Содержание:
Определение площади и объема:
В повседневной жизни нам довольно часто приходится иметь дело с определением таких величин, как площадь и объем. Представьте себе, что вам необходимо сделать ремонт в квартире (или доме): побелить стены и потолок, покрасить пол. Чтобы закупить необходимое количество материалов, нужно определить площадь поверхностей и объем краски.
Из уроков математики вам известно, как находить площадь некоторых фи-гур: квадрата, прямоугольника, параллелограмма.
Рис. 6.1. |
Рис. 6.2. |
Рис. 6.3 |
Площадь прямоугольника ABCD (рис. 6.1) вычисляется по формуле:
S = a · b, (6.1)
где a – ширина прямоугольника, b – высота.
Площадь параллелограмма ABCD (рис. 6.2) также находится по формуле 6.1. Площадь квадрата найти легко, поскольку его ширина и высота одинаковы:
S = a · a = a2 , (6.2)
Из рис. 6.1 видно, что площадь прямоугольного треугольника АBC можно найти по формуле:
, (6.3)
Проблема определения площади круга была решена еще в Древней Греции. Для этого нужно знать радиус круга и число «пи», приблизительное значение
которого π ≈ 3,14.
Площадь круга равняется
S = π · R2, (6.4) .
Значение числа можно получить, если разделить длину круга L на его диаметр. Причем не имеет значения, каков размер круга и в каких единицах измерены длина и диаметр (нужно только, чтобы это были одни и те же единицы).
Вычисление объема простых фигур
Каждое тело занимает определенный объем. Чем большую часть пространства занимает тело, тем больше его объем. Объем обозначают буквой V (от volume – объем). Чтобы найти объем прямоугольного бруска или ящика (математики называют эту геометрическую фигуру параллелепипедом) со сторона-ми a, b и h, надо их перемножить (рис. 6.4):
Рис. 6.4. |
Рис. 6.5. |
Рис. 6.6. |
V = a · b · h (6.4)
Поскольку S = a · b,
где S – это площадь основания ящика, то формулу (6.4) можно переписать и так:
V = S · h (6.5)
У куба все ребра равны, потому его объем равняется:
V = a · a · a = a3 (6.6)
Объем цилиндра (рис. 6.5) с радиусом основания R и высотой h можно также определить по формуле (6.5), то есть:
V = S · h = πR2 · h (6.7)
Объем шара (рис. 6.6)
(6.8)
Единицы измерения объема
Поскольку длину сторон измеряют в единицах длины (метр, дециметр, сантиметр и т. д.), то единицы измерения объема – это единицы длины, возведенные в третью степень.
Куб с ребром 1 м имеет объем 1 м3 (один кубический метр). Один литр (1 л) по определению – это объем куба с ребром 1 дм (рис. 6.7), то есть 1 л = 1 дм3 (дециметр кубический). Один литр равен 1000 кубических сантиметров: 1 л = 1000 см3. Объем в один сантиметр кубический еще называют миллилитром, то есть тысячной частью литра (1 мл = 0,001 л).
Рис. 6.7. Один литр – это 1дм3
Напомним, что дециметр – это десятая часть метра, а сантиметр – сотая часть метра
Таблица 6.1
1 м3 = 1 000 л | 1 м3 = 1 000 000 см3 |
1 л = 1 дм3 | 1 л = 1000 см3 |
1 дм3 = 1 000 см3 | 1 л = 1 000 мл |
1 см3 = 1 мл | 1 мл = 0,001 л |
- Заказать решение задач по физике
Измерение объема тел неправильной формы
Прибор для измерения объема называют мензуркой, или мерным цилиндром (рис. 6.8). Мензурка – это прозрачный сосуд с нанесенными делениями, которые обозначают объем в миллилитрах. Дома у вас наверняка есть мерный стакан, то есть та же мензурка. Литровой или поллитровой банкой, или стаканом (250 мл) также можно пользоваться, если не нужна большая точность. С помощью мензурки можно определить объем жидкости и тела неправильной формы. Для этого в мензурку нужно налить воду и определить объем этой воды. Потом полностью погрузить тело в воду и запомнить новое значение объема. Разница измеренных значений равна объему тела.
Рис. 6.8. Деления мензурки определяют объем в миллилитрах (то есть в см3)
История:
Существует легенда, согласно которой первым такой способ определения объема изобрел древнегреческий ученый Архимед. Произошло это во время размышлений над довольно сложной зада-чей, предложенной царем Гиероном. Идея решения возникла тогда, когда Архимед влез в ванну и заметил, что уровень воды поднялся. Ученый понял, что вытесненный объем воды как раз равен объему погруженного в нее тела. Восторженный Архимед выпрыгнул из ванны и выбежал на улицу с криком «Эврика! Эврика!», что в переводе с древнегреческого значит «На-шел! Нашел!». |
Итоги:
- Площадь тел правильной формы равна произведению основы на высоту и измеряется в квадратных единицах длины S = a · b.
- Объем тел правильной формы определяется как произведение площади основы на высоту и измеряется в кубических единицах V = S · h.
- Объем тел произвольной формы определяют с помощью мензурки
- Площадь круга определяют по формуле S = π · R2.
- Объем шара равен .
- Связь физики с другими науками
- Макромир, мегамир и микромир в физике
- Пространство и время
- Что изучает механика в физике
- Единая физическая картина мира
- Физика и научно-технический прогресс
- Физические величины и их единицы измерения
- Точность измерений и погрешности
Как найти объём квадрата
Очень часто школьники делают запросы в поисковой системе: как найти объем квадрата. Ответ может быть только один: это невозможно. Квадрат – двумерная фигура (два параметра: длина и ширина). Для вычисления объема необходимо наличие третьей характеристики: высоты. Возможно, имеется ввиду вычисление площади квадрата, его периметра или вычисление объема и площади поверхности куба.
Инструкция
Квадрат – равносторонний четырехугольник, в котором каждый угол равен 90°. Чтобы найти площадь (S) нужно умножить его длину (l) на ширину (b). Так как в этой фигуре длина и ширина равны, то достаточно знать одну из величин. Единицы измерения площади: см?, м?, км? и т.д.Например: длина одной стороны квадрата = 5 см. Нужно вычислить площадь. Найдите ее по формуле: S = l * b.
S = 5см * 5см.
S = 25см?.
Ответ: площадь квадрата со стороной 5 см равна 25 см?.
Куб – многогранник, в котором каждая грань – квадрат. Куб имеет двенадцать ребер, которые равны друг другу (т.е длина, ширина и высота одной грани – это длина (высота) ребра) и шесть одинаковых сторон. Чтобы найти объем куба, необходимо перемножить три его ребра (а). Единицы измерения объема: см?, дм?, м? и т.п.Например: длина ребра 5 см. Нужно найти объем куба. Рассчитайте по формуле:
V = а * а * а или V = a?.
