Как найти объем насыщенного пара

Насыщенный пар используется во многих областях промышленности, поэтому для работы различных устройств важно поддерживать состояние насыщения пара.

Рассмотрим, как определить насыщенный пар или нет. Также в статье даны способы определения насыщенности пара, формула и примеры расчета.

Содержание

  • Данные для определения насыщенности
  • Методы
  • Как найти?
    • Как рассчитать?
    • Несколько примеров
  • Где эти расчеты могут пригодиться на практике?
  • Заключение

Данные для определения насыщенности

Насыщенный пар или нет, можно определить, зная условия его возникновения и зависимость от различных факторов:

  1. Этот тип пара образуется только в закрытых сосудах.
  2. Образуется только над поверхностью исходной жидкости или льдом.
  3. Имеет свойство конденсации.
  4. Насыщен влагой.
  5. Температура пара всегда равна температуре его жидкости.
  6. Плотность и давления такого пара не зависят от объема.
  7. Насыщенный пар имеет прямую зависимость от температуры и давления.

Насыщенный пар находится в термодинамическом равновесии с жидкостью из которой он образован. На это указывает равенство массы испарения и последующей конденсации.

foto47999-2

Методы

Математический способ определения насыщенного пара используется при вычислении на основе имеющихся данных о его давлении, температуре, влажности и по иным параметрам.

Также есть метод определения на основе отдельных данных:

  1. Замер температуры пара. Указывает на состояние насыщенного пара при условии равенства температур газа и жидкости. Любое отклонение от равенства укажет на потерю динамического равновесия и уровня влажности.
  2. По давлению. Измеряется давление пара и сравнивается с табличной величиной при актуальной температуре.
  3. По степени конденсации. Рассчитывается температура конденсата и скорость его образования.
  4. По уровню влажности. Влажность насыщенного пара всегда равна 100%.

Также существует метод определения по точке кипения. Он основан на расчете скорости парообразования при актуальном давлении. Например, при давлении 101 кПа, точкой парообразования является температура 100 градусов.

Существуют также некоторые лабораторные методы определения:

  • статический,
  • динамический,
  • кинетический.

Они также основаны на замерах температуры, давления, плотности, влажности и конденсации при определенных условиях и сравнении полученных данных с таблицей насыщенного пара по температуре и давлению.

Как найти?

Свойства насыщенного пара не позволяют приравнивать его к идеальному газу, поэтому для его расчета используется формула Менделеева-Клапейрона.

Как рассчитать?

Расчет выполнятся по формуле: pV=vRT.

foto47999-3Уравнение состоит из:

  • «p» — давление насыщенного пара (Па);
  • «V» — его объем (м3);
  • «v» — общее количество вещества (моль);
  • «R» — газовая постоянная (8,31 м2);
  • «T» — температура среды (К).

Данная формула помогает рассчитать не только параметры насыщенного пара, но и их изменения при изменении плотности, объема или давления.

Несколько примеров

Задача:

  1. В цилиндре находится насыщенный пар и вода при постоянной температуре.
  2. Поршень сдвигается, уменьшая свободный объем пространства.
  3. Выяснить, как повлияет уменьшение объема на общую массу жидкости.

Ответ: масса жидкости увеличится, по причине обратного фазового перехода пара в жидкость.

Согласно уравнению pV=m/u*Rt, при снижении общего объема пара не последует снижения его давления, а значит пар конденсируется обратно в воду, увеличив ее общую массу.

Задача:

  1. Температура насыщенного пара 100 градусов.
  2. Давление 101 кПа.
  3. Плотность неизвестна.

Решение: P=pu/Rt=105*18*10-3/8,31*373=0,5 кг/м3.

Ответ: насыщенный пар при температуре 100 градусов по Цельсию и при давлении 101 кПа имеет плотность 0,5 кг/м3. При решении данной задачи использовались табличные величины молярной массы, газовой постоянной и давлении при данной температуре.

Где эти расчеты могут пригодиться на практике?

foto47999-4Расчет состояния насыщенного пара используется во многих сферах:

  • при проектировании бытовых систем вентиляции и кондиционирования;
  • для эффективной работы отопительных систем;
  • при проектировании и поддержании работы паровых турбинных установок.

На основе этих расчетов строятся «умные» датчики влажности, которые реагируют на количество молекул воды или иных веществ в воздухе. Свойства насыщенного пара также применяются при выпаривании летучих веществ с их очисткой за счет последующей конденсации их насыщенных паров.

Заключение

Свойства насыщенного пара не делают его идеальным газом, но позволяют использовать в быту и в промышленности. Этот пар является идеальным источником тепла, влажности и помогает разделять химические элементы за счет способности к конденсации.

Формула расчета по уравнению Менделеева-Клапейрона позволяет рассчитать основные параметры пара и определить степень его схожести с насыщенным.

Калькулятор определяет параметры насыщенного водяного пара  по заданному давлению пара. На основании выбранных параметров насыщенного пара определяются:

    • температура насыщенного пара (по табличным данным) на линии насыщения;
    • плотность насыщенного пара (по табличным данным) на линии насыщения;
    • удельная теплота парообразования/удельная энтальпия насыщенного пара (по табличным данным) на линии насыщения;
    • удельный объем насыщенного водяного пара (расчет) на линии насыщения;
    • удельный объем насыщенного водяного пара (расчет)  с учетом степени сухости пара;
    • удельная  энтальпия воды (расчет)  на линии насыщения;
    • удельная  энтальпия насыщенного пара (расчет)  с учетом степени сухости пара;
    • масса пара в трубопроводе (расчет);
    • масса пара в сосуде/оборудовании (расчет);
    • скорость пара в трубопроводе (расчет);
    • рекомендуемая скорость пара в трубопроводе (справочные данные).

Определение свойств насыщенного пара.

Определение параметров инженерных систем исходя из выбранных свойств насыщенного пара.

Для выполнения расчета необходимо задать исходные данные выше.

Примечание.

Расчет составлена на базе справочных данных («Таблицы теплофизических свойств воды и водяного пара», Издательство МЭИ, 1999 г.) приведенных в табличном виде.

Степень сухости пара – массовая доля сухого насыщенного пара в влажном. Обычно сухость пара обозначается буквой  — Х.  Безразмерная величина. Данная величина может быть отрицательной для недогретой до кипения воды и превосходить единицу для перегретого пара. Для насыщенного пара находится в пределах от 0 до 1. При степени сухости насыщенного пара Х=1 пар называют сухой насыщенный пар (СНП). При степени сухости насыщенного пара от 0 до 1 пар называют влажный насыщенный пар.

При эксплуатации паровых котлов, паропроводов, турбин, машини и т.д. стремятся к получению и использованию СНП. Повышение влажности пара (y, y=(1-x)), ведет к увеличению эксплуатационных затрат.

В комментарии к калькулятору приветствуются пожелания, замечания и рекомендации по улучшению программы.

Поделиться ссылкой:

      Здравствуйте! Водяной пар может быть трех видов: влажным насыщенным, сухим насыщенным, перегретым. Рассмотрим все три вида. 

Влажный насыщенный пар. Удельный объем влажного насыщенного пара находится из выражения

υ = υ”x+υ'(1— х),

где υ” — удельный объем сухого насыщенного пара; υ’ — удельный объем воды при температуре парообразования и том же давлении, что и объем υ”.

     Двумя штрихами в технической термодинамике принято обозначать параметры и функции состояния сухого насыщенного пара, а одним штрихом — величины, характеризующие состояние воды при температуре парообразования.

     При небольших давлениях (p < 3 МПа) удельный объем υ’ воды очень мал по сравнению с удельным объемом υ” сухого насыщенного пара. Поэтому при х>0,8 объем жидкости υ'(1—х) можно не учитывать и приближенно определять удельный объем влажного насыщенного пара из соотношения υ ≈ υ”x. В процессе парообразования при постоянном давлении для получения 1 кг влажного насыщенного пара к 1 кг кипящей жидкости необходимо подвести количество теплоты

q=rx (1)

Так как в процессе при р = const количество теплоты равно изменению энтальпии, то величину энтальпии i влажного насыщенного пара можно определить из выражения

q = rx = i—i’ или i=i’+rx. (2)

Энтальпия i’ кипящей воды при температуре парообразования и теплота парообразования г соответствуют тому же давлению, что и энтальпия i. Так как величина энтальпии при 273 К принимается за нуль, то энтальпию i’ кипящей воды можно найти из выражения

(3)(3)

где сm — средняя массовая теплоемкость воды в интервале температур от 273 К до Тн.

     Энтальпия i’ кипящей воды, как следует из выражения (3), численно равна количеству теплоты, которая затрачивается для нагревания 1 кг воды от 0° С до температуры кипения tн при р = const.

     В соответствии с уравнением первого закона термодинамики q = ∆u+l имеем

r = u” — u’ + p*(u” — υ’).

Анализ этого выражения показывает, что теплота парообразования r складывается из внутренней теплоты парообразования u”- u’, затрачиваемой на изменение внутренней энергии (преодоление сил притяжения между молекулами), и внешней теплоты парообразования p (u”- u’), равной работе против внешних сил. Для давлений меньше 20 МПа внешняя теплота парообразования незначительна и не превышает 13% от величины r.

