Как найти обьем правильной четырехугольной призмы

Объем правильной четырехугольной призмы

У правильной четырехугольной призмы в основании лежит правильный четырехугольник, т.е. квадрат.

Объем правильной четырехугольной призмы

Объем правильной четырехугольной призмы

Объем правильной четырехугольной призмы равен произведению площади квадрата лежащего в основании на высоту призмы.

[ V = a^{2} h ]

Вычислить, найти объем правильной четырехугольной призмы

a (длина стороны квадрата основания призмы) 
h (высота призмы) 

Вычислить

нажмите кнопку для расчета

Объем правильной четырехугольной призмы

стр. 360
  • Главная

  • Образование

  • Школьное образование


  • Объем четырехугольной призмы: как вычислить, формулы и примеры

Похожие статьи

Обучающие программы для школьников: обзор полезных программ

Обзор популярных обучающих программ для школьников.

Что происходит с водой при замерзании: молекулы расширяются или сжимаются?

Что происходит с водой при замерзании.

Цитаты Уильяма Шекспира: из книг о любви и не только

Лучшие цитаты Уильяма Шекспира из его книг.

Площадь поверхности правильной призмы: нахождение диагоналей

Как находится площадь поверхности правильной призмы.

Бесперспективный как объяснить это слово и что оно значит

Что означает слово бесперспективный.

Письменный экзамен по русскому языку на тему Анна Ивановна Щетинина и Исинбаева Елена Гаджиевна

Готовимся к экзамену по русскому языку на тему Анна Ивановна Щетинина и Исинбаева Елена Гаджиевна.

Уравнение Менделеева Клапейрона: формулы для решения задач с газами

Примеры уравнения Менделеева Клапейрона.

Инновационная деятельность в школе: определение, развитие и направления

Развитие и направления инновационной деятельность в школе.

Определение призмы

Призма — многогранное тело, основаниями которого являются два равных многоугольника, лежащие в параллельных плоскостях. Остальными гранями являются параллелограммы.

Такие параллелограммы в призме называются боковыми.

obemprizmy.svg

Онлайн-калькулятор объема призмы

Призмы разделяют на некоторые типы:

  1. Треугольная призма — у нее основания — треугольники;
  2. Четырехугольная призма — у нее основания — четырехугольники;
  3. Пентапризма — пятиугольная призма.

Деление, в общем, продолжается до бесконечности.

Виды призм

Прямая — у такой призмы боковые грани образуют с основаниями прямой угол.
Правильная — ее основанием является какой-либо правильный многоугольник.
Усеченной называется призма, у которой основания не параллельны друг другу.

Формула объема призмы

Объем прямой призмы находится так же, как и объем других многогранников — путем умножения площади основания на высоту.

Объем призмы

V=Sосн⋅hV=S_{text{осн}}cdot h

SоснS_{text{осн}} — площадь основания призмы;
hh — высота призмы.

Разберем задачу на нахождение объема прямой призмы.

Задача

Найти объем призмы, если ее основанием является равнобедренный треугольник с равными сторонами по 5 см5text{ см} и основанием в 6 см6text{ см}. Высота призмы равна 10 см10text{ см}.

Решение

a=5a=5
b=6b=6
h=10h=10

Вычисляем площадь основания. Нужно провести высоту в данном равнобедренном треугольнике. Тогда, по теореме Пифагора, получаем:

a2=l2+(b2)2a^2=l^2+Big(frac{b}{2}Big)^2,

где ll — высота равнобедренного треугольника.

Отсюда:

l2=a2−(b2)2l^2=a^2-Big(frac{b}{2}Big)^2

l=a2−(b2)2l=sqrt{a^2-Big(frac{b}{2}Big)^2}

l=25−9l=sqrt{25-9}

l=4l=4

Площадь равнобедренного треугольника SS это половина от произведения его основания на высоту:

S=12⋅b⋅l=12⋅6⋅4=12S=frac{1}{2}cdot bcdot l=frac{1}{2}cdot 6cdot 4=12

В нашем случае этот треугольник является основанием призмы, поэтому:

S=SоснS=S_{text{осн}}

Тогда объем призмы найдется по формуле:

V=Sосн⋅h=12⋅10=120 см3V=S_{text{осн}}cdot h=12cdot 10=120text{ см}^3

Ответ

120 см3.120text{ см}^3.

На нашем сайте вы можете оформить решение задач на заказ по самым низким ценам!

Тест по теме «Объем призмы»

Как найти площадь боковой поверхности призмыВ школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:

  1. Куб в пространствеОсновы призмы — квадраты LMNO и L₁M₁N₁O₁.
  2. Боковые грани — прямоугольники MM₁L₁L, LL₁O₁O, NN₁O₁O и MM₁N₁N, расположенные под прямым углом к основаниям.
  3. Боковые рёбра — отрезки, расположенные на стыке между двумя боковыми гранями: M₁M, N₁N, O₁O и L₁L. Также выполняют роль высоты (поскольку лежат в параллельной основаниям плоскости). В призме боковые рёбра всегда равны между собой — это одно из важнейших свойств этого геометрического тела.
  4. Диагонали, которые, в свою очередь, подразделяются ещё на 3 категории. К ним относится 4 диагонали основания (MO, N₁L₁), 8 диагоналей боковых граней (ML₁, O₁L) и 4 диагонали призмы, начала и концы которых являются вершинами 2 разных оснований и боковых сторон (MO₁, N₁L).

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.

Куб с разноцветными гранями

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

V = Sосн·h

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

V = a²·h

Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

V = a³

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Сколько граней у куба

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

Sбок = Pосн·h

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Sбок = 4a·h

Для куба:

Sбок = 4a²

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Sполн = 4a·h + 2a²

Для площади поверхности куба:

Sполн = 6a²

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h),
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²,
  • площадь основания: Sосн = V / h,
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Сколько вершин у кубаЧтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Sдиаг = ah√2

Для вычисления диагонали призмы используется формула:

dприз = √(2a² + h²)

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

Куб геометрическая фигура

Задание 1.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Решение.

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a. В таком случае для первой коробки объём вещества составит:

V₁ = ha² = 10a²

Для второй коробки длина основания составляет 2a, но неизвестна высота уровня песка:

V₂ = h (2a)² = 4ha²

Поскольку V₁ = V₂, можно приравнять выражения:

10a² = 4ha²

После сокращения обеих частей уравнения на a² получается:

10 = 4h

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

Трехмерный куб

Задание 2.

ABCDA₁B₁C₁D₁ правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Решение.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216

Правильный куб

Задание 3.

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Решение.

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м².

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба

Правильная четырёхугольная призмаОбъем призмы Прямая призма Площадь боковой поверхности призмыПлощадь основания призмыПрямоугольная призмаПлощадь полной поверхности призмыВысота призмы Ребра призмы Нахождение объёма призмыВычисление элементов призмыКуб и его элементыКуб в пространствеГрани куба Куб в изометрии

Проститутки Ростов на Дону rostovchanotki.ru

    Вы здесь:

  • Главная
  • Правильная четырехугольная призма

Правильная четырехугольная призма

Правильная четырехугольная призма

Четырехугольная призма — это многогранник, две грани которого являются равными квадратами, лежащими в параллельных плоскостях, а остальные грани (боковые грани) — параллелограммами, имеющими общие стороны с этими квадратами.

Правильная четырехугольная призма – это четырехугольная призма у которой основания квадраты, а боковые грани прямоугольники.

Данное геометрическое тело по своим свойствам и характеристикам соответствует – параллелепипеду.

основания четырехугольной призмы

Основания призмы являются равными квадратами.

боковые стороны четырехугольной призмы

Боковые грани призмы являются прямоугольниками.

ребра четырехугольной призмы

Боковые рёбра призмы параллельны и равны.

размеры четырехугольной призмы

Размеры призмы можно выразить через длину стороны a и высоту h.

площадь поверхности четырехугольной призмы

Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.

Формула площади поверхности четырехугольной призмы:

формула площадь поверхности четырехугольной призмы

объем четырехугольной призмы

Объём призмы равен произведению её высоты на площадь основания.

Формула объема правильной четырехугольной призмы:

формула объем четырехугольной призмы

радиус цилиндра четырехугольной призмы

Правильная четырехугольная призма может быть вписана в цилиндр.

Формула радиуса цилиндра вписанной четырехугольной призмы:

формула радиус цилиндра четырехугольной призмы

многогранник двойственный четырехугольной призмы

Двойственным многогранником прямой призмы является бипирамида.

chetyrekhugolnaya prizma

Исторически понятие “призма” возникло из латыни и означало – нечто отпиленное.

Анимация демонстрирует как две параллельные плоскости отрезая лишнее формируют два основания призмы. Из одной заготовки можно получить как правильную призму, так и наклонную призму.

Правильная четырехугольная призма

развертка правильной четырехугольной призмы

Геометрические размеры готовой призмы (мм):

Длина = 68

Ширина = 68

Высота = 52

Правильная четырехугольная призма

развертка правильной четырехугольной призмы

Геометрические размеры готовой призмы (мм):

Длина = 59

Ширина = 59

Высота = 83

Правильная четырехугольная призма

развертка правильной четырехугольной призмы

Геометрические размеры готовой призмы (мм):

Длина = 43

Ширина = 43

Высота = 110

посмотреть другие призмы

Популярное

Звезда надежды

Звезда — это образ божественной идеи, божественной воли, согласно которой возник и начал вращаться в Пространстве и жить наш Свет, Мир.

Колючие звезды на башнях

Представьте себе историческое здание, архитектурный ансамбль, который украшают звёздчатые многогранники. И не просто здание, а целый дворец! Возможно ли такое?

Добавить комментарий