Как найти объем круглой пирамиды

Объем пирамиды

{V= S cdot h}

На этой странице собраны формулы и калькуляторы для нахождения объема пирамиды. Просто введите известные данные в калькулятор и получите результат. Либо рассчитайте объем пирамиды по приведенным формулам самостоятельно.

Пирамида — многогранник, в основании которого лежит многоугольник, а остальные грани представляют собой треугольники, имеющие общую вершину.

Содержание:
  1. калькулятор объема пирамиды
  2. формула объема пирамиды
  3. объем правильной треугольной пирамиды
  4. объем правильной четырехугольной пирамиды
  5. объем правильной шестиугольной пирамиды
  6. объем правильной n-угольной пирамиды
  7. объем тетраэдра
  8. примеры задач

Формула объема пирамиды

Объем пирамиды

{V= dfrac{1}{3} S cdot h}

S – площадь основания пирамиды

h – высота пирамиды

Формула объема правильной треугольной пирамиды

Правильная треугольная пирамида – пирамида, в основании которой лежит равносторонний треугольник, а грани являются равнобедренными треугольниками.

Объем правильной треугольной пирамиды

{V= dfrac{h cdot a^2}{4 sqrt{3}}}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной четырехугольной пирамиды

Правильная четырехугольная пирамида – пирамида, в основании которой лежит квадрат, а грани являются равнобедренными треугольниками.

Объем правильной четырехугольной пирамиды

{V= dfrac{1}{3} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной шестиугольной пирамиды

Правильная шестиугольная пирамида – пирамида, в основании которой лежит правильный шестиугольник, а грани являются равнобедренными треугольниками.

Объем правильной шестиугольной пирамиды

{V= dfrac{sqrt{3}}{2} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной n-угольной пирамиды

Правильная пирамида имеет в основании правильный многоугольник (все стороны и углы равны между собой), а высота проходит через центр этого основания.

Объем правильной n-угольной пирамиды

{V= dfrac{n cdot h cdot a^2}{12 cdot tg(dfrac{180°​}{n} )}}

a – длина стороны основания пирамиды

h – высота пирамиды

n – число сторон многоугольника в основании пирамиды

Формула объема тетраэдра

Тетраэдр – правильный многогранник (четырехгранник), имеющий четыре грани, каждая из которых является правильным треугольником. У тетраэдра кроме четырех граней также 4 вершины и 6 ребер.

Объем тетраэдра

{V= dfrac{sqrt{2} a^3}{12}}

a – длина стороны тетраэдра

Примеры задач на нахождение объема пирамиды

Задача 1

Найдите объем пирамиды с высотой 2м, а основанием ее служит квадрат со стороной 3м.

Решение

Так как в основании пирамиды лежит квадрат, то воспользуемся формулой объема правильной четырехугольной пирамиды и подставим в нее значения высоты и стороны основания.

V= dfrac{1}{3} cdot h cdot a^2 = dfrac{1}{3} cdot 2 cdot 3^2 = dfrac{1}{3} cdot 2 cdot 9 = dfrac{1}{3} cdot 18 = 6 : м^3

Ответ: 6 м³

Используем калькулятор для проверки полученного ответа.

Задача 2

Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1см, а высота равна √3см.

Решение

Из условия следует, что пирамида правильная треугольная. Это значит, что для решения задачи необходимо воспользоваться формулой для правильной треугольной пирамиды. Подставим в нее значения и рассчитаем объем.

V= dfrac{h cdot a^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1}{4 sqrt{3}} = dfrac{sqrt{3}}{4 sqrt{3}} = dfrac{cancel{sqrt{3}}}{4 cancel{sqrt{3}}} = dfrac{1}{4} = 0.25 : м^3

Ответ: 0.25 см³

Для проверки с помощью калькулятора извлечем квадратный корень из 3: √3 = 1.73205. Теперь можем подставить значения в калькулятор и проверить полученный ответ.

Определение пирамиды

Пирамида – это многогранник, основанием которого является многоугольник, а грани его являются треугольниками.

