Как найти объем куба если известна сторона

Куб – это трехмерная фигура, представляющая собой правильный многогранник, все грани которого квадраты. Чтобы найти объем куба достаточно знать только длину его стороны (они у куба равны).

Чтобы найти объем куба можно воспользоваться калькулятором, либо одной из подходящих формул, которые мы приводим ниже.

Содержание:
  1. калькулятор объема куба
  2. формула объема куба через ребро
  3. формула объема куба через диагональ грани
  4. формула объема куба через периметр грани
  5. формула объема куба через диагональ куба
  6. формула объема куба через площадь полной поверхности
  7. примеры задач

Формула объёма куба через ребро

Объем куба через ребро

Формула объёма куба через диагональ грани

Объем куба через диагональ грани

{V = Big( dfrac{d}{sqrt{2}} Big) ^3}

d – диагональ грани куба

Формула объёма куба через периметр грани

Объем куба через периметр грани

{V= Big( dfrac{P}{4} Big) ^3}

P – периметр грани куба

Формула объёма куба через диагональ куба

Объем куба через диагональ куба

{V= dfrac{D^3}{3sqrt{3}}}

D – диагональ куба

Формула объёма куба через площадь полной поверхности

Объем куба через площадь полной поверхности

{V= dfrac{sqrt{{S_{полн}}^3}}{6sqrt{6}}}

Sполн – диагональ куба

Примеры задач на нахождение объема куба

Задача 1

Чему равен объём куба с ребром 5 см?

Решение

Для нахождения объема куба, когда известа длина ребра, воспользуемся первой формулой:

V=a ^ 3 = 5 ^ 3 = 125 : см^3

Ответ: 125 см³

Воспользуемся калькулятором для проверки полученного результата.

Задача 2

Найти объем куба, если площадь его поверхности равна 96 см².

Решение

В данном примере нам подойдет эта формула:

V= dfrac{sqrt{{S_{полн}}^3}}{6sqrt{6}} = dfrac{sqrt{{96}^3}}{6sqrt{6}} = dfrac{sqrt{96 cdot 96 cdot 96}}{6sqrt{6}} = dfrac{96 sqrt{96}}{6sqrt{6}} = dfrac{96 sqrt{16 cdot 6}}{6sqrt{6}} = dfrac{96 cdot 4 sqrt{6}}{6sqrt{6}} = dfrac{384 sqrt{6}}{6sqrt{6}} = 64 : см^3

Ответ: 64 см³

Проверить ответ поможет калькулятор .

Также на нашем сайте вы можете найти объем конуса.

Калькулятор объема куба

Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.

Что известно

Длина

Размерность

Раcсчитать

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

🧊 Что считает калькулятор

Калькулятор объема куба

Калькулятор объема куба — это инструмент, который позволяет вычислять объем любого куба и выводить результат в разных единицах измерения.

Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны. Куб является частным случаем параллелепипеда и призмы.

Как использовать калькулятор

Укажите значение стороны куба, после этого калькулятор произведет расчёт и выдаст его в указанных единицах измерения. Кроме того, можно указать диагональ куба или диагональ любой его стороны.

Что влияет на точность расчетов калькулятора

Точность расчетов калькулятора объема куба зависит от нескольких факторов:

  1. Корректность ввода данных. Если вводимые значения длины, ширины и высоты куба некорректны, то расчет объема будет неправильным. Поэтому, важно убедиться в правильности вводимых значений перед выполнением расчета.
  2. Точность математических операций. Расчет объема куба требует выполнения математических операций, таких как умножение. Если калькулятор не выполняет математические операции точно, то результаты расчетов будут неточными.
  3. Точность округления. В некоторых случаях, результаты расчетов могут быть округлены. Если калькулятор округляет результаты до неправильного числа знаков, то результаты будут неточными.
  4. Алгоритм расчета. Различные калькуляторы могут использовать разные алгоритмы расчета. Если алгоритм расчета неправильный, то результаты могут быть неточными.
  5. Ошибки программирования. Если в программе калькулятора есть ошибки, то результаты расчетов могут быть неправильными. Поэтому, важно использовать калькуляторы, которые были разработаны и протестированы надежными разработчиками.

Где можно применить калькулятор

Калькулятор объема куба может быть использован во многих областях, где требуется расчет объема кубической формы. Некоторые из таких областей включают:

  1. 🧱 Строительство. Калькулятор объема куба может использоваться строителями при расчете объема кубических блоков, бетонных кубов, кирпичей и других материалов, используемых в строительстве.
  2. 🏭 Производство. Калькулятор объема куба может использоваться в производственных процессах для расчета объема материалов, таких как металл, пластик, стекло и другие, используемые в производстве кубических изделий.
  3. 📦 Логистика. Калькулятор объема куба может использоваться при планировании грузоперевозок, чтобы определить, сколько грузовых мест может вместить транспортное средство.
  4. 🎓 Образование. Калькулятор объема куба может использоваться учителями математики в школах и университетах для обучения геометрии и расчета объема кубических форм.
  5. 🎨 Интерьер и дизайн. Калькулятор объема куба может использоваться в дизайне интерьера для расчета объема кубических элементов, таких как шкафы, полки, столы и другие.
  6. 🛠️ Ремонт и обслуживание. Калькулятор объема куба может использоваться в ремонте и обслуживании, чтобы определить количество материалов, необходимых для замены кубических элементов, таких как плитка, обои и другие.

📐 Как посчитать объем куба

Объем куба можно вычислить самостоятельно, используя формулу

V = a³

где V – объем куба, a – длина ребра.

Для того, чтобы вычислить объем куба, нужно измерить длину одного из его ребер с помощью линейки или другого инструмента измерения длины. После этого возведите полученное значение в куб, используя калькулятор или ручной расчет.

Например, если длина ребра куба равна 5 см, то объем куба будет равен V = 5³ = 125 кубических сантиметров.

Важно помнить, что все единицы измерения должны быть одинаковыми – если длина ребра измеряется в сантиметрах, то и объем будет выражен в кубических сантиметрах.

🤔 Полезные советы

Несколько советов, которые могут помочь при вычислении объема куба:

  1. Определите длину одной из сторон куба. Обычно все стороны куба одинаковые, поэтому вы можете выбрать любую.
  2. Возведите длину стороны куба в квадрат. Это даст вам площадь одной грани куба.
  3. Умножьте площадь одной грани куба на 6. Это даст вам общую площадь поверхности куба.
  4. Определите длину любой из диагоналей куба. Вы можете использовать формулу теоремы Пифагора для нахождения длины диагонали, если известна длина стороны.
  5. Возвести длину диагонали куба в куб. Это даст вам объем куба.
  6. Если известна масса куба, можно использовать плотность материала для расчета его объема. Для этого нужно разделить массу на плотность.
  7. Убедитесь, что вы используете одни и те же единицы измерения при расчете. Например, если длина стороны куба измеряется в сантиметрах, то и объем должен быть выражен в кубических сантиметрах.

❓ Вопросы и ответы

Сейчас мы предлагаем вам посмотреть ответы на вопросы, которые часто задаются на данную тему.

Что такое объем куба и как его рассчитать?

Объем куба — это мера его вместимости, то есть объем пространства, которое он занимает. Он рассчитывается по формуле V = a³, где a – длина ребра куба.

Как найти длину ребра куба, если известен его объем?

Для этого нужно извлечь кубический корень из объема: a = V^(1/3). Это позволит определить длину ребра куба, зная его объем.

Что произойдет с объемом куба, если увеличить длину его ребра вдвое?

Объем куба увеличится в 8 раз. Это происходит потому, что объем куба пропорционален кубу его длины: V ~ a³. Если длина ребра увеличивается вдвое, то объем увеличивается в 222=8 раз.

Какие единицы измерения используются для объема куба?

Объем куба измеряется в кубических единицах длины, таких как кубические метры (м³), кубические сантиметры (см³), кубические дюймы (дюйм³) и т.д.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.
  • Калькулятор площади трапеции. Рассчитайте онлайн площадь трапеции, не только зная длины ее оснований и высоту, но и по другим известным параметрам, например, диагоналям.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии


Download Article


Download Article

A cube is a three-dimensional shape that has equal width, height, and length measurements. A cube has six square faces, all of which have sides of equal length and all of which meet at right angles.[1]
Finding the volume of a cube is a snap – generally, all that’s needed is to multiply the cube’s length × width × height. Since a cube’s sides are all equal in length, another way of thinking of a cube’s volume is s3, where s is the length of one of the cube’s sides. See Step 1 below for a detailed breakdown of these processes.

Help Finding Volume of a Cube

  1. Image titled Calculate the Volume of a Cube Step 1

    1

    Find the length of one side of the cube.[2]
    Often, in problems asking you to find the volume of a cube, you’ll be given the length of one of a cube’s sides. If you have this information, you have all you need to solve for the cube’s volume. If you’re not solving an abstract math problem but are instead attempting to find the volume of a real-life object shaped like a cube, use a ruler or measuring tape to measure the side of the cube.[3]

    • To better understand the process of finding the volume of a cube, let’s follow along with an example problem as we go through the steps in this section. Let’s say the side of the cube is 2 inches (5.08 cm) long. We’ll use this information to find the volume of the cube in the next step.
  2. Image titled Calculate the Volume of a Cube Step 2

    2

    Cube the length of the side. When you’ve found the length of one of the cube’s sides, cube this number. In other words, multiply it by itself twice. If s is the length of the side, you would multiply s × s × s (or, in simplified form, s3). This will give you the volume of your cube![4]
    [5]

    • This process is essentially the same as finding the area of the base and then multiplying it by the cube’s height (or, in other words, length × width × height), since the area of the base is found by multiplying its length and its width. Since the length, width, and height of a cube are equal, we can shorten this process by simply cubing any of these measurements.
    • Let’s proceed with our example. Since the length of the side of our cube is 2 inches, we can find the volume by multiplying 2 x 2 x 2 (or 23) = 8.

    Advertisement

  3. Image titled Calculate the Volume of a Cube Step 3

    3

    Label your answer with cubic units.[6]
    Since volume is the measure of three-dimensional space, your answer should be in cubic units by definition. Often, on math schoolwork, neglecting to label your answer with the right units can cause you to lose points on a problem, so don’t forget to use the correct label!

    • In our example, since our original measurement was in inches, our final answer will be labelled with the units “cubic inches” (or in3). So, our answer of 8 becomes 8 in3.
    • If we had used a different initial unit of measurement, our final cubic units would differ. For instance, if our cube had sides with lengths of 2 meters, rather than 2 inches, we would label it with cubic meters (m3).
  4. Advertisement

  1. Image titled Calculate the Volume of a Cube Step 4

    1

    Find your cube’s surface area. While the easiest way to find a cube’s volume is to cube the length of one of its sides, it’s not the only way. The length of a cube’s side or the area of one of its faces can be derived from several other of the cube’s properties, which means that if you start with one of these pieces of information, you can find the volume of the cube in a roundabout manner. For instance, if you know a cube’s surface area, all you need to do to find its volume is to divide the surface area by 6, then take the square root of this value to find the length of the cube’s sides. From here, all you’ll need to do is cube the length of the side to find the volume as normal. In this section, we’ll walk through this process step-by-step.

    • The surface area of a cube is given via the formula 6s2, where s is the length of one of the cube’s sides. This formula is essentially the same as finding the 2-dimensional area of the cube’s six faces and adding these values together. We’ll use this formula to find the volume of the cube from its surface area.[7]
    • As a running example, let’s say that we have a cube whose surface we know to be 50 cm2, but we don’t know its side lengths. In the next few steps, we’ll use this information to find the cube’s volume.
  2. Image titled Calculate the Volume of a Cube Step 5

    2

    Divide the cube’s surface area by 6. Since the cube has 6 faces with equal area, dividing the cube’s surface area by 6 will give you the area of one of its faces. This area is equal to the lengths of two of its sides multiplied (l × w, w × h, or h × l).[8]

    • In our example, dividing 50/6 = 8.33 cm2. Don’t forget that two-dimensional answers have square units (cm2, in2, and so on).
  3. Image titled Calculate the Volume of a Cube Step 6

    3

    Take the square root of this value. Since the area of one of the cube’s faces is equal to s2 (s × s), taking the square root of this value will find you the length of one of the cube’s sides. Once you have this, you have enough information to solve for the volume of the cube as you normally would.[9]

    • In our example, √8.33 is roughly 2.89 cm.
  4. Image titled Calculate the Volume of a Cube Step 7

    4

    Cube this value to find the cube’s volume. Now that you’ve obtained a value for the length of the cube’s side, simply cube this value (multiply it by itself twice) to find the volume of the cube as detailed in the section above. Congratulations – you’ve found the volume of a cube from its surface area.[10]

    • In our example, 2.89 × 2.89 × 2.89 = 24.14 cm3. Don’t forget to label your answer with cubic units.
  5. Advertisement

  1. Image titled Calculate the Volume of a Cube Step 8

    1

    Divide the diagonal across one of the cube’s faces by √2 to find the cube’s side length. By definition, the diagonal of a perfect square is √2 × the length of one of its sides. Thus, if the only information you’re given about a cube is regarding the diagonal length of one of its faces, you can find the side length for the cube by dividing this value by √2. From here, it’s relatively simple to cube your answer and find the volume of the cube as described above.[11]

    • For instance, let’s say that one of a cube’s faces has a diagonal that is 7 feet long. We would find the side length of the cube by dividing 7/√2 = 4.96 feet. Now that we know the side length, we can find the volume of the cube by multiplying 4.963 = 122.36 feet3.
    • Note that, in general terms, d2 = 2s2 where d is the length of the diagonal of one of the cube’s faces and s is the length of one of the sides of the cube. This is because, according to the Pythagorean theorem, the square of the hypotenuse of a right triangle is equal to the sums of the squares of the other two sides. Thus, because the diagonal of a cube’s face and two of the sides on that face form a right triangle, d2 = s2 + s2 = 2s2.
  2. Image titled Calculate the Volume of a Cube Step 9

    2

    Square the diagonal of two opposite corners of the cube, then divide by 3 and take the square root to find the side length. If the only piece of information you’re given about a cube is the length of a 3-dimensional line segment stretching diagonally from one corner of the cube to the corner opposite it, it’s still possible to find the volume of the cube. Because d forms one of the sides of a right triangle that has the diagonal between the two opposite corners of the cube as a hypotenuse, we can say that D2 = 3s2, where D = the 3-dimensional diagonal between opposite corners of the cube.[12]

    • This is because of the Pythagorean Theorem. D, d, and s form a right triangle with D as the hypotenuse, so we can say that D2 = d2 + s2. Since we calculated above that d2 = 2s2, we can say that D2 = 2s2 + s2 = 3s2.
    • As an example, let’s say that we know that the diagonal from one of the corners in the base of the cube to the opposite corner in the “top” of the cube is 10 m. If we want to find the volume, we would insert 10 for each “D” in the equation above as follows:
      • D2 = 3s2.
      • 102 = 3s2.
      • 100 = 3s2
      • 33.33 = s2
      • 5.77 m = s. From here, all we need to do to find the volume of the cube is to cube the side length.
      • 5.773 = 192.45 m3
  3. Advertisement

Add New Question

  • Question

    If the volume of a cube is 512 cubic meters, what are its side measurements?

    Donagan

    The side length is the cube root of the volume.

  • Question

    A cube-shaped structure has sides 3 feet long. If I plan to fill it with gravel to a depth of 2.5 feet, how much gravel will I need?

    Donagan

    Multiply the area of the bottom of the cube by 2.5.

  • Question

    If the length is 2 meters, the height is 1 meter and the width is 2 meters of a water tank, how many gallons of water will the cube contain?

    Community Answer

    First, you need to find the volume of the tank. This can be found by multiplying the length, height, and width altogether. When you do that, you get 4 cubic meters. Doing some research, you will find that 1 cubic meter is approximately equal to about 220 imperial gallons or 264.2 US liquid gallons. If you use the imperial gallons, then the tank would hold a little less than 880 imperial gallons. But if you use the US liquid gallons, it would hold slightly less than 1,057 gallons.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Article SummaryX

To calculate the volume of a cube, find the length of one of the sides of the cube. When you have this measurement, multiply it by itself 2 times to get the volume, which is called “cubing” the number. For example, if your cube has a length of 2, you would multiply 2 × 2 × 2 to get a volume of 8. Be sure to include the units cubed with your answer. To learn more, like how to find the volume if you have the cube’s surface area, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,655,934 times.

Reader Success Stories

  • Carla Trollope-Davis

    Carla Trollope-Davis

    Mar 1, 2017

    “I have the tendency to get confused when reading math problems and explanations. I found that your combination of…” more

Did this article help you?

Объём куба

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Объём куба

Чтобы найти объём куба воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Объём куба через ребро

Объем куба через ребро
Чему равен объём куба, если:

ребро a =

Vкуба =

0

Округление ответа:

Объём куба через диагональ

Объём куба через диагональ
Чему равен объём куба, если:

диагональ d =

Vкуба =

0

Округление ответа:

Объём куба через площадь поверхности

Объём куба через площадь поверхности
Чему равен объём куба, если:

Sпов =

Vкуба =

0

Округление ответа:

Теория

Как найти объём куба зная длину ребра

Чему равен объём куба Vкуба, если длина его рёбер a:

Формула

Vкуба = a³

Пример

Для примера, найдём объём куба, у которого рёбра a = 5 см:

Vкуба = 5³ = 125 см³

Как найти объём куба зная диагональ

Чему равен объём куба Vкуба, если его диагональ d:

Формула

Vкуба = 33

Пример

Для примера, найдём объём куба, длина диагонали которого d = 9 см:

Vкуба = 9³ / 33 ≈ 729 / 5,2 ≈ 140 см³

Как найти объём куба зная площадь поверхности

Чему равен объём куба Vкуба, если площадь поверхности этого куба Sпов:

Формула

Vкуба = Sпов³ 66

Пример

Для примера, найдём объём куба, площадь поверхности которого Sпов = 24 см²:

Vкуба = 24³ / 66 = 2424 / 66 = 44 = 8 см³

См. также

Определение куба

Куб (или гексаэдр) — это правильный многогранник, который состоит из многоугольников, являющихся квадратами.

объем куба

У куба 12 ребер – отрезков, которые являются сторонами квадратов (граней куба).
Также он имеет 8 вершин и 6 граней.

Онлайн-калькулятор объема куба

Формула объема куба

Для нахождения объема куба нужно перемножить его измерения – длину, ширину и высоту. Исходя из того, что куб состоит из квадратов, все его измерения одинаковы и численно равны длине ребра.

Формула для вычисления объема куба такова:

V=a3V=a^3

где aa — длина ребра куба.

Рассмотрим несколько примеров.

Задача 1

Найти объем куба, если периметр PP его грани aa равен 16 cм.16text{ cм.}

Решение

P=16P=16

Периметр PP грани куба связан с длиной его ребра aa по формуле:

P=a+a+a+a=4⋅aP=a+a+a+a=4cdot a

16=4⋅a16=4cdot a

a=164=4a=frac{16}{4}=4

Найдем объем нашего тела:

V=a3=43=64 см3V=a^3=4^3=64text{ см}^3

Ответ: 64 см3.64text{ см}^3.

Задача 2

Одна четвертая часть диагонали квадрата равна 3 см.3text{ см.} Найти объем куба, образованного данным четырехугольником.

Решение

Пусть dd — диагональ фигуры, тогда по условию:

d4=3frac{d}{4}=3

d=4⋅3=12d=4cdot 3=12

Найдем сторону этого квадрата. Обратимся за помощью к теореме Пифагора:

a2+a2=12a^2+a^2=12,

где aa — сторона квадрата.

2⋅a2=122cdot a^2=12

a=6a=sqrt{6}

Приходим к окончательным расчетам для объема:

V=a3=(6)3=66 см3V=a^3=(sqrt{6})^3=6sqrt{6}text{ см}^3

Ответ: 66 см3.6sqrt{6}text{ см}^3.

Чуть более сложный пример.

Задача 3

В куб вписан шар, площадь SS которого равна 64π64pi. Найти объем куба.

Решение

S=64πS=64pi

Первый шагом является нахождение радиуса RR данного шара. Формула его площади такова:

S=4⋅π⋅R2S=4cdotpicdot R^2

64π=4⋅π⋅R264pi=4cdotpicdot R^2

64=4⋅R264=4cdot R^2

644=R2frac{64}{4}=R^2

16=R216=R^2

R=4R=4

Для куба радиус вписанного шара является половиной его стороны aa:

a=2⋅R=2⋅4=8a=2cdot R=2cdot4=8

Объем вычисляется следующим образом:

V=a3=83=512 см3V=a^3=8^3=512text{ см}^3

Ответ: 512 см3.512text{ см}^3.

На Студворке вы можете оформить заказ контрольных работ для студентов по самым низким ценам!

Тест по теме «Объем куба»

Добавить комментарий