V = 5см * 5см * 5 см.
V = 125 см?
Ответ: объем куба с длиной ребра 5 см равен 125 см?.
Если необходимо вычислить площадь всех сторон куба, то сначала найдите площадь одной стороны, а потом суммируйте площади всех шести сторон. Например: известно, что длина одной грани куба 5 см. Нужно найти площадь его поверхности. Решение имеет вид :
1. S = 5см*5 см = 25см?
2. ? = S+ S+ S+ S+ S+ S или S? =6*S
S?= 6*25см? = 150см?
Ответ: площадь поверхности куба с длиной ребра 5 см – 150см?Если требуется найти одну из геометрических характеристик, зная объем куба или площадь квадрата, то из значения объема извлекается кубический корень, а из значения площади – квадратный.
Периметр квадрата представляет собой сумму длин всех сторон. Т.е. нужно сложить значения четырех его длин.Например: длина квадрата 5 см. Вычислите периметр. Для вычисления периметра любого прямоугольника можно воспользоваться формулой: P = 2*(l+b).
Для квадрата формула имеет упрощенный вид: P = 4*l
P = 4*5см = 20см
Ответ: периметр квадрата длиной 5см – 20см.
Источники:
- формула объёма квадрата
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Содержание материала
- Онлайн калькулятор
- Расчет объема коробки
- Расчет объема нескольких коробок
- Видео
- Перевод единиц измерения объёма
- Как посчитать объем куба
- Объем параллелепипеда
- Объем прямоугольного параллелепипеда
- Объем цилиндра
- Площадь цилиндра
- Как найти объем цилиндра
- Таблица кубов
Онлайн калькулятор
Расчет объема коробки
Длина коробки
Ширина коробки
Высота коробки
Объем коробки:
Просто введите длину, ширину и высоту коробки и узнаете её объём.
Расчет объема нескольких коробок
Количество коробок
штДлина коробки
Ширина коробки
Высота коробки
Объем одной коробки:
Общий объем всех коробок:
Перевод единиц измерения объёма
Единицы измерения объёма можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:
Пример 1. Выразить 1 кубический метр в кубических сантиметрах.
Один кубический метр это куб со стороной 1 м. Длина, ширина и высота этого куба равны одному метру.
Но 1 м = 100 см. Значит, длина, ширина и высота тоже равны 100 см
Вычислим новый объём куба, выраженный в кубических сантиметрах. Для этого перемножим его длину, ширину и высоту. Либо возведём число 100 в куб:
V = 1003 = 1 000 000 см3
Получается, что на один кубический метр приходится один миллион кубических сантиметров:
1 м3 = 1 000 000 см3
Это позволяет в будущем умножить любое количество кубических метров на 1 000 000 и получить объём, выраженный в кубических сантиметрах.
Чтобы перевести кубические метры в кубические сантиметры, нужно количество кубических метров умножить на 1 000 000.
А чтобы перевести кубические сантиметры в кубические метры, нужно наоборот количество кубических сантиметров разделить на 1 000 000.
Например, переведём 300 000 000 см3 в кубические метры. Рассуждать в этом случае можно так: «если 1 000 000 см3 это один кубический метр, то сколько раз 300 000 000 см3 будут содержать по 1 000 000 см3»
300 000 000 см3 : 1 000 000 см3 = 300 м3
Пример 2. Выразить 3 м3 в кубических сантиметрах.
Умножим 3 м3 на 1 000 000
3 м3 × 1 000 000 = 3 000 000 см3
Пример 3. Выразить 60 000 000 см3 в кубических метрах.
Узнаем сколько раз 60 000 000 см3 содержит по 1 000 000 см3. Для этого разделим 60 000 000 см3 на 1 000 000 см3
60 000 000 см3 : 1 000 000 см3 = 60 м3
Вместимость бака, банки или канистры измеряют в литрах. Литр это тоже единица измерения объема. Один литр равен одному кубическому дециметру.
1 литр = 1 дм3
Например, если вместимость банки составляет 1 литр, это значит что объём этой банки составляет 1 дм3. При решении некоторых задач может быть полезным умение переводить литры в кубические дециметры и наоборот. Рассмотрим несколько примеров.
Пример 1. Перевести 5 литров в кубические дециметры.
Чтобы перевести 5 литров в кубические дециметры, достаточно умножить 5 на 1
5 л × 1 = 5 дм3
Пример 2. Перевести 6000 литров в кубические метры.
Шесть тысяч литров это шесть тысяч кубических дециметров:
6000 л × 1 = 6000 дм3
Теперь переведём эти 6000 дм3 в кубические метры.
Длина, ширина и высота одного кубического метра равны 10 дм
Если вычислить объём этого куба в дециметрах, то получим 1000 дм3
V = 103= 1000 дм3
Получается, что одна тысяча кубических дециметров соответствует одному кубическому метру. А чтобы определить сколько кубических метров соответствуют шести тысячамл кубических дециметров, нужно узнать сколько раз 6 000 дм3 содержит по 1 000 дм3
6 000 дм3 : 1 000 дм3 = 6 м3
Значит, 6000 л = 6 м3.
Видео
Как посчитать объем куба
Параллелепипед складывается из шести граней, которые являются параллелограммом. Все противоположные грани попарно равны и параллельны. Фигура получилась 4 диагонали, и все они пересекаются в одной точке, разделяют эту точку пополам. Параллелепипед, грани которого являются квадратами, будет называться кубом.
Все рёбра куба всегда будут равны. Для проведения вычислений, воспользуйтесь следующей формулой V = H3, где H ‒ высота ребра куба. Например: высота куба равняется ‒ 3 см, получается, что объем равен 33 = 27 см3.
Объем параллелепипеда
Объем параллелепипеда равен произведению площади основания на высоту.
Формула объема параллелепипеда:
V = So · h
где V — объем параллелепипеда, So — площадь основания, h — длина высоты. Смотрите также онлайн калькулятор для расчета объема параллелепипеда
Объем прямоугольного параллелепипеда
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Формула объема прямоугольного параллелепипеда
V = a · b · h
V a b h
Смотрите также онлайн калькулятор для расчета объема прямоугольного параллелепипеда.
Объем цилиндра
Объем цилиндра равен произведению площади его основания на высоту.
Формулы объема цилиндра: V = π R2 h
V = So h
где V — объем цилиндра, So — площадь основания цилиндра, R — радиус цилиндра, h — высота цилиндра, π = 3.141592. Смотрите также онлайн калькулятор для расчета объема цилиндра
Площадь цилиндра
Площадь боковой поверхности круглого цилиндра равна произведению периметра его основания на высоту.
Формула для вычисления площади боковой поверхности цилиндра
S = 2 π R h
Площадь полной поверхности круглого цилиндра равна сумме площади боковой поверхности цилиндра и удвоенной площади основания.
Формула для вычисления площади полной поверхности цилиндра
S = 2 π R h + 2 π R 2 = 2 π R(R + h)
S R h π = 3.141592
Смотрите также онлайн калькулятор для расчета площади цилиндра.
Как найти объем цилиндра
Цилиндр считать круглой фигурой, т.к. в его основании лежит круг. Чтобы произвести вычисления, необходимо узнать произведение площади основания на высоту. Для этого используется следующая формула:
V= π * r2 * h
Где r ‒ радиус цилиндра, h – высота цилиндра. Чисто π – является константой и равно 3,14. Оно всегда одинаковое и не требует никаких измерений. Рассмотрим на примере:
3,14 * 2 см2 * 5 см = 62.831853071796 = 63см3
Если вы не можете вычислить радиус, измерьте диаметр с помощью формулы преобразования.
Таблица кубов
Как и в ситуации с квадратами, кубы первых 99 натуральных чисел уже вычислены и занесены в таблицу, называемую таблицей кубов.
Куб числа по таблице определяется таким же образом, как и квадрат числа. Например, найдём куб числа 35. Это число состоит из цифр 3 и 5. Выбираем цифру 3 в первом столбце таблицы (столбце десятков), а цифру 5 выбираем в первой строке (строке единиц). Двигаясь вправо от цифры 3 и вниз от цифры 5, найдём точку пересечения. В результате окажемся на позиции, где располагается число 42875. Значит, куб числа 35 есть число 42875.
353 = 42875
Теги
Введите а — сторону квадрата в см (сантиметрах):
Введите h — толщину квадрата в см (сантиметрах):
Как рассчитать объем квадрата?
Если квадрата имеет толщину, то фактически это параллелепипед. Объем параллелепипеда в основании которого лежит квадрат в общем случае рассчитывается по формуле:
V = a x a х h
V — объем параллелепипеда . Объем квадрата имеющего толщину (высоту).
a — сторона квадрата основания параллелепипеда
h — высота параллелепипеда. Толщина квадрата.
Объем в миллиметрах кубических квадрата имеющего толщину (параллелепипед):
Vмм3 = aсм х aсм х hсм x 1000
Vмм3 — объем в миллиметрах кубических (мм3).
aсм — сторона квадрата в сантиметрах (см).
hсм — толщина квадрата в сантиметрах (см).
Объем в сантиметрах кубических квадрата имеющего толщину (параллелепипед):
Vсм3 = acм х acм х hcм
Vсм3 — объем в сантиметрах кубических (см3).
aсм — сторона квадрата в сантиметрах (см).
hсм — толщина квадрата в сантиметрах (см).
Объем в метрах кубических квадрата имеющего толщину (параллелепипед):
Vм3 = acм х acм х hcм / 1 000 000
Vм3 — объем в метрах кубических (м3).
aсм — сторона квадрата в сантиметрах (см).
hсм — толщина квадрата в сантиметрах (см).
Объем в литрах квадрата имеющего толщину (параллелепипед):
Vл = acм х acм х hcм / 1 000
Vл — объем в литрах (л).
aсм — сторона квадрата в сантиметрах (см).
hсм — толщина квадрата в сантиметрах (см).
). 2}=25)
Таким образом, первый шар имеет площадь поверхности, которая в 25 раз больше по сравнению с аналогичной характеристикой второго шара.
Ответ: 25.
Задача 2
На рисунке изображены конусы. Назовем их (K_1) и (K_2).
Полная поверхность (K_1) по площади относится к площади полной поверхности (K_2) как 4:1.
Фигура (K_1) обладает радиусом, который в 4 раза больше образующей (K_1) и в 2 раза больше радиуса (K_2).
Требуется вычислить, как относится образующая (K_2) к образующей (K_1.)
Источник: shkolkovo.net
Решение
Представим, что образующая конуса равна 1, а радиус основания обозначим, как R. Тогда можно записать следующее соотношение:
(S=pi R (R+l))
Запишем отношения площадей полной поверхности заданных конусов:
(dfrac41=dfrac{pi ,R_1cdot (R_1+l_1)}{pi , R_2cdot (R_2+l_2)})
Согласно условию задачи, имеем:
(R_1=4l_1, R_2=frac12R_1=2l_1)
В результате:
(dfrac41=dfrac{4l_1cdot (4l_1+l_1)}{2l_1cdot (2l_1+l_2)} quadRightarrowquad dfrac{l_2}{l_1}=dfrac12=0,5)
Ответ: 0,5.
Задача 3
Даны два прямоугольных параллелепипеда. Объем первой фигуры равен 105. Известно, что первый параллелепипед по высоте превышает второй в 7 раз. Ширина второй фигуры в 2 раза больше по сравнению с аналогичным параметром первой фигуры. Первый параллелепипед длиннее в три раза, чем второй. Необходимо вычислить объем, который имеет второй параллелепипед.
Источник: shkolkovo.net
Решение
Обозначим высоту, ширину и длину геометрических фигур с помощью букв а, b, с соответственно. Вспомним формулу, по которой можно найти объем прямоугольного параллелепипеда:
V=abc
Применительно к нашей задаче, запишем:
(dfrac{105}{V_2}=dfrac{V_1}{V_2}=dfrac{a_1b_1c_1}{a_2b_2c_2})
Известно, что:
(a_1=7a_2, b_2=2b_1, c_1=3c_2)
В результате:
(dfrac{105}{V_2}=dfrac{7a_2cdot b_1cdot 3c_2}{a_2cdot 2b_1cdot c_2}= dfrac{7cdot 3}2 quadRightarrowquad V_2=dfrac{105cdot 2}{21}=10)
Ответ: 10.
Задача 4
Даны два конуса. Площадь боковой поверхности первой геометрической фигуры относится к площади боковой поверхности второй фигуры как 3:7. Первый конус обладает радиусом, который относится к радиусу второго конуса, как 15:7. Необходимо определить, как относится образующая первого конуса к образующей второго конуса.
Источник: shkolkovo.net
Решение
Составим формулу для расчета площади боковой поверхности конуса:
(S=pi Rl)
Запишем отношения площадей боковых поверхностей для первого и второго конусов:
(dfrac 37=dfrac{S_1}{S_2}=dfrac{pi R_1,l_1}{pi R_2,l_2})
Зная, что отношение радиусов двух геометрических фигур равно 15:7, получим:
(frac{R_1}{R_2}=frac{15}7, то dfrac37=dfrac {15}7cdot dfrac{l_1}{l_2} quadRightarrowquad dfrac{l_1}{l_2}=dfrac37cdot dfrac7{15}=dfrac15=0,2)
Ответ: 0,2.
Задача 5
Имеется пара шаров. 2cdot rhoright)=8cdot 75=600 {small{text{грамм}}})
Таким образом, потребуется долить в емкость:
(600-75=525 {small{text{грамм}}})
Ответ: 525.
Задача 7
Изображена четырехугольная пирамида. Ее высота равна h. Отметим точку сбоку на ребре геометрической фигуры так, чтобы она была удалена на frac13h от плоскости основания. Данную точку пересекает плоскость, которая параллельна плоскости основания и отделяет от пирамиды аналогичную фигуру меньшего размера. Объем начальной пирамиды равен 54. Требуется вычислить объем меньшей пирамиды, которая получилась в результате.
Источник: shkolkovo.net
Решение
Назовем точку, через которую проведена плоскость, A’ на ребре AS. Параллельность плоскости и основания является причиной пересечения боковых граней по прямым A’B’, B’C’, C’D’, D’A’, параллельным соответственно AB, BC, CD, DA. В этом случае SA’B’C’D’ является правильной четырехугольной пирамидой. 3 quadRightarrowquad dfrac{R_1}{R_2}=sqrt[3]{343}=7)
Сделаем вывод, что радиус первого шара в 7 раз больше по сравнению с радиусом второго шара.
Ответ: 7.
Задание 3
На рисунке изображены два цилиндра. Первый из них обладает площадью боковой поверхности, равной 16. Радиус второй фигуры больше в 4 раза по сравнению с радиусом первой фигуры. Второй цилиндр ниже, чем первый цилиндр, в 5 раз. Требуется вычислить площадь боковой поверхности второго цилиндра.
Источник: shkolkovo.net
Решение
Запишем формулу для вычисления площади боковой поверхности цилиндра, которую уже проходили ранее:
(S=2pi RH)
Составим отношение площадей боковых поверхностей двух фигур:
(dfrac{16}{S_2}=dfrac{S_1}{S_2}=dfrac{2pi ,R_1,H_1}{2pi ,R_2,H_2}= dfrac{R_1}{R_2}cdot dfrac{H_1}{H_2})
В результате:
(R_2=4R_1, H_1=5H_2)
Таким образом:
(dfrac{16}{S_2}=dfrac{R_1}{4R_1}cdot dfrac{5H_2}{H_2}= dfrac14cdot 5=dfrac54)
Получим, что:
(S_2=dfrac{16cdot 4}5=12,8)
Ответ: 12,8. 3=27)
В результате объем первого шара в 27 раз больше по сравнению с объемом второго шара.
Ответ: 27.
Насколько полезной была для вас статья?
У этой статьи пока нет оценок.
Все формулы по физике за 7 класс с пояснениями — таблица и шпаргалки
Научим применять физические формулы для решения задач
Начать учиться
409.8K
Готовясь к экзаменам, удобно иметь под рукой шпаргалку, где будет кратко изложено самое важное. В этом материале мы объединили все основные формулы по физике за 7 класс с пояснениями и терминами. Их можно скачать на свой компьютер, чтобы всегда иметь под рукой.
Шпаргалки по физике за 7 класс
В рамках одной статьи сложно охватить весь курс по физике, но мы осветили основные темы за 7 класс и этого достаточно, чтобы освежить знания в памяти. Скачайте и распечатайте обе шпаргалки — одна из них (подробная) пригодится для вдумчивой подготовки к ОГЭ и ЕГЭ, а вторая (краткая) послужит для решения задач.
Скачать шпаргалку со всеми формулами и определениями по физике за 7 класс (мелко на одной странице).
Для тех, кто находится на домашнем обучении или вынужден самостоятельно изучать материал ввиду пропусков по болезни, рекомендуем также учебник по физике А. В. Перышкина с формулами за 7 класс и легкими, доступными пояснениями по всем темам. Он был написан несколько десятилетий назад, но до сих пор очень популярен и востребован.
Полезные подарки для родителей
В колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!
Измерение физических величин
Измерением называют определение с помощью инструментов и технических средств числового значения физической величины.
Результат измерения сравнивают с неким эталоном, принятым за единицу. В итоге значением физической величины считается полученное число с указанием единиц измерения.
В курсе по физике за 7 класс изучают правила измерений с использованием приборов со шкалой. Если цена деления шкалы неизвестна, узнать ее можно с помощью следующей формулы:
ЦД = (max − min) / n, где ЦД — цена деления, max — максимальное значение шкалы, min — минимальное значение шкалы, n — количество делений между ними.
Вместо максимального и минимального можно взять любые другие значения шкалы, числовое выражение которых нам известно.
Выделяют прямое и косвенное измерение:
-
при прямом измерении результат можно увидеть непосредственно на шкале инструмента;
-
при косвенном измерении значение величины вычисляется через другую величину (например, среднюю скорость определяют на основе нескольких замеров скорости).
Для удобства и стандартизации измерений в 1963 году была принята Международная система единиц СИ. Она регламентирует, какие единицы измерения считать основными и использовать для формул. Обозначения этих единиц также учат в программе по физике за 7 класс.
Механическое движение: формулы за 7 класс
Механическое движение — перемещение тела в пространстве, в результате которого оно меняет свое положение относительно других тел. Закономерности такого движения изучают в рамках механики и конкретно ее раздела — кинематики.
Для того, чтобы описать движение, требуется тело отсчета, система координат, а также инструмент для измерения времени. Это составляющие системы отсчета.
Изучение механического движения в курсе по физике за 7 класс включает следующие термины:
-
Перемещение тела — минимальное расстояние, которое соединяет две выбранные точки траектории движения.
-
Траектория движения — мысленная линия, вдоль которой перемещается тело.
-
Путь — длина траектории тела от начальной до конечной точки.
-
Скорость — быстрота перемещения тела или отношение пройденного им пути ко времени прохождения.
-
Ускорение — быстрота изменения скорости, с которой движется тело.
Равномерное движение — механическое движение, при котором тело за любые равные промежутки времени проходит одно и то же расстояние.
Формула скорости равномерного прямолинейного движения:
V = S / t, где S — путь тела, t — время, за которое этот путь пройден.
Формула скорости равномерного криволинейного движения:
где S1 и S2 — отрезки пути, а t1 и t2 — время, за которое был пройден каждый из них.
Единица измерения скорости в СИ: метр в секунду (м/с).
Формула скорости равноускоренного движения:
V = V0 + at, где V0— начальная скорость, а — ускорение.
Единица измерения ускорения в СИ: м/с2.
Сила тяжести, вес, масса, плотность
Формулы, понятия и определения, описывающие эти физические характеристики, изучают в 7 классе в рамках такого раздела физики, как динамика.
Вес тела или вещества — это физическая величина, которая характеризует, с какой силой оно действует на горизонтальную поверхность или вертикальный подвес.
Обратите внимание: вес тела измеряется в ньютонах, масса тела — в граммах и килограммах.
Формула веса:
P = mg, где m — масса тела, g — ускорение свободного падения.
Ускорение свободного падения возникает под действием силы тяжести, которой подвержены все находящиеся на нашей планете тела.
g = 9,806 65 м/с2 или 9,8 Н/кг
Если тело находится в покое или в прямолинейном равномерном движении, его вес равен силе тяжести.
Fтяж = mg
Но эти понятия нельзя отождествлять: сила тяжести действует на тело ввиду наличия гравитации, в то время как вес — это сила, с которой само тело действует на поверхность.
Плотность тела или вещества — величина, указывающая на то, какую массу имеет данное вещество, занимая единицу объема. Плотность прямо пропорциональна массе и обратно пропорциональна объему.
Формула плотности:
ρ = m / V, где m — масса тела или вещества, V — занимаемый объем.
Единица измерения плотности в СИ: кг/м3.
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Механический рычаг, момент силы
О механическом рычаге говорил еще Архимед, когда обещал перевернуть Землю, если только найдется подходящая точка опоры. Это простой механизм, который помогает поднимать грузы, закрепленные на одном его конце, прилагая силу к другому концу. При этом вес груза намного превосходит прилагаемое усилие. В 7 классе физические формулы, описывающие этот процесс, изучаются в том же разделе динамики.
Рычаг — это некое твердое тело, способное вращаться вокруг неподвижной точки опоры, на один конец которого действует сила, а на другом находится груз.
Перпендикуляр, проведенный от точки опоры до линии действия силы, называется плечом силы.
Рычаг находится в равновесии, если произведение силы на плечо с одной его стороны равно произведению силы на плечо с другой стороны.
Уравнение равновесия рычага:
F1 × l1 = F2 × l2
Из этого следует, что рычаг уравновешен, когда модули приложенных к его концам сил обратно пропорциональны плечам этих сил.
Момент силы — это физическая величина, равная произведению модуля силы F на ее плечо l.
Формула момента силы:
M = F × l, где F — модуль силы, l — длина плеча.
Единица измерения момента силы в СИ: ньютон-метр (Н·м).
Эта формула верна, если сила приложена перпендикулярно оси рычага. Если же она прилагается под углом, такой случай выходит за рамки курса физики за 7 класс и подробно изучается в 9 классе.
Правило моментов: рычаг уравновешен, если сумма всех моментов сил, которые поворачивают его по часовой стрелке, равна сумме всех моментов сил, которые поворачивают его в обратном направлении.
Можно сказать иначе: рычаг в равновесии, если сумма моментов всех приложенных к нему сил относительно любой оси равна нулю.
М1 + М2 + Мn + … = 0
Давление, сила давления
Прилагая одну и ту же силу к предмету, можно получить разный результат в зависимости от того, на какую площадь эта сила распределена. Объясняют этот феномен в программе 7 класса физические термины «давление» и «сила давления».
Давление — это величина, равная отношению силы, действующей на поверхность, к площади этой поверхности.
Сила давления направлена перпендикулярно поверхности.
Формула давления:
p = F / S, где F — модуль силы, S — площадь поверхности.
Единица измерения давления в СИ: паскаль (Па).
1 Па = 1 Н/м2
Понятно, что при одной и той же силе воздействия более высокое давление испытает та поверхность, площадь которой меньше.
Формулу для расчета силы давления вывести несложно:
F = p × S
В задачах по физике за 7 класс сила давления, как правило, равна весу тела.
Давление газов и жидкостей
Жидкости и газы, заполняющие сосуд, давят во всех направлениях: на стенки и дно сосуда. Это давление зависит от высоты столба данного вещества и от его плотности.
Формула гидростатического давления:
р = ρ × g × h, где ρ — плотность вещества, g — ускорение свободного падения, h — высота столба.
g = 9,8 м/с2
Единица измерения давления жидкости или газа в СИ: паскаль (Па).
Однородная жидкость или газ давит на стенки сосуда равномерно, поскольку это давление создают хаотично движущиеся молекулы. И внешнее давление, оказываемое на вещество, тоже равномерно распределяется по всему его объему.
Закон Паскаля: давление, производимое на поверхность жидкого или газообразного вещества, одинаково передается в любую его точку независимо от направления.
Внешнее давление, оказываемое на жидкость или газ, рассчитывается по формуле:
p = F / S, где F — модуль силы, S — площадь поверхности.
Сообщающиеся сосуды
Сообщающимися называются сосуды, которые имеют общее дно либо соединены трубкой. Уровень однородной жидкости в таких сосудах всегда одинаков, независимо от их формы и сечения.
Если ρ1 = ρ2, то h1 = h2 и ρ1gh1 = ρ2gh2, где:
p — плотность жидкости,
h — высота столба жидкости,
g = 9,8 м/с2.
Если жидкость в сообщающихся сосудах неоднородна, т. е. имеет разную плотность, высота столба в сосуде с более плотной жидкостью будет пропорционально меньше.
Высоты столбов жидкостей с разной плотностью обратно пропорциональны плотностям.
Гидравлический пресс — это механизм, созданный на основе сообщающихся сосудов разных сечений, заполненных однородной жидкостью. Такое устройство позволяет получить выигрыш в силе для оказания статического давления на детали (сжатия, зажимания и т. д.).
Если под поршнем 1 образуется давление p1 = f1/s1, а под поршнем 2 будет давление p2 = f2/s2, то, согласно закону Паскаля, p1 = p2
Следовательно,
Силы, действующие на поршни гидравлического пресса F1 и F2, прямо пропорциональны площадям этих поршней S1 и S2.
Другими словами, сила поршня 1 больше силы поршня 2 во столько раз, во сколько его площадь больше площади поршня 2. Это позволяет уравновесить в гидравлической машине с помощью малой силы многократно бóльшую силу.
Закон Архимеда
На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.
Формула архимедовой силы:
Fa = ρ × g × V, где ρ — плотность жидкости, V — объем погруженной части тела, g — ускорение 9,8 м/с2.
Закон Архимеда помогает рассчитать, как поведет себя тело при погружении в среды разной плотности. Верны следующие утверждения:
-
если плотность тела выше плотности среды, оно уйдет на дно;
-
если плотность тела ниже, оно всплывет на поверхность.
Другими словами, тело поднимется на поверхность, если архимедова сила больше силы тяжести.
Работа, энергия, мощность
Механическая работа — это физическая величина, которая равна произведению перемещения тела на модуль силы, под действием которой было выполнено перемещение.
Формула работы в курсе физики за 7 класс:
A = F × S, где F — действующая сила, S — пройденный телом путь.
Единица измерения работы в СИ: джоуль (Дж).
Такое понятие, как мощность, описывает скорость выполнения механической работы. Оно говорит о том, какая работа была совершена в единицу времени.
Мощность — это физическая величина, равная отношению работы к временному промежутку, потребовавшемуся для ее выполнения.
Формула мощности:
N = A / t, где A — работа, t — время ее совершения.
Также мощность можно вычислить, зная силу, воздействующую на тело, и среднюю скорость перемещения этого тела.
N = F × v, где F — сила, v — средняя скорость тела.
Единица измерения мощности в СИ: ватт (Вт).
Тело может совершить какую-либо работу, если оно обладает энергией — кинетической и/или потенциальной.
-
Кинетической называют энергию движения тела. Она говорит о том, какую работу нужно совершить, чтобы придать телу определенную скорость.
-
Потенциальной называется энергия взаимодействия тела с другими телами или взаимодействия между частями одного целого. Потенциальная энергия тела, поднятого над Землей, характеризует, какую работу должна совершить сила тяжести, чтобы опустить это тело снова на нулевой уровень.
Таблица с формулами по физике за 7 класс для вычисления кинетической и потенциальной энергии:
Кинетическая энергия |
Пропорциональна массе тела и квадрату его скорости. |
Ek = mv2/2 |
Потенциальная энергия |
Равна произведению массы тела, поднятого над Землей, на ускорение свободного падения и высоту поднимания. |
Ep= mgh |
Полная механическая энергия |
Складывается из кинетической и потенциальной энергии. |
E = Ek+Ep |
Сохранение и превращение энергии |
Если механическая энергия не переходит в другие формы, то сумма потенциальной энергии и кинетической представляет собой константу. |
Ek+ Ep= const |
Для того, чтобы понять, какая часть совершенной работы была полезной, вычисляют коэффициент полезного действия или КПД. С его помощью определяется эффективность различных механизмов, инструментов и т. д.
Коэффициент полезного действия (КПД) отражает полезную часть выполненной работы. Также его можно выразить через отношение полезно использованной энергии к общему количеству полученной энергии.
Формула для расчета КПД:
где Ап— полезная работа, Аз— затраченная работа.
КПД выражается в процентах и составляет всегда меньше 100%, поскольку часть энергии затрачивается на трение, повышение температуры воздуха и окружающих тел, преодоление силы тяжести и т. д.
Удачи на экзаменах!
Яна Кононенко
К предыдущей статье
Закон Джоуля-Ленца
К следующей статье
Диффузия
Получите индивидуальный план обучения физике на бесплатном вводном уроке
Премиум
На вводном уроке с методистом
-
Выявим пробелы в знаниях и дадим советы по обучению
-
Определим уровень и подберём курс
-
Расскажем, как
проходят занятия
Формулы объема — объяснение, единицы измерения, примеры решений и часто задаваемые вопросы
- Формула
- Формула объема
Что такое объем?
Дата последнего обновления: 17 апреля 2023 г.
•
Всего просмотров: 237,6 тыс.
•
Просмотров сегодня: 3,07 тыс.
как объем предмета. Кроме того, если объект полый, то известно, что его внутренняя часть пуста. Полая часть может быть заполнена воздухом или жидкостью. В этом случае объем вещества, которым можно заполнить внутреннее пространство, даст вместимость любой емкости.
Таким образом, объем объекта может быть определен как мера занимаемого им пространства, или объем объекта как объем вещества, которое может вместить его внутренняя часть. Здесь единицей измерения любого из двух является кубическая единица.
Единицы объема
Объем измеряется в «кубических» единицах. Объем любой заданной фигуры — это количество кубиков, необходимых для ее полного заполнения, например, кубиков в коробке.
Объем куба равен сторона х сторона х сторона. Поскольку все стороны квадрата равны, это может быть просто длина одной стороны в кубе.
Если предположить, что у квадрата одна сторона равна 4 дюймам, объем будет 4 дюйма умножить на 4 дюйма x 4 дюйма, или 64 кубических дюйма. (Кубические дюймы также могут быть записаны в 3.)
Некоторые формулы для нахождения объемов основных геометрических фигур: 0048
Формула объема
Переменные
Прямоугольный Сплошной или кубовидный
В = Д × Ш × В
Д = Длина
Ш = Ширина
В = Высота
24 Куб
V = a 3
a = длина края или стороны
Цилиндр
V = π r 2 7 3 h
4 r = радиус круглого основания
h = высота
Призма
V = B × h
B = площадь основания, (B = сторона 2 или длина. ширина)
h 1 9092 5 = высота 1
Сфера
V = (4⁄3)π r 3
r = радиус сферы
⁄3) × Ш × В
B = площадь основания,
h = высота пирамиды
Круговой конус правый
V = (1⁄3)πr 2 h
r = высота 19048 9043 90 90 90 круглого основания 90 3
Квадратный или прямоугольный Пирамида
V = (1⁄3) × длина × ширина × высота
l = длина основания,
w = ширина основания,
h = высота (от основания до кончика)
1
Эллипсоид
V = (4⁄3) × π × a × b × c
a, b, c = полуоси эллипсоида 3 ⁄ (6 √2)
a = Длина края
Решенные примеры
Вопрос 1) Размеры прямоугольного резервуара для воды даны как 2 м 75 см, 1 м 80 см 0 и 1. Сколько литров воды можно налить в бак данных размеров?
Решение) Как мы знаем, что 1м = 100см.
Размеры резервуара: 2 м 75 см, 1 м 80 см и 1 м 40 см.
Мы можем записать это как 275 см, 180 см, 140 см
Теперь мы знаем, что объем прямоугольного параллелепипеда равен, Объем = l × b × h 3
Поскольку 1000 см = 1 литр
Таким образом, V = 6930 литров
Следовательно, бак может вместить 6930 литров воды.
Недавно обновленные страницы
Диагональ квадратной формулы — значение, вывод и решенные примеры
Формула дисперсионного анализа — определение, полная форма, статистика и примеры
Средняя формула — методы отклонения, решенные примеры и часто задаваемые вопросы
Формула процентной доходности — APY, атомная экономика и решенная Пример
Формула серии – определение, примеры решений и часто задаваемые вопросы
Формула площади поверхности квадратной пирамиды – определение и вопросы
Формула диагонали квадрата – значение, вывод и примеры решения
Формула дисперсионного анализа — определение, полная форма, статистика и примеры
Формула среднего — методы отклонения, примеры решений и часто задаваемые вопросы
Формула процентного выхода — APY, атомная экономика и пример решения
Формула серии — определение, примеры решения и часто задаваемые вопросы
Площадь поверхности квадратной пирамиды Формула — определение и вопросы
Актуальные темы
Что такое объем — Физика | Определение и расчет
Том является базовой физической величиной . Объем является производной величиной и выражает трехмерную протяженность объекта . Объем часто количественно измеряется с использованием производной единицы СИ, кубических метров .