Онлайн-калькулятор объема пирамиды

obempiramidy.svg

У пирамиды есть ребра. Можно сказать, что они тянутся к точке, называемой вершиной данной пирамиды. Ее основанием может быть произвольный многоугольник. Грань — это фигура, которая образуется в результате объединения двух ближайших ребер со стороной основания. Гранью пирамиды является треугольник. Расстояние от вершины пирамиды до середины стороны основания называется апофемой. Высотой пирамиды называется длина перпендикуляра, опущенного из вершины к центру ее основания.

Типы пирамид

Различают следующие типы пирамид.

  1. Прямоугольная — у нее ребро образует угол в 90 градусов с основанием.
  2. Правильная — ее основание — какой-либо правильный многоугольник, а вершина проецируется в центр этого основания.
  3. Тетраэдр — пирамида, у которой в основании лежит треугольник.

Формулы объема пирамиды

Объем пирамиды находится несколькими способами.

По площади основания и высоте пирамиды

Простое умножение одной трети площади основания на высоту пирамиды и является ее объемом.

Объем пирамиды по площади основания и высоте

V=13⋅Sосн⋅hV=frac{1}{3}cdot S_{text{осн}}cdot h

SоснS_{text{осн}} — площадь основания пирамиды;
hh — высота данной пирамиды.

Задача 1

Площадь основания пирамиды равна 100 см2100text{ см}^2, а высота ее равна 30 см30text{ см}. Найдите объем тела.

Решение

Sосн=100S_{text{осн}}=100
h=30h=30

Все величины нам известны, подставляем их численные значения в формулу и находим:

V=13⋅Sосн⋅h=13⋅100⋅30=1000 см3V=frac{1}{3}cdot S_{text{осн}}cdot h=frac{1}{3}cdot 100cdot 30=1000text{ см}^3

Ответ

1000 см3.1000text{ см}^3.

Формула объема правильной треугольной пирамиды

Этот способ подходит, если пирамида правильная и треугольная.

Объем правильной треугольной пирамиды

V=h⋅a243V=frac{hcdot a^2}{4sqrt{3}}

hh — высота пирамиды;
aa — сторона основания пирамиды.

Задача 2

Вычислите объем правильной треугольной пирамиды, если в ее основании лежит равносторонний треугольник, в котором сторона равна 5 см5text{ см}, а высота пирамиды равна – 19 см19text{ см}.

Решение

a=5a=5
h=19h=19

Просто подставляем данные величины в формулу для объема:

V=h⋅a243=19⋅5243≈68.6 см3V=frac{hcdot a^2}{4sqrt{3}}=frac{19cdot 5^2}{4sqrt{3}}approx68.6text{ см}^3

Ответ

68.6 см3.68.6text{ см}^3.

Формула объема правильной четырехугольной пирамиды

Объем правильной четырехугольной пирамиды

V=13⋅h⋅a2V=frac{1}{3}cdot hcdot a^2

hh — высота пирамиды;
aa — сторона основания пирамиды.

Задача 3

Дана правильная четырехугольная пирамида. Вычислите ее объем, если ее высота равна 7 см7text{ см}, a сторона основания составляет – 2 см2text{ см}.

Решение

a=2a=2
h=7h=7

По формуле вычисляем:

V=13⋅h⋅a2=13⋅7⋅22≈9.3 см3V=frac{1}{3}cdot hcdot a^2=frac{1}{3}cdot 7cdot 2^2approx9.3text{ см}^3

Ответ

9.3 см3.9.3text{ см}^3.

Формула объема тетраэдра

Объем тетраэдра

V=2⋅a312V=frac{sqrt{2}cdot a^3}{12}

aa — длина ребра тетраэдра.

Задача 4

Длина ребра тетраэдра равна 13 см13text{ см}. Найдите его объем.

Решение

a=13a=13

Подставляем aa в формулу для объема тетраэдра:

V=2⋅a312=2⋅13312≈259 см3V=frac{sqrt{2}cdot a^3}{12}=frac{sqrt{2}cdot 13^3}{12}approx259text{ см}^3

Ответ

259 см3.259text{ см}^3.

Формула объема пирамиды как определитель

Наверное, самый экзотический способ вычисления объема данного тела.

