7

316556.  Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы находится в центре основания конуса. Радиус сферы равен  . Найдите образующую конуса.

Эта задача обратная предыдущей, эскиз:

Рассмотрим прямоугольный треугольник (выделен жёлтым), х – это образующая. По теореме Пифагора:

Образующая конуса равна 56.

Ответ: 56

На этом всё. Успеха Вам!

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 188. Найдите объём конуса.

Решение

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 188. Найдите объём конуса.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 3.3 / 5. Количество оценок: 6

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

  • Запись опубликована:06.04.2020
  • Рубрика записи2. Стереометрия
  • Автор записи:Andrei Maniakin

Конус вписан в шар

  Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 28. Найдите объем конуса.

Решение:

Антропий

10 октября, 16:56

  1. Демид

    10 октября, 17:08


    0

    Конус вписан в шар и радиус основания равен радиусу шара, значит и высота равна радиусу шара.

    Имеем V шара = 4/3 ПR3=36

    Объём конуса в 4 раза меньше:

    Vконуса=1/3 ПR^2*H=1/3 ПR^3=1/4V шара=36/4=9

    • Комментировать
    • Жалоба
    • Ссылка

Найди верный ответ на вопрос ✅ «Конус написан в шар. Радиус основания конуса равен радиусу шара. объём шара равен 36. найдите объём конуса …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Новые вопросы по математике

Главная » Математика » Конус написан в шар. Радиус основания конуса равен радиусу шара. объём шара равен 36. найдите объём конуса

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,651
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,893
  • разное
    16,900

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Добавить комментарий