     Энтропию влажного насыщенного пара найдем из выражения

Энтропия

Так как в процессе парообразования при p=const T=const, то с учетом уравнения (1) получим

s

где s’— энтропия воды при температуре парообразования и том же давлении, что и величины s, г и Tн.
Величину s’ можно определить из соотношения

(4)(4)

или

5

Пределы интегрирования в выражении (4) приняты в соответствии с условием, что при 273 К энтропия равна нулю.

Сухой насыщенный пар.

     Состояние сухого насыщенного пара определяется значением одного параметра, например давления или температуры парообразования, так как другой параметр состояния — степень сухости — имеет определенное значение х=1. Параметры и функции состояния сухого насыщенного пара можно определить по выведенным выше формулам (1), (2) для влажного пара при условия х = 1.

Перегретый пар.

     Для получения перегретого пара в котельном агрегате устанавливают специальный теплообменник (пароперегреватель), в котором происходит перегрев влажного насыщенного пара. Для характеристики состояния перегретого пара должны быть известны два любых параметра состояния пара, например давление и температура. Вместо параметров могут быть заданы функции состояния (энтальпия или энтропия).

Энтальпия перегретого пара находится из выражения

6(5)

где сpm—массовая средняя изобарная теплоемкость пара в интервале температур от Tн до Т.

Энтропия перегретого пара определяется следующим образом

6.(6)

В уравнения (5) и (6) необходимо подставлять значения величин i”, s” и cpm при том же давлении, для которого определяются энтальпия i и энтропия s. Исп.литература: 1) Теплотехника и теплотехническое оборудование предприятий промышленности строительных материалов и изделий, Н.М. Никифорова, Москва, «Высшая школа», 1981. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,”Вышейшая школа”, 1976.

Насыщенный пар

  • Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

  • Испарение и конденсация

  • Динамическое равновесие

  • Свойства насыщенного пара

  • Влажность воздуха

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

к оглавлению ▴

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются p_H и rho_H. Очевидно, p_H и rho_H — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

к оглавлению ▴

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

p_H=frac{displaystyle rho_H}{displaystyle mu vphantom{1^a}}RT. (1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1).

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

к оглавлению ▴

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха varphi — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

varphi =frac{displaystyle p}{displaystyle p_H vphantom{1^a}} cdot 100 %.

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

varphi =frac{displaystyle rho}{displaystyle rho_H vphantom{1^a}} cdot 100 %.

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Насыщенный пар» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Как читать таблицы водяного пара

Если вы едете по неизвестной местности, вам понадобится карта или навигатор, если вы летите на самолете, вам не обойтись без расписания полётов. Так и таблицы водяного пара необходимы всем пользователям в индустрии пара. В этой статье мы познакомимся с таблицами пара, рассмотрим их виды и немного поговорим о присутствующих в них элементах.

Таблицы насыщенного водяного пара

Таблицы насыщенного водяного пара — необходимый инструмент для любого инженера, работающего с паром. Обычно их используют для определения зависимости температуры насыщенного пара от парового давления или, наоборот, давления от температуры насыщенного пара. Кроме этих параметров, таблицы обычно включают и другие показатели, такие как удельная энтальпия (h) и удельный объём (v).

Данные таблиц насыщенного водяного пара всегда отображают информацию о конкретной точке насыщения известной как точка кипения. Это точка, в которой вода (жидкость) и пар (газ) могут сосуществовать при одинаковых температуре и давлении. Так как H2O может быть и в жидком, и в газообразном состоянии, нам будут необходимы две подборки данных: данные о насыщенной воде (жидкости), которые обычно обозначаются подстрочной буквой f, и данные о насыщенном паре (газе), которые обозначают подстрочной буквой g.

Пример таблицы насыщенного пара

Как читать таблицы водяного пара

Обозначения:

  • P = Давление пара/воды
  • T = Точка насыщения пара/воды (точка кипения)
  • vf = Удельный объём насыщенной воды (жидкости)
  • vg = Удельный объём насыщенного пара (газа)
  • hf = Удельная энтальпия насыщенной воды (энергия, необходимая для подогрева воды от 0 °C до точки кипения)
  • hfg = Скрытое тепло испарения (энергия, необходимая для трансформации насыщенной воды в насыщенный пар)
  • hg = Удельная энтальпия насыщенного пара (энергия, необходимая для получения пара из воды с температурой 0 °C)

* Источник: 1999 таблицы пара Японского общества инженеров-механиков

При нагреве обычно используется скрытое тепло испарения (Hfg). Как видно из таблицы, это скрытое тепло испарения будет выше при более низком давлении. По мере увеличения парового давления скрытое тепло постепенно снижается и достигает 0 при суперкритическом давлении, например, 22.06 МПа.