Например, объем внутри сферы (то есть объем шара) получается из V = 4/3πr 3 , где r — радиус сферы. Другой пример: объем куба равен произведению стороны на сторону. Поскольку все стороны квадрата одинаковы, длина одной из сторон может быть равна 9.0290 в кубе .
Если одна сторона квадрата равна 3 метрам, объем будет равен 3 метрам на 3 метра на 3 метра или 27 кубическим метрам.
Формулы для расчета различных объемов
Формулы объема для некоторых обычных трехмерных объектов:
Что такое удельный объем
Типичные плотности различных веществ при атмосферном давлении.
Удельный объем является интенсивной переменной , тогда как объем является экстенсивной переменной. Стандартная единица измерения удельных объемов в системе СИ — кубический метр на килограмм (м 3 /кг). Стандартной единицей измерения в английской системе является кубический фут на фунт массы (фут 3 /фунт).
Плотность (ρ) вещества обратно пропорциональна его удельному объему (ν).
ρ = m/V = 1/ρ
Плотность определяется как масса на единицу объема . Это также интенсивное свойство , которое математически определяется как масса, деленная на объем:
ρ = m/V
Материалы с наименьшим удельным объемом — самые плотные материалы на Земле
Поскольку 90 290 нуклонов 90 291 (90 290 протонов 90 291 и 90 290 нейтронов 90 291 ) составляют большую часть массы обычных атомов, плотность обычного вещества, как правило, ограничивается тем, насколько плотно мы можем упаковать эти нуклоны, и зависит от внутренней атомной структуры. вещество. Самый плотный материал , обнаруженный на Земле, — это металлический осмий . Тем не менее, его плотность бледнеет по сравнению с плотностью экзотических астрономических объектов, таких как белые карлики и .0290 нейтронных звезд .
Список самых плотных материалов:
- Осмий – 22,6 x 10 3 кг/м 3
- Иридий – 22,4 x 10 30 8
- Платина – 21,5 x 10 3 кг/м 3
- Рений – 21,0 x 10 3 кг/м 3
- Плутоний – 19,8 x 10 3 07 90 8 кг/м 3 9087
- Золото – 19,3 x 10 3 кг/м 3
- Вольфрам – 19,3 x 10 3 кг/м 3
- Уран – 18,8 x 10 3 кг/м 3
- Тантал – 18,8 7 кг/м 3
- Ртуть – 13,6 x 10 3 кг/м 3
- Родий – 12,4 x 10 3 кг/м 3
- Торий – 11,7 x 10 м 9 0 8 3
- Свинец – 11,3 x 10 3 кг/м 3
- Серебро – 10,5 x 10 3 кг/м 3
3
Следует отметить, что плутоний является промышленным изотопом и создается из урана в ядерных реакторах. Но ученые обнаружили следовые количества встречающегося в природе плутония.
Если учитывать промышленные элементы, то самым плотным на данный момент является Hassium . Хассий — это химический элемент с символом Hs и атомным номером 108. Это синтетический элемент (впервые синтезированный в Хассе в Германии) и радиоактивный. Самый стабильный известный изотоп, 269 Hs имеет период полураспада примерно 9,7 секунды. Расчетная плотность составляет 40,7 x 10 3 кг/м 3 . Плотность хассия обусловлена его 90 290 высоким атомным весом 90 291 и значительным уменьшением 90 290 ионных радиусов 90 291 элементов в ряду лантаноидов, известных как 90 290 лантанидное и актинидное сжатие 90 291 .
За плотностью хассия следует мейтнерий (элемент 109, названный в честь физика Лизы Мейтнер), расчетная плотность которого составляет 37,4 x 10 3 кг/м 3 .
Изменения удельного объема
В общем, плотность и, следовательно, удельный объем можно изменить путем изменения давления или температуры . Увеличение давления всегда увеличивает плотность материала. Влияние давления на плотность жидкостей и твердых тел очень мало. С другой стороны, плотность газов сильно зависит от давления. Это выражается сжимаемость . Сжимаемость измеряет относительное изменение объема жидкости или твердого вещества в ответ на изменение давления.
Влияние температуры на плотность жидкостей и твердых тел также очень важно. Большинство веществ расширяются при нагревании и сжимаются при охлаждении . Однако величина расширения или сжатия варьируется в зависимости от материала. Это явление известно как тепловое расширение . Изменение объема материала при изменении температуры определяется следующим соотношением:
где ∆T — изменение температуры, V — исходный объем, ∆V — изменение объема, а α V — коэффициент объемного расширения .
Следует отметить и исключения из этого правила. Например, вода отличается от большинства жидкостей тем, что она становится менее плотной при замерзании . Его максимальная плотность составляет 3,98 °C (1000 кг/м 3 ), тогда как плотность льда составляет 917 кг/м 3 . Он отличается примерно на 9% и поэтому плавает на льду на жидкой воде
Объем атома и ядра
Строение материи.
Атом состоит из небольшого, но массивного ядра , окруженного облаком быстро движущихся электронов . Ядро состоит из протонов и нейтронов . Типичные радиусы ядер имеют порядок 10 −14 м. Радиусы ядер можно рассчитать по следующей формуле, предполагая сферическую форму:
г = г 0 . A 1/3
где r 0 = 1,2 x 10 -15 m = 1,2 фм
Если мы используем это приближение, мы, следовательно, ожидаем, что объем ядра будет порядка 4 /3πr 3 или 7,23 × 10 −45 м 3 для ядер водорода или 1721×10 −45 м 3 для 238 ядер U. Это объемы ядер, а в атомных ядрах (протонов и нейтронов) содержится около 99,95% массы атома.
Является ли атом пустым пространством?
Образное изображение атома гелия-4 с электронным облаком в оттенках серого. Протоны и нейтроны, скорее всего, находятся в одном пространстве, в центральной точке. Источник wikipedia.org License CC BY-SA 3.0
Объем атома примерно на на 15 порядков больше чем объем ядра. Для атома урана ван-дер-ваальсов радиус составляет около 186 пм = 1,86 × 10 −10 м . Радиус Ван-дер-Ваальса, r w , атома — это радиус воображаемой твердой сферы, представляющий расстояние наибольшего сближения для другого атома. Атом урана имеет объем около 26,9 × 10 −30 м 3 , принимая сферическую форму. Но это «огромное» пространство занято в основном электронами, потому что ядро занимает лишь около 1721×10 −45 м 3 место. Эти электроны вместе весят лишь часть (скажем, 0,05%) всего атома.
Может показаться, что пространство и материя пусты , но это не . Из-за квантовой природы электронов электроны не являются точечными частицами, а размазаны по всему атому. Классическое описание нельзя использовать для описания вещей на атомном уровне. В атомном масштабе физики обнаружили, что квантовая механика очень хорошо описывает вещи в этом масштабе. Расположение частиц в квантовой механике не находится в точном положении, и они описываются функция плотности вероятности . Поэтому пространство в атоме (между электронами и атомным ядром) не пусто. Тем не менее, он заполнен функцией плотности вероятности электронов (обычно известной как «электронное облако »).
Объем теплоносителя в системе теплоснабжения реактора
Ядерный реактор и система теплоснабжения первого контура ВВЭР-1200.
Источник: gidropress.podolsk.ru
используется с разрешения АО ОКБ «ГИДРОПРЕСС»
В типовых современных водо-водяных реакторах (PWR), система охлаждения реактора (RCS), показанная на рисунке, состоит из:
- корпуса реактора содержит ядерное топливо
- четырех параллельных контуров теплопередачи , соединенных с корпусом реактора.
- каждый контур содержит главный насос охлаждающей жидкости и парогенератор .
- система включает в себя компенсатор давления и его вспомогательные системы
Все компоненты СТР расположены внутри здания защитной оболочки.
Внутри корпуса реактора, контуров и парогенераторов при нормальной работе находится сжатая жидкая вода. Давление поддерживается примерно на уровне 16 МПа . При таком давлении вода кипит примерно при 350°C (662°F). Температура воды на входе составляет около 290°C (554°F). Вода (хладагент) нагревается в активной зоне реактора примерно до 325°C (617°F) по мере прохождения воды через активную зону. Как видно, реактор содержит недогретые теплоносители примерно на 25°C (расстояние от точки насыщения). Это высокое давление поддерживается компенсатором давления, отдельным сосудом, подключенным к первому контуру (горячая ветвь) и частично заполненным водой (частично насыщенным паром), которая нагревается до температура насыщения (точка кипения) для желаемого давления с помощью погружных электрических нагревателей . Температуру в компенсаторе давления можно поддерживать на уровне 350 °C. Около 60% объема компенсатора давления занимает сжатая вода при нормальных условиях, а около 40% объема занимает насыщенный пар .
Объемы типичных PWR приведены в следующей таблице.
Это иллюстративный пример, и следующие данные не соответствуют какой-либо конструкции реактора.
Следует отметить, что объем охлаждающей жидкости значительно изменяется в зависимости от температуры охлаждающей жидкости. Общая масса теплоносителя всегда остается неизменной. Изменение объема воды не является изменением запаса воды. Объем теплоносителя реактора изменяется с температурой из-за изменений плотности . Большинство веществ расширяются с при нагревании и сжимаются при охлаждении . Однако величина расширения или сжатия варьируется в зависимости от материала. Это явление известно как тепловое расширение . Изменение объема материала, подвергающегося изменению температуры, определяется следующим соотношением:
, где ∆T — изменение температуры, V — первоначальный объем, ∆V — изменение объема и α V — коэффициент объемного расширения . Плотность жидкой (сжатой) воды как функция температуры воды
Коэффициент объемного теплового расширения для воды непостоянен в диапазоне температур и увеличивается с температурой ( особенно при 300° С ). Поэтому изменение плотности не является линейным в зависимости от температуры (как показано на рисунке).
См. также: Паровые столы.
При нормальных условиях общий объем теплоносителя в системе теплоснабжения реактора почти постоянен. С другой стороны, в условиях переходной нагрузки, объем может значительно измениться . Эти изменения естественным образом отражаются в изменении уровня воды в компенсаторе давления. При постепенном снижении средней температуры теплоносителя реактора общий объем воды также уменьшается, что снижает уровень компенсатора давления. При постепенном наборе нагрузки увеличение средней температуры теплоносителя реактора вызывает расширение общего объема воды, повышая уровень компенсатора давления. Эти эффекты должны контролироваться системой контроля уровня компенсатора давления.
Контрольный объем – Анализ контрольного объема
Контрольный объем – это фиксированная область в пространстве, выбранная для термодинамического исследования баланса массы и энергии для проточных систем. Граница контрольного объема может быть действительной или воображаемой оболочкой . Поверхность управления является границей контрольного объема.
Например, анализ контрольного объема можно использовать для определения скорости изменения количества движения жидкости. В этом анализе будет рассматриваться струйная трубка ( контрольный объем ), как мы делали для уравнения Бернулли. В этом контрольном объеме , любое изменение импульса жидкости в контрольном объеме происходит из-за действия внешних сил на жидкость внутри объема.
См. также: Формула импульса.
Как видно из рисунка, метод контрольного объема можно использовать для анализа закона сохранения количества движения в жидкости. Контрольный объем представляет собой воображаемую поверхность , в котором содержится интересующий том. Контрольный объем может быть неподвижным или подвижным, жестким или деформируемым. Для определения всех сил, действующих на поверхности контрольного объема, необходимо решить законы сохранения в этом контрольном объеме.
Выбор контрольного объема
В качестве контрольного объема можно выбрать любой произвольный объем, через который протекает жидкость. Этот объем может быть статичным, подвижным и даже деформироваться во время течения. Чтобы решить любую задачу, мы должны решить основные законы сохранения в этом томе. Очень важно знать все относительные скорости потока к поверхности управления. Поэтому очень важно точно определить границы контрольного объема при анализе.
Пример: Струя воды попадает в неподвижную плиту
Неподвижная плита (например, лопасть водяной мельницы) отклоняет поток воды со скоростью 1 м/с и углом 90° . Это происходит при атмосферном давлении, а массовый расход равен Q =1 м 3 /с .
- Рассчитайте силу давления.
- Рассчитайте силу тела.
- Рассчитайте общую силу.
- Рассчитайте результирующую силу.
Решение
- Сила давления равна нулю, так как давление на входе, а выходы в контрольный объем атмосферные.
- Поскольку контрольный объем невелик, мы можем игнорировать силу тела из-за веса гравитации.
- F x = ρ.Q.(w 1x – w 2x ) = 1000 . 1 . (1 – 0) = 1000 Н
F y = 0
F = (1000, 0) - Суммарная сила имеет такое же направление, что и результирующая сила на плоскости Ф (трением и весом пренебрегаем).
h
Струя воды действует на пластину с силой 1000 Н в направлении x.
Каталожные номера:
Реакторная физика и теплогидравлика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Addison-Wesley, Reading, MA (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд.