Как найти объем правильной наклонной призмы

Наклонная призма — это призма, боковые рёбра которой не перпендикулярны основанию.

Наклонная призма 2.png

ABCD;KLMN

 — основания призмы.

AKLB;BLMC;DNMC;AKND

 — бoковые грани. Вcе бoковые грани наклонной призмы являются параллелограммами.

AK;BL;CM;DN

 — боковые рёбра. Боковые рёбра параллельны между собой и равны.

KF=h

 — высота наклонной призмы (перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого основания). Часто перпендикуляр проводят с одной из вершин верхнего основания.

∠KAF=α

 — угол между боковым ребром и плоскостью основания.

Площадью боковой поверхности наклонной призмы называется сумма площадей её боковых граней.

Площадью полной поверхности наклонной призмы называется сумма площадей всех её граней. 

Объём наклонной призмы равен произведению площади основания на высоту

Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра.

Объём наклонной призмы равен площади перпендикулярного сечения на боковое ребро.

Перпендикулярное сечение — пересечение призмы и плоскости, перпендикулярной её боковому ребру. 

Источники:

 Рис. 1. Наклонная призма, © ЯКласс.

Содержание

  1. Объем призмы
  2. Что такое призма
  3. Формулы вычисления объема правильной призмы
  4. Треугольная
  5. Четырехугольная
  6. Пятиугольная
  7. Шестиугольная
  8. Объем наклонной и прямой
  9. Примеры задач
  10. Формулы для объема, площади боковой поверхности и площади полной поверхности призмы
  11. Призма
  12. На этой странице вы узнаете
  13. Определение призмы
  14. Строение призмы
  15. Виды призм
  16. Определение параллелепипеда
  17. Прямой параллелепипед
  18. Формулы для призмы
  19. Фактчек
  20. Проверь себя

Объем призмы

Что такое призма

Призма — это трехмерное геометрическое тело с двумя равными основаниями и плоскими гранями. Название зависит от фигуры, которая лежит в ее основании. Например, если это треугольник, призму называют «треугольной».

Эта объемная фигура может быть нескольких видов:

  1. Прямая. То есть с боковыми ребрами, перпендикулярными основанию.
  2. Правильная. В основании лежит правильный многоугольник.
  3. Наклонная. Ее ребра расположены под углом к основанию.

Формулы вычисления объема правильной призмы

Правильные призмы могут быть разных видов, в зависимости от многоугольника, который лежит в их основании. Формула вычисления объема во всех случаях выглядит одинаково:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Разница лишь в том, каким образом находится площадь S для каждой из фигур.

Треугольная

Чтобы вычислить объем призмы, в основании которой лежит правильный треугольник, используем формулу:

Где (frac<sqrt3>4cdot a^2=S) — площадь правильного треугольника в основании, a — сторона треугольника, h — высота всей фигуры.

Четырехугольная

Для фигуры, в основании которой лежит квадрат, используем следующую формулу для вычисления объема:

Пятиугольная

В этом случае объем будет вычисляться по формуле:

Шестиугольная

Для призмы с правильным шестиугольником в основании формула объема выглядит так:

Объем наклонной и прямой

Он находится через произведение площади основания на высоту:

Таким образом, формула вычисления объема совпадает с предыдущими вариантами и зависит лишь от фигуры в основании.

С прямой призмой все то же самое. Сначала нужно вычислить площадь ее основания, а потом умножить на высоту.

Примеры задач

Известно, что площадь основания призмы равна 12 (см^2) , а длина ее высоты — 5 см. Вычислить объем фигуры.

Так как уже дана площадь основания, нам не важно какая фигура лежит в основании. Подставляем известные значения в формулу:

В основании прямой призмы лежит четырехугольник со сторонами a и b по 6 см и 3 см. Высота данной фигуры равна 10 см. Рассчитать ее объем.

Так как сначала для вычисления объема нам нужно определить площадь четырехугольника, будем использовать уравнение: (V=acdot bcdot h)

Подставляем значения: (V=6cdot3cdot10=180) (см^3)

Источник

Формулы для объема, площади боковой поверхности
и площади полной поверхности призмы

Введем следующие обозначения:

Используя эти обозначения, составим таблицу с формулами для вычисления объемов, площадей боковой поверхности и площадей полной поверхности различных видов призм.

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Замечание 1. С понятием призмы и различными видами призм можно ознакомиться в разделе «Призмы».

Замечание 2. С определением сечения призмы и способами построения сечений призмы можно ознакомиться в разделе «Сечения призмы. Перпендикулярные сечения призмы».

Источник

Призма

На этой странице вы узнаете

  • Чем упаковка стикеров похожа на призму?
  • Как можно попасть в призму в реальной жизни?
  • Как сложить игральные кости из листа бумаги?
  • Как найти объем воды в аквариуме?

Слышали такое выражение «смотреть сквозь призму чего-либо»? Оно значит ситуацию, в которой мы воспринимаем что-либо под влиянием каких-то убеждений или представлений. Замысловато, конечно… Возможно, потому что и сама призма — непростое понятие. Давайте разберемся с ней с точки зрения математики.

Определение призмы

Многие из нас пользуются стикерами. Для записи своих дел, для закладок, для пометок при ведении конспектов. Даже если мы ими не пользуемся, то наверняка видели их в магазинах или у родственников и друзей.

Один такой стикер можно принять за плоскость. Теперь вспомним, как выглядит упаковка с ними. Много-много стикеров накладываются друг на друга и получается небольшая объемная фигура, сверху и снизу которой лежат два абсолютно одинаковых листа. При этом сразу заметим, что нижний и верхний стикеры будут параллельны друг другу.

На самом деле, упаковка со стикерами является не чем иным, как призмой!

Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами.

Чем упаковка стикеров похожа на призму?

Упаковка стикеров является объемной фигурой, в основаниях которой лежат равные прямоугольники. А боковые стороны упаковки являются параллелограммом. Таким образом, упаковка стикеров полностью соответствует определению призмы.

Определение может показаться немного запутанным, но в нем нет ничего страшного. Разберемся, поближе взглянув на составные призмы.

Строение призмы

Представим себе обычную коробку. Ее дно и крышка равны между собой и лежат в параллельных плоскостях. Это и есть равные многоугольники. Также их называют основаниями призмы.

Посмотрим на стенки коробки. Они являются параллелограммами, просто с прямыми углами. Подробнее про параллелограммы можно прочитать в статье «Параллелограмм». Эти параллелограммы называются боковыми гранями призмы.

Возьмем линейку и измерим расстояние между основаниями призмы. Для этого из любой точки одного основания проведем перпендикуляр к другому.

Подробнее про расстояния между плоскостями можно узнать в статьях «Углы в пространстве» и «Расстояния между фигурами».

Может возникнуть вопрос, что мы сейчас нашли? Мы нашли высоту призмы.

Высота призмы — перпендикуляр, опущенный из любой точки одного основания на другое основание призмы.

В задачах намного удобнее опускать перпендикуляр не из произвольной точки, а из вершины призмы.

Рассмотрим элементы призмы.

Ребро — это линия пересечения двух плоскостей.

Представим, что вместо картонных стенок в нашей коробке ткань, которую нам нужно натянуть на каркас так, чтобы коробка не изменилась. В этом случае все прямые этого каркаса и будут ребрами.

Ребра бывают двух видов:

Отличить их также легко: ребра основания являются стороной многоугольника, который в нем лежит, в то время как боковые ребра не принадлежат основаниям.

У боковых ребер есть одно очень важное свойство: они равны между собой и параллельны.

Диагональ призмы — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Например, мы можем взять клетку попугая и от угла до угла сделать ему жердочку, чтобы птичке было весело жить. Эта жердочка и будет диагональю призмы.

Виды призм

Вернемся к рассуждениям о том, чем упаковка стикеров похожа на призму. Например, куб и параллелепипед будут отличаться. А если в основании призмы будет лежать треугольник или шестиугольник? Или двадцатиугольник? Разделим призмы на несколько видов.

Мы рассмотрим две классификации.

В первом случае будем рассматривать призмы по фигурам, которые лежат в основании. В многоугольнике может быть множество сторон, а значит, и в основании призмы может быть треугольник, четырехугольник, шестиугольник, десятиугольник и так далее.

В зависимости от фигуры в основании призмы могут называться по-разному. Вот три основных, которые чаще всего встречаются при решении заданий:

Аналогичным образом можно дать название любой призме, например, десятиугольная призма или стоугольная призма.

В определении призмы сказано, что в боковых гранях лежат параллелограммы. До этого мы чертили только прямоугольники, но в боковых гранях могут лежать не только они.

С этим связана вторая классификация призм. По этому признаку призмы делятся всего на два вида:

Разберемся в них чуть подробнее.

Прямая призма — призма, боковые ребра которой перпендикулярны основаниям.

В этом случае боковые ребра и ребра оснований действительно образовывают прямоугольник.

Наклонная призма — призма, боковые ребра которой находятся под углом к основаниям.

Где мы можем найти прямые и наклонные призмы? Оказывается, в архитектуре. Обычный жилой дом типовой застройки будет прямой призмой. А вот примером наклонной призмы может служить комплекс зданий “Ворота Европы” в Мадриде.

Чуть подробнее остановимся на прямых призмах. Они встречаются достаточно часто и обладают несколькими важными свойствами.

Посмотрите на свою комнату. Если по плану квартиры она будет многоугольником, то вы как бы сидите в призме. Теперь ответим на вопрос: как найти высоту комнаты?

Простой ответ: померить по стене. А если посмотреть на угол, то можно заметить, что ребро призмы совпадает с высотой. Таким образом, мы получаем первое свойство прямых призм.

Свойство 1. Высота прямой призмы совпадает с её боковым ребром.

Посмотрим на стены комнаты, на их форму. Они все являются прямоугольниками, верно?

Свойство 2. Все боковые грани прямой призмы — прямоугольники.

Как можно попасть в призму в реальной жизни?

Многие комнаты и помещения, особенно в типовой застройке, обладают формой призмы. Сидя в комнате, в классе, в столовой, даже в автобусе — мы как бы находимся внутри большой призмы.

Если мы в основании прямой призмы разместим правильный многоугольник, у нас получится правильная призма.

Правильная призма — прямая призма, в основании которой лежит правильный многоугