Уже известны единицы измерения длины, например:
— и другие.
Для фигур на плоскости измеряют площадь в соответствующих квадратных единицах измерения:
мм2,см2,дм2,м2,км2…
Для геометрических тел измеряют объём, и для этого необходимы единицы измерения.
Единицей измерения объёма служит объём куба, у которого все грани равны (1) единице измерения длины:
мм3,см3,дм3,м3,км3…
Это кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр или даже кубический километр:
1км3=1000000000м3;1м3=1000дм3=1000000см3;1дм3=1000см3;1см3=1000мм3.
Часто для измерения объёма жидкости используют единицу измерения (1) литр:
1 л =1000см3=1дм3
.
Если измерять объём прямоугольного параллелепипеда, то можно представить, как маленькие кубики перекрывают прямоугольник в основании прямоугольного параллелепипеда.
Длины сторон прямоугольника определяют, сколько кубиков в ряду и сколько рядов с кубиками будет.
Если стороны равны, например, (3) см и (4) см, то прямоугольник перекрывается (3·4 = 12) кубиками.
Высота параллелепипеда определяет, сколько таких слоёв с кубиками можно поставить.
Если высота прямоугольного параллелепипеда равна (3) см, то всего получится (3) слоя с кубиками. Итак, всего (3·3·4 = 36) кубиков, или объём равен (36) см³.
Значит, три измерения прямоугольного параллелепипеда позволяют посчитать, сколько всего кубиков поместилось в геометрическом теле, то есть вычислить объём прямоугольного параллелепипеда.
Пусть измерения прямоугольного параллелепипеда будут a, b и c единиц измерения.
Тогда объём (V = a·b·c) кубических единиц измерения.
Объем прямоугольного параллелепипеда
4.7
Средняя оценка: 4.7
Всего получено оценок: 510.
4.7
Средняя оценка: 4.7
Всего получено оценок: 510.
В школьном курсе математики за 5 класс, ученики знакомятся с темой прямоугольного параллелепипеда. Это одна из первых фигур курса, имеющих объем. Именно об объеме и формуле его нахождения пойдет речь сегодня.
Опыт работы учителем математики – более 33 лет.
Определения
Прямоугольным параллелепипедом называется фигура, все грани которого – прямоугольники. Фигура имеет шесть граней. Грани, пресекаясь, образовывают ребра, их 12.
Прямоугольный параллелепипед имеет четыре боковые грани и две грани оснований. В жизни мы часто сталкиваемся с данной фигурой: шкаф, холодильник, коробка – все они имеют форму прямоугольного параллелепипеда.
Формула объема данной фигуры
Объем куба (фигуры, все грани которого квадраты) со стороной 1 единица называется 1 кубическая единица.
Если заложить такими кубиками дно фигуры (рис. 3), то в длину понадобится 4 куба, а в ширину 3.
Таким образом, для заполнения основания необходимо:
3 х 4 =12 – так мы вычисляли площадь.
Чтобы заполнить всю фигуру и узнать объем, необходимо посчитать, сколько поместится в высоту таких слоев кубов, к примеру, если это будет 2, то объем составит:
3 х 4 х 2 = 24 кубов
Так, если учесть что длина основания фигуры 4 единицы, ширина – 3, высота – 2, то для того чтобы вычесть объем прямоугольного параллелепипеда необходимо найти произведение этих величин или измерений. Фигура, которая имеет три измерения, называется трехмерной либо объемной.
Для обозначения объема используют букву V.
Формула объема прямоугольного параллелепипеда имеет вид:
$$V = a · b · c$$
При необходимости все данные в задании необходимо перевести в одни единицы измерения.
Единицами измерения являются $мм^3, см^3, дм^3$ и так далее. Важно правильно читать: $1 м^3$ или кубический метр и так далее.
Английский иллюзионист провел 44 дня в стеклянном прямоугольном параллелепипеде, который был подвешен над рекой Темза. В его распоряжении была только вода, подушка, матрас и письменные принадлежности.
Задание: Вычислить объем фигуры, ширина которой 4 дм, длина 50 мм, а высота 10 см.
Решение: Для начала необходимо перевести все данные в одни единицы измерения.
$4 дм. = 40 см$;
$50 мм. = 5 см$.
$V = a • b • h$
$V = 40 • 5 • 10 = 200 см^3$
Таким образом, объем фигуры $V = 200 см^3$
Для измерения объема жидкости используют особую единицу измерения – литр (1 л).
Древние измерения жидкости, например кор = 220 л, бат = 22 л.
Измерения объема:
$$1 л = 1 000 см^3 = 1 дм^3$$
$$1 км^3 = 1000 000 000 м^3$$
$$1 м^3 = 1 000 дм^3 = 1 000 000 см^3$$
$$1 дм^3 = 1 000 см^3$$
$$1 см^3 = 1 000 мм^3$$
Что мы узнали?
Мы узнали, что для того, чтобы найти объем прямоугольного параллелепипеда необходимо умножить произведение длины и ширины основания на высоту фигуры. А также мы познакомились с единицами измерения объема.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
-
Каролина Юсупова
5/5
-
Розочка Ангелиночка
5/5
-
Семён Сапьянов
4/5
-
Ярослава Ковалко
5/5
-
Армине Оганджанян
5/5
-
Егор Плисовский
4/5
-
Анастасия Прибыток
5/5
-
Lol Kek
5/5
-
Кирилл Лазарев
5/5
-
Илья Юрченко
5/5
Оценка статьи
4.7
Средняя оценка: 4.7
Всего получено оценок: 510.
А какая ваша оценка?
{V= a cdot b cdot c}
Найти объем параллелепипеда довольно просто. Для этого необходимо знать длины трех его сторон или же две стороны (площадь основания) и высоту. Чтобы облегчить расчет объема параллелепипеда мы создали калькулятор для разных исходных данных. Просто введите известные значения и в режиме онлайн получите результат.
Параллелепипед — многогранник, состоящий из шести граней, причем все они являются параллелограммами.
Прямоугольный параллелепипед — это параллелепипед, у которого все грани прямоугольники.
Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.
Содержание:
- калькулятор объема параллелепипеда
- формула объема прямоугольного параллелепипеда через три стороны
- формула объема прямоугольного параллелепипеда через площадь основания и высоту
- формула объема наклонного параллелепипеда через длины сторон основания и высоту
- формула объема наклонного параллелепипеда через площадь основания и высоту
- примеры задач
Формула объема прямоугольного параллелепипеда через три стороны
{V= a cdot b cdot c}
a – длина параллелепипеда
b – ширина параллелепипеда
c – высота параллелепипеда
Так как в основании параллелепипеда лежит прямоугольник, то в данной формуле ab – это площадь прямоугольника, который лежит в основании параллелепипеда. И тогда формулу можно сократить до {V= S h}
Формула объема прямоугольного параллелепипеда через площадь основания и высоту
{V= S_{осн} cdot h}
Sосн – площадь основания параллелепипеда
h – высота параллелепипеда
Формула объема наклонного параллелепипеда через длины сторон основания и высоту
{V= a cdot b cdot h}
a – длина основания параллелепипеда
b – ширина основания параллелепипеда
h – высота параллелепипеда
Формула объема наклонного параллелепипеда через площадь основания и высоту
{V= S_{осн} cdot h}
Sосн – площадь основания параллелепипеда
h – высота параллелепипеда
Примеры задач на нахождение объема параллелепипеда
Задача 1
Найдите объём прямоугольного параллелепипеда с измерениями 3см, 4см и 5см.
Решение
Для решения данной задачи нам подходит формула один. Подставим в нее значения длины, ширины и высоты прямоугольного параллелепипеда, произведем расчет и получим ответ.
V= a cdot b cdot c = 3 cdot 4 cdot 5 = 60 : см^3
Ответ: 60 см³
Проверим правильность ответа с помощью калькулятора .
Задача 2
Найдите объём наклонного параллелепипеда с площадью основания 12м² и высотой 3м.
Решение
Используем для решения четвертую формулу. Подставим в нее площадь основания и высоту.
V= S_{осн} cdot h = 12 cdot 3 = 36 : м^3
Ответ: 36 м³
Полученный ответ поможет проверить калькулятор .
Математика
5 класс
Урок №32
Объём прямоугольного параллелепипеда. Единицы объёма
Перечень рассматриваемых вопросов:
– куб;
– параллелепипед;
– элементы параллелепипеда;
– объём прямоугольного параллелепипеда, куба.
Тезаурус
Прямоугольный параллелепипед – это шестигранник, у которого все грани являются прямоугольниками.
Высота, длина и ширина – это измерения прямоугольного параллелепипеда.
Единичный куб – куб, ребро которого равно линейной единице.
Обязательная литература
1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.
Дополнительная литература
1. Чулков П. В. Математика: тематические тесты. 5 класс.// П. В. Чулков, Е. Ф. Шершнёв, О.Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.
Теоретический материал для самостоятельного изучения
Как вы думаете, что больше занимает места– 1 кг ваты или 1 кг гвоздей? Чтобы ответить на этот вопрос, нужно знать величину, которая называется объём. В данной задаче ответ очевиден, так как мы можем представить предметы визуально. Но не всегда ответ может быть таким простым. Чаще всего нужно произвести определённые вычисления.
Сегодня мы рассмотрим объём прямоугольного параллелепипеда и научимся его находить.
Объём можно измерить. Его измеряют в кубических миллиметрах, кубических сантиметрах, кубических метрах, литрах и т. д.
Найдём соотношение между единицами измерения объёма.
Так как 1 см = 10 дм, то 1 см3 = 1 000 мм3.
1 дм3 = 1000 см3 = 1 л
1 м3 = 1000 дм3
1 км3 = 1000000000 м3
В древности в разных частях планеты люди по-разному измеряли объём. Например, в Древней Греции использовали глиняные мерные сосуды для зерна или жидкостей. Причём это были амфоры разного размера. Поэтому значение единицы объёма менялось от 2 до 26 литров.
На Руси основной мерой жидкостей считалось ведро, в котором 10 кружек или 12 литров. Также для подсчётов объём ведра делили пополам, то есть на два полуведра, которые, в свою очередь, тоже можно было поделить пополам. Для торговли с иностранцами использовали меру объёма, называемую бочка, которая равнялась 40 вёдрам.
Дадим определение единичного куба – это куб, ребро которого равно линейной единице. Его тоже принимают за единицу объёма.
Если прямоугольный параллелепипед можно разрезать на К единичных кубов, то говорят, что его объём V равен К кубическим единицам.
Например, на рисунке объём параллелепипеда равен 24 кубическим единицам.
V = 24 куб. единиц
Введём формулу объёма прямоугольного параллелепипеда.
Объём прямоугольного параллелепипеда равен произведению трёх его измерений, то есть произведению длины а, ширины bи высоты c, или произведению площади основания S на высоту c.
V = а · b · c = S · с
Так как куб является прямоугольным параллелепипедом, у которого все измерения равны, то его объём равен третьей степени длины его ребра а.
V = а3
Решим задачу.
Мальчик купил аквариум в форме прямоугольного параллелепипеда, который имеет площадь дна, равную 1400 см3, и высоту 6 дм. Какой объём воды он налил в аквариум, если уровень жидкости не доходил до края 5 см? Выразите ответ в кубических сантиметрах.
Чтобы решить эту задачу переведём единицы измерения длины в сантиметры.
6 дм = 60 см
Получается, что высота аквариума равна 60 см. Но по условию задачи требуется определить объём налитой жидкости, а её высота соответствует разности между высотой аквариума и уровнем жидкости, не доходящей до края:
с = 60 см – 5 см = 55 см
Получается, что высота жидкости в сосуде соответствует 55 см.
Теперь можно определить объём воды, которая налита в аквариум.
Для этого используем следующую формулу:
V = S · с = 1400 см2 · 55 см = 77000 см3
Ответ: мальчик налил в аквариум 77000 см3 воды.
Разбор решения заданий тренировочного модуля
№ 1. Чему равен объём куба, если длина его ребра равна 3 см?
Решение: для нахождения объёма куба нужно воспользоваться формулой.
V = а3 = (3 см)3 = 27 см3
Ответ: 27 см3.
№2. Как изменится объём прямоугольного параллелепипеда, если его длину увеличить в три раза. Подчеркните правильный ответ.
Решение: чтобы ответить на вопрос, нужно воспользоваться формулой для вычисления объёма прямоугольного параллелепипеда.
V = а · b · c, где а – длина прямоугольного параллелепипеда.
Если длина возрастет в три раза, то объём, соответственно, увеличится в три раза, так как, длина – это один из трёх множителей, входящих в формулу объёма прямоугольного параллелепипеда:
V = 3 · а · b · c
Ответ: объём увеличится в три раза.
В данной публикации мы рассмотрим, как можно найти объем параллелепипеда и разберем примеры решения задач для закрепления материала.
-
Формула вычисления объема параллелепипеда
- 1. Общая формула
- 2. Объем прямоугольного параллелепипеда
- Примеры задач
Формула вычисления объема параллелепипеда
1. Общая формула
Объем любого параллелепипеда равняется произведению площади его основания на высоту.
V = Sосн ⋅ h
- Sосн – площадь основания (ABCD или EFHG, равны между собой);
- h – высота.
Данная формула справедлива для всех видов геометрической фигуры:
- наклонной – боковые грани не перпендикулярны основаниям;
- прямой – все боковые грани (4 шт.) являются прямоугольниками;
- прямоугольной – все грани (боковые и основания) являются прямоугольниками;
- ромбоэдра – все грани являются равными ромбами;
- куба – все грани представляют собой равные квадраты.
2. Объем прямоугольного параллелепипеда
Объем фигуры равен произведению его длины на ширину на высоту.
V = a ⋅ b ⋅ c
Формула следует из следующих утверждений:
- Основанием фигуры является прямоугольник, площадь которого считается как произведение его длины (a) на ширину (b).
- Высота фигуры – это длина боковой грани (c).
Примеры задач
Задание 1
Найдите объем параллелепипеда, если известно, что площадь его основания равняется 20 см2, а высота – 7 см.
Решение:
Используем первую формулу, подставив в нее известные нам значения:
V = 20 см2 ⋅ 7 см = 140 см3.
Задание 2
Дан прямоугольный параллелепипед. Длина и ширина его основания равны 9 см и 5 см, соответственно, а высота составляет 6 см. Найдите объем фигуры.
Решение:
Воспользуемся формулой для данного типа фигуры:
V = 9 см ⋅ 5 см ⋅ 6 см = 270 см3.