Пусть даны векторы, на которых построена пирамида как на сторонах. Тогда ее объем будет равен одной шестой смешанного произведения векторов. Последний в свою очередь равен определителю составленному из координат этих векторов. Итак, если пирамида построена на трех векторах:

a⃗=(ax,ay,az)vec{a}=(a_x, a_y, a_z)
b⃗=(bx,by,bz)vec{b}=(b_x, b_y, b_z)
c⃗=(cx,cy,cz)vec{c}=(c_x, c_y, c_z),

тогда объем соответствующей пирамиды это такой определитель:

Объем пирамиды через определитель

V=16⋅∣axayazbxbybzcxcycz∣V=frac{1}{6}cdotbegin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}

Задача 5

Найти объем пирамиды через смешанное произведение векторов, координаты которых такие: a⃗=(2,3,5)vec{a}=(2,3,5) , b⃗=(1,4,4)vec{b}=(1,4,4), c⃗=(3,5,7)vec{c}=(3,5,7).

Решение

a⃗=(2,3,5)vec{a}=(2,3,5)
b⃗=(1,4,4)vec{b}=(1,4,4)
c⃗=(3,5,7)vec{c}=(3,5,7)

По формуле:

V=16⋅∣235144357∣=16⋅(2⋅4⋅7+3⋅4⋅3+5⋅1⋅5−5⋅4⋅3−2⋅4⋅5−3⋅1⋅7)=16⋅(56+36+25−60−40−21)=16⋅(−4)=−23≈−0.7V=frac{1}{6}cdotbegin{vmatrix}
2 & 3 & 5 \
1 & 4 & 4 \
3 & 5 & 7 \
end{vmatrix}=frac{1}{6}cdot(2cdot4cdot7 + 3cdot4cdot3 + 5cdot1cdot5 – 5cdot4cdot3 – 2cdot4cdot5 – 3cdot1cdot7) =frac{1}{6}cdot( 56 + 36 + 25 – 60 – 40 – 21)=frac{1}{6}cdot(-4)=-frac{2}{3}approx-0.7

Мы должны взять модуль этого числа, так как объем это неотрицательная величина:

V=0.7 см3V=0.7text{ см}^3

Ответ

0.7 см3.0.7text{ см}^3.

Не знаете, где можно оформить заказ контрольных работ недорого? Наши эксперты помогут вам с решением работ по объемам фигур!

Тест по теме “Объем пирамиды”

Объем пирамиды, формула

Объем пирамиды
Пирамида — это многогранник, у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды.

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS)

[ V = frac{1}{3}Sh ]

(S – площадь основания пирамиды, h – высота пирамиды)

Вычислить, найти объем пирамиды по формуле (1)

S (площадь основания пирамиды) 
h (высота пирамиды) 

Вычислить

нажмите кнопку для расчета

Объем пирамиды

стр. 350

План урока:

Вычисление объема тела с помощью интеграла

Вычисление объема тел вращения

Объем наклонной призмы

Объем пирамиды

Объем конуса

Объем шара

Шаровой сегмент

Площадь сферы

Вычисление объема тела с помощью интеграла

Пусть у нас есть произвольная фигура, расположенная между двумя параллельными плоскостями:

1 obem slozhnyh tel

Как найти ее объем? Поступим следующим образом. Проведем прямую, перпендикулярную этим плоскостям. Эта прямая будет осью координат х. Пусть одна из плоскостей пересекает эту ось в точке а, а другая – в точке b. Таким образом, на координатной прямой появляется отрезок [a; b]. Далее разобьем этот отрезок на n равных отрезков, длина каждого из них будет равна величина ∆х. Обозначим концы этих отрезков как х0, х1, х2…, хn, причем точке х0 будет совпадать с точкой а, а точка хn – с точкой b. Ниже показано такое построение для n = 10:

2 obem slozhnyh tel

Далее через полученные точки проведем сечения, параллельные двум плоскостям, ограничивающим фигуру. Площадь сечения, проходящую через точку с номером i, обозначим как S(xi). Эти плоскости рассекут тело на n других тел. Обозначим объем тела, заключенного между сечениями с площадями S(xi) и S(xi+1) как V(xi). Можно приближенно считать, что эти тела имеют форму прямых цилиндров (напомним, что в общем случае цилиндром необязательно считается фигура, основанием которой является круг, основание может иметь и любую другую форму). Высота всех этих цилиндров будет равна величине ∆х. Тогда объем V(xi) может быть приближенно рассчитан так:

3 obem slozhnyh tel

Общий же объем исследуемой фигуры будет суммой объемов этих прямых цилиндров:

4 obem slozhnyh tel

Здесь знак ∑ означает сумму i слагаемых, каждое из которых равно величине S(xi)•∆х. Ясно, что чем больше мы возьмем число n, тем точнее будет полученная нами формула. Поэтому будет увеличивать число n до бесконечности, тогда приближенная формула станет точной:

5 obem slozhnyh tel

В правой части стоит предел суммы бесконечного числа слагаемых. Мы уже сталкивались с такими пределами, когда изучали определенный интеграл в курсе алгебры. Так как х0 = a, а число хn-1 при бесконечном увеличении n приближается к числу хn, то есть к b, то можно записать следующее:

6 obem slozhnyh tel

Здесь S(x) – это некоторая функция, которая устанавливает зависимость между площадью сечения объемной фигуры и координатой х, указывающей расположение этого сечения. Данная формула позволяет вычислять объем с помощью интеграла.

7 obem slozhnyh tel

Итак, для вычисления объема тела необходимо:

1) выбрать в пространстве какую-то удобную ось координат Ох;

2) найти площадь произвольного сечения фигуры, проходящей перпендикулярно оси Ох через некоторую координату х;

3) найти значение чисел а и b – координат сечений, ограничивающих тело в пространстве;

4) выполнить интегрирование.

Понятно, что сразу понять, как используется эта формула, тяжело. Поэтому рассмотрим простой пример.

Задание. Фигура расположена в пространстве между двумя плоскостями, перпендикулярными оси Ох, причем координаты этих сечений равны 1 и 2. Каждое сечение фигуры с координатой х является квадратом, причем его сторона равна величине 1/х. Найдите объем тела.

8 obem slozhnyh tel

Решение. В данной задаче ось Ох уже проведена. Известны и числа а и b – это 1 и 2, ведь именно плоскости, проходящие через точки х =1 и х = 2, ограничивают исследуемое тело. Теперь найдем площадь произвольного сечения с координатой х. Так как оно является квадратом со стороной 1/х, то его площадь будет квадратом этой стороны:

9 obem slozhnyh tel

Вычисление объема тел вращения

Телом вращения называют тело, которое может быть получено вращением какой-то плоской фигуры относительно некоторой оси вращения. Например, цилиндр получают вращением прямоугольника вокруг одной из его сторон, а усеченный конус – вращением прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.

10 obem slozhnyh tel

В задачах на вычисление объемов таких тел ось координат Ох уже задана естественным образом – это ось вращения тела. Ясно, что каждое сечение тела, перпендикулярное оси вращения, будет являться кругом.

Рассмотрим случай, когда вокруг оси Ох поворачивают график некоторой функции у = f(x), ограниченный прямыми х = а и у = b. Тогда получится тело, сечениями которого являются круги, причем их радиусы будут равны величине f(x). Напомним, что площадь круга вычисляют по формуле:

11 obem slozhnyh tel

11 2 esli telo vraschenija polucheno vrascheniem edited

Рассмотрим, как на практике используется эта формула.

Задание. Объемное тело получено вращением ветви параболы

12 obem slozhnyh tel

вокруг оси Ох. Оно ограничено плоскостями х = 0 и х = 4. Каков объем такой фигуры?

13 obem slozhnyh tel

Решение. Здесь пределами интегрирования, то есть числами а и b, будут 0 и 4. Используем формулу для тела вращения:

14 obem slozhnyh tel

Объем наклонной призмы

Теперь, используя методы интегрирования, мы можем составить формулы для вычисления объема некоторых фигур. Начнем с треугольной наклонной призмы.

Пусть есть треугольная призма АВСА2В2С2. Проведем ось Ох так, чтобы точка О располагалась в плоскости АВС. Пусть Ох пересечет плоскость А2В2С2 в некоторой точке О2. Тогда отрезок ОО2 будет высотой призмы, ведь он окажется перпендикулярным к обоим основаниям.

15 obem slozhnyh tel

Обозначим длину высоты ОО2 буквой h. Далее докажем, что всякое сечение А1В1С1 призмы, перпендикулярное оси Ох, будет равно ∆АВС. Действительно, если АВС⊥ОО2 и А1В1С1⊥ОО2, то АВС||А1В1С1. Прямые АВ и А1В1 принадлежат одной грани АВВ2А1, но не пересекаются, ведь они находятся в параллельных плоскостях. Аналогично АС||А1С1 и ВС||В1С1. Теперь посмотрим на четырехугольник АВВ1А1. АВ||A1В1 и АА1||ВВ1. Тогда АВВ1А1 по определению является параллелограммом. Это означает, что отрезки АВ и А1В1 одинаковы. Аналогично доказывается, что одинаковы отрезки АС и А1С1, а также ВС и В1С1. Но тогда одинаковы и ∆АВС и ∆А1В1С1.

Итак, площади всех сечений одинаковы и равны площади основания призмы. Обозначим ее как S. Так как S не зависит от координаты, то интегрирование будет выглядеть так:

16 obem slozhnyh tel

Итак, объем треугольной наклонной призмы – это произведение площади ее основания на высоту. Теперь рассмотрим произвольную призму, в чьем основании находится n-угольник. Такой n-угольник можно разбить на треугольные призмы с общей высотой h и площадями оснований S1, S2, S3, …

17 obem slozhnyh tel

Тогда площадь S основания всей призмы будет суммой этих чисел:

18 obem slozhnyh tel

18 2 obem naklonnoj prizmy raven proizvedeniju edited

Задание. Основание призмы – это треугольник со сторонами 10, 10 и 12. Боковое ребро имеет длину 8 и образует с основанием угол в 60°. Вычислите объем призмы.

19 obem slozhnyh tel

Решение. Пусть в основании призмы АВСА1В1С1 лежит ∆АВС со сторонами АВ = 12 и АС = ВС = 10. Его площадь можно найти разными способами, но быстрее всего применить формулу Герона. Сначала найдем полупериметр ∆АВС:

20 obem slozhnyh tel

Далее надо найти высоту призмы. Опустим из точки В1 перпендикуляр В1О на плоскость АВС. Тогда в прямоугольном ∆ОВВ1 ∠В = 60° (по условию задачи и по определению угла между плоскостью и прямой). Зная длину бокового ребра ВВ1, найдем высоту ОВ1:

21 obem slozhnyh tel

Объем пирамиды

Для начала рассмотрим треугольную пирамиду. Вершину пирамиды примем за начало координат точку О, а ось Ох проведем перпендикулярно основанию, причем ось будет направлена от вершины пирамиды к основанию.

22 obem slozhnyh tel

Пусть ось Ох пересечет основание АВС в точке М. Тогда ОМ – это высота, чью длину мы обозначим как h.

Далее построим сечение А1В1С1, параллельное АВС. Это сечение пересечется с ОМ в точке ОМ1. Тогда ОМ1 – это координата х, характеризующая расположение сечения А1В1С1.

Осталось составить выражение для площади ∆А1В1С1. Так как АВ||A1B1, то ∠АВО и ∠А1В1О одинаковы как соответственные углы. Тогда у ∆АВО и ∆А1В1О есть два равных угла (ведь ∠АОВ у них общий), а потому эти треугольники подобны по первому признаку подобия. Это означает, что

23 obem slozhnyh tel

Надо как-то найти значение коэффициента k, который, очевидно, как-то зависит от переменной х. Рассмотрим теперь ∆ОМВ и ∆ОМ1В1. Они прямоугольные, ведь ОМ перпендикулярен плоскостям этих треугольников. Также у них есть общий угол ∠ОВМ. Значит, они подобны, и поэтому

24 obem slozhnyh tel

Итак, если пирамида имеет высоту h и площадь основания S, то объем пирамиды равен:

25 obem slozhnyh tel

Выведенная нами формула справедлива для треугольной пирамиды. Однако если в основании пирамиды лежит произвольный многоугольник, то, разбив этот многоугольник на треугольники, мы разобьем и пирамиду на несколько треугольных пирамид. У них будет общая высота h и площади оснований S1, S2, S3…, которые в сумме составляют площадь многоугольника S.

26 obem slozhnyh tel

Объем треугольных пирамид рассчитывается по выведенной нами формуле:

27 obem slozhnyh tel

27 2 obem piramidy raven odnoj treti ot proizvedenija edited

Задание. В основании пирамиды высотой 15 лежит квадрат со стороной 4. Вычислите ее объем.

Решение. Сначала находим площадь основания. Для этого надо сторону квадрата умножить саму на себя:

28 obem slozhnyh tel

Задание. В кубе АВСDA1В1С1D1 отмечены точки Е и F – середины ребер ВС и CD соответственно. Во сколько раз объем пирамиды С1EFC меньше объема куба?

29 obem slozhnyh tel

Решение. Обозначим длину ребра куба буквой а. Тогда его объем рассчитывается так:

30 obem slozhnyh tel

Задание. Отрезок MN перпендикулярен плоскости пятиугольника АВСDE. Точка K, принадлежащая этой плоскости, делит отрезок MN в отношении 2:1. Во сколько раз объем пирамиды MABCDE больше объема пирамиды NABCDE?

31 obem slozhnyh tel

Решение. Запишем формулы для объемов этих пирамид. При этом учтем, что MK – высота для MABCDE, а NK – это высота для NABCDE.

32 obem slozhnyh tel

Далее рассмотрим такую фигуру, как усеченная пирамида. Ясно, что ее объем можно вычислить, если из объема исходной пирамиды вычесть объем отсеченной верхушки.

33 obem slozhnyh tel

Снова рассмотрим пирамиду ОАВС, через которую проведено сечение А1В1С1, параллельное основанию.

34 obem slozhnyh tel

Обозначим площадь нижнего основания пирамиды как S2, а площадь верхнего основания – как S1. Далее высоту усеченной пирамиды (отрезок ММ1) обозначим как h. Мы уже выяснили ранее, что основания АВС и А1В1С1 – это подобные треугольники, причем коэффициент их подобия k равен отношению высот ОМ и ОМ1. Тогда можно записать:

35 obem slozhnyh tel

Далее используем основное свойство пропорции:

36 obem slozhnyh tel

Далее числитель дроби мы раскладываем на множители, используя формулу разности кубов:

37 obem slozhnyh tel

37 2 obem usechennoj piramidy edited

Задание. Основаниями усеченной пирамиды являются квадраты со сторонами 9 см и 5 см, а высота пирамиды составляет 6 см. Найдите ее объем.

Сначала вычислим площади оснований:

38 obem slozhnyh tel

Объем конуса

Рассмотрим конус с высотой h и радиусом основания R. Совместим начало координат с вершиной конуса и направим ось Ох в сторону основания конуса. Тогда она пересечет основание в какой-то точке М c координатой h. Далее через точку М1 на оси Ох, имеющей координату х, проведем сечение, перпендикулярное оси Ох. Это сечение будет окружностью.

39 obem slozhnyh tel

Также построим образующую ОА, которая будет проходить через сечение в точке А1. Теперь сравним ∆ОАМ и ∆ОА1М1. Они прямоугольные, и у них есть общий угол ∠АОМ. Это значит, что они подобны, и поэтому справедливо отношение:

40 obem slozhnyh tel

Полученную формулу можно переписать в другом виде так, чтобы она содержала площадь основания, причем она будет похожа на аналогичную формулу для пирамиды:

41 obem slozhnyh tel

41 2 obem konusa mozhet byt vychislen po formulam edited

Задание. Радиус конуса – 8 см, а его высота составляет 12 см. Определите его объем.

Решение. Здесь надо просто применить выведенную формулу:

42 obem slozhnyh tel

Задание. В сосуде, имеющем форму перевернутого конуса, вода доходит до уровня, соответствующего 2/3 высоты сосуда. При этом ее объем составляет 192 мл. Каков объем всего сосуда?

43 obem slozhnyh tel

Решение. В задаче фигурируют два конуса. Один из них – это сам сосуд, а второй – его часть, заполненная водой. При выведении формулы объема мы уже выяснили, что радиусы таких конусов пропорциональны их высотам:

44 obem slozhnyh tel

Мы уже заметили, что формулы для объема пирамида и конуса идентичны. По сути, конус можно рассматривать как особый случай пирамиды, у которой в основании лежит не многоугольник, а окружность. Аналогично и усеченный конус можно считать особым случаем усеченной пирамиды, а поэтому для расчета его объема можно применять такую же формулу:

45 obem slozhnyh tel

Задание. Вычислите объем усеченного конуса с высотой 9 и радиусами оснований 7 и 4.

Решение. Сначала находим площади оснований:

46 obem slozhnyh tel

Объем шара

Пришло время разобраться и с таким телом, как шар. Здесь можно использовать тот же метод интегрирования, что и в случае с конусом и пирамидой. Но можно поступить и иначе – использовать выведенную нами для тел вращения формулу

47 obem slozhnyh tel

Шар как раз является телом вращения. Он получается при вращении полуокружности вокруг диаметра, на который эта дуга опирается.

48 obem slozhnyh tel

Напомним известное нам уравнение окружности, чей центр совпадает с началом координат:

49 obem slozhnyh tel

Здесь надо уточнить, что если у получившейся функции впереди записан знак «+», то ее график соответствует полуокружности, находящейся над осью Ох. Если же используется знак «–», то получается уже нижняя полуокружность, расположенная под осью Ох:

50 obem slozhnyh tel

В принципе мы можем поворачивать любую из этих полуокружностей вокруг Ох, но мы выберем верхнюю полуокружность. Заметим, что эта дуга начинается в точке х = – R и заканчивается в точке х = R, эти числа будут пределами интегрирования. Тогда объем шара равен:

51 obem slozhnyh tel

51 2 obem shara vychisljaetsja edited

Задание. Найдите объем шара с радиусом 6.

Решение. Подставляем радиус из условия в формулу:

52 obem slozhnyh tel

Задание. В цилиндр вписан шар. Во сколько раз объем цилиндра больше объема такого шара?

53 obem slozhnyh tel

Решение. Ясно, что так как шар вписан в цилиндр, то радиусы этих тел одинаковы. Обозначим этот радиус как R. Также ясно, что раз шар касается оснований цилиндра, то расстояние между ними (то есть высота цилиндра) равно двум радиусам шара:

54 obem slozhnyh tel

Шаровой сегмент

Когда плоскость проходит через шар, она рассекает его на две фигуры, которые именуются шаровым сегментом. Если из центра шара О провести радиус ОА длиной R в направлении плоскости сечения, который перпендикулярен этой плоскости, то он пересечет ее какой-то точке В. Длину отрезка АВ называют высотой шарового сегмента и обозначают буквой h:

55 obem slozhnyh tel

Ясно, что при этом отрезок ОВ – это расстояние от секущей плоскости (или от основания сегмента) до центра шара, причем этот отрезок имеет длину R –h.

Можно считать, что шаровой сегмент, как и шар, получается при вращении дуги окружности вокруг оси Ох. Однако если сам шар при этом ограничен плоскостями x = R и х = – R, то сегмент ограничен другими плоскостями: х = R и х = R – h. Это значит, что его объем можно вычислить с помощью интеграла также, как и объем шара, отличаться будет лишь нижний предел интегрирования:

56 obem slozhnyh tel

56 2 obem sharovogo segmenta edited

Заметим, что шар можно рассматривать как шаровой сегмент, чья высота вдвое больше его радиуса. И действительно, если в выведенную формулу мы подставим значение h = 2R, то получим уже известную нам формулу объема шара.

Задание. Найдите объем шарового сегмента высотой 6, если он отсечен от шара радиусом 15.

Решение. Используем выведенную формулу:

57 obem slozhnyh tel

Задание. Диаметр шара разделили на три равных отрезка. Через концы этих отрезков провели секущие плоскости, перпендикулярные диаметру. Чему равен объем тела, заключенного между этими двумя плоскостями (оно называется шаровым слоем), если радиус шара обозначен буквой R?

58 obem slozhnyh tel

Решение. Ясно, что для вычисления объема шарового слоя достаточно вычесть из объема шара объемы двух шаровых сегментов, образующихся при проведении секущих плоскостей. Так как они разделили диаметр на три одинаковых отрезка, то высота этих сегментов будет в три раза меньше диаметра шара:

59 obem slozhnyh tel

Площадь сферы

В предыдущих уроках мы уже узнали формулу для вычисления площади сферы, однако тогда мы ее не доказывали. Однако теперь мы можем ее доказать, используя формулу объема шара. Но сначала напомним саму формулу:

60 obem slozhnyh tel

Впишем сферу в многогранник с n гранями. Ясно, что расстояние от граней этого многогранника до центра сферы равно радиусы сферы R. Далее построим пирамиды, чьи вершины находятся в центре сферы, а основания – это грани многогранника. Заметим, что такие пирамиды будут иметь одинаковые высоты длиной R.

Обозначим площади граней многогранника как S1, S2, S3,…Sn. Тогда объемы пирамид, построенных на этих гранях, вычисляются так:

61 obem slozhnyh tel

Заметим, что в сумме эти объемы дают объем всего многогранника, а сумма площадей S1, S2, S3,…Sn – это площадь всей его поверхности. Тогда можно записать:

62 obem slozhnyh tel

62 2 obem mnogogrannika v kotoryj vpisana sfera edited

Теперь начнем неограниченно уменьшать размеры граней многогранника. Тогда число n будет расти, объем многогранника будет приближаться к объему шара, а площадь многогранника – к площади к сфере. Тогда и доказанное равенство можно будет записать так:

63 obem slozhnyh tel

Задание. Необходимо изготовить закрытый сосуд с заранее заданным объемом V. Предлагается два варианта формы этого сосуда – шар и куб. Так как поверхность сосуда покрывается очень дорогой краской, то необходимо выбрать вариант с меньшей площадью поверхности. Какую форму для сосуда следует выбрать?

Решение. Обозначим радиус шара как R, а ребро куба как а. Тогда можно записать:

64 obem slozhnyh tel

Теперь надо выяснить, какое из полученных значений больше. Для этого поделим площадь куба на площадь сферы. Если получится число, большее единицы, то площадь куба больше:

65 obem slozhnyh tel

Получившееся число больше единицы, ведь 6 больше числа π, равного 3,1415926… Значит, и площадь куба больше, а потому необходимо выбрать сосуд, имеющий форму шара.

Ответ: шар.

Примечание. Более сложными математическими методами можно доказать, что если второй сосуд имеет не форму куба, а вообще любую форму, отличную от шара, то всё равно следует выбирать именно сосуд в форме шара. То есть из всех поверхностей, ограничивающих определенный объем, именно сфера имеет наименьшую площадь. Этот факт имеет и физическое следствие – капли дождя и мыльные пузыри стремятся принять форму шара, также как и любые жидкости, находящиеся в невесомости.

Итак, мы научились вычислять объемы таких тел, как конус, пирамида, шар, призма. Также помощью интегрирования можно находить объемы и ещё более сложных тел, если мы можем составить функцию, описывающую площадь их сечения.

Как рассчитать объем пирамиды

На данной странице калькулятор поможет рассчитать объем пирамиды онлайн. Для расчета задайте площадь, высоту, сторону или количество сторон. Вычисления производятся в миллиметрах, сантиметрах, метрах. Результат выводится в кубических сантиметрах, литрах и кубических метров.

Пирамида – многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину. Пирамида является частным случаем конуса. Пирамида называется правильной, если её основанием является правильный многоугольник, а вершина проецируется в центр основания.

Пирамида


Объем пирамиды через высоту высоте


Формула объема пирамиды через высоту и площадь основания:

S – площадь основания; h – высота пирамиды.


Правильная пирамида


Объем правильной пирамиды


Правильная пирамида — пирамида, в основании которой лежит правильный многоугольник, а высота проходит через центр основания.

Формула объема правильной пирамиды через сторону основания, высоту и количество сторон:

a – сторона основания; h – высота пирамиды; n – количество сторон многогранника в основании.


Правильная треугольная пирамида


Объем треугольной пирамиды


Правильная треугольная пирамида — пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Формула объема правильной треугольной пирамиды через сторону основания и высоту:

a – сторона основания; h – высота пирамиды.


Правильная четырехугольная пирамида


Объем четырехугольной пирамиды


Правильная четырехугольная пирамида — пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Формула объема правильной четырехугольной пирамиды через сторону основания и высоту:

a – сторона основания; h – высота пирамиды.


Тетраэдр


Объем тетраэдра


Тетраэдр — пирамида, у которой все грани равносторонние треугольники.

Формула объема тетраэдра:

a – ребро тетраэдра.

Добавить комментарий