Полезно знать

Два формата: на основе давления и температуры

Так как давление и температура насыщенного пара напрямую связаны друг с другом, таблицы пара обычно доступны в двух форматах: на основе давления и температуры. В обоих содержится одинаковая информация, но классифицирована она по-разному.

Таблица насыщенного водяного пара, основанная на давлении

Давл. (изб.) Темп. Удельный объём Удельная энтальпия
кПа изб. °C м3/кг кДж/кг
P T Vf Vg Hf Hfg Hg
0 99.97 0.0010434 1.673 419.0 2257 2676
20 105.10 0.0010475 1.414 440.6 2243 2684
50 111.61 0.0010529 1.150 468.2 2225 2694
100 120.42 0.0010607 0.8803 505.6 2201 2707

Таблица насыщенного водяного пара, основанная на температуре

Темп. Давл. (изб.) Удельный объём Удельная энтальпия
°C кПа изб. м3/кг кДж/кг
T P Vf Vg Hf Hfg Hg
100 0.093 0.0010435 1.672 419.1 2256 2676
110 42.051 0.0010516 1.209 461.4 2230 2691
120 97.340 0.0010603 0.8913 503.8 2202 2706
130 168.93 0.0010697 0.6681 546.4 2174 2720
140 260.18 0.0010798 0.5085 589.2 2144 2733
150 374.78 0.0010905 0.39250 632.3 2114 2746

Разные единицы измерения: избыточное и абсолютное давление

Таблицы насыщенного пара также используют два различных вида давления: абсолютное и манометрическое (избыточное).

  • Абсолютное давление — это нулевая точка по отношению к абсолютному вакууму.
  • Манометрическое давление — это нулевая точка по отношению к атмосферному давлению (101.3 кПа).

Таблица насыщенного пара с абсолютным давлением

Давл. (абс.) Темп. Удельный объём Удельная энтальпия
кПа °C м3/кг кДж/кг
P T Vf Vg Hf Hfg Hg
0
20 60.06 0.0010103 7.648 251.4 2358 2609
50 81.32 0.0010299 3.240 340.5 2305 2645
100 99.61 0.0010432 1.694 417.4 2258 2675

Таблица насыщенного пара с избыточным давлением

Давл. (изб.) Темп. Удельный объём Удельная энтальпия
кПа изб. °C м3/кг кДж/кг
P T Vf Vg Hf Hfg Hg
0 99.97 0.0010434 1.673 419.0 2257 2676
20 105.10 0.0010475 1.414 440.6 2243 2684
50 111.61 0.0010529 1.150 468.2 2225 2694
100 120.42 0.0010607 0.8803 505.6 2201 2707

Избыточное давление было придумано для простоты измерения давления по отношению к тому, которое мы обычно испытываем.

В таблицах пара, составленных на основе манометрического давления, атмосферное давление определяется как 0, а в таблицах с абсолютным давлением — 101.3 кПа. А для того чтобы отличать избыточное давление от абсолютного в конце добавляют “изб.”, например, кПа изб. или фт/кв. дюйм изб..

Перевести показатели избыточного давления в показатели абсолютного

Для единиц СИ

Давление пара [кПа изб.] = Давление пара [кПа изб.] + 101.3 кПа

Важное замечание:  Проблемы могут возникнуть в том случае, если перепутать абсолютное и манометрическое давление, именно поэтому надо быть особенно внимательными с единицами давления, указанными в таблице.

Сводная таблица

Избыточное давление

  • Нулевая точка отсчёта при атмосферном давлении*
  • Нулевое давление = Атмосферное давление

Абсолютное давление:

  • Нулевая точка отсчёта при атмосферном давлении
  • Нулевое давление = Абсолютный вакуум

*Атмосферное давление — 101.3 кПа

Таблицы перенасыщенного пара

Информацию о перенасыщенном паре нельзя получить из обычных таблиц насыщенного пара, для этого существуют специальные таблицы перенасыщенного пара. Происходит это потому, что температура перенасыщенного пара в отличии от температуры насыщенного может существенно меняться при одном и том же давлении.

В действительности, количество возможных комбинаций температуры и давления настолько велико, что даже теоретически не представляется возможным собрать их в одной таблице. В результате для перегретого пара используется общая сводная таблица данных о температуре и давлении.

Пример таблицы перенасыщенного пара

Как читать таблицы водяного пара

В приведенной выше таблице есть данные об удельном объёме (Vg), удельной энтальпии (Hg) и удельном тепле (Sg) при типичных значениях давления и температуры.

Добавить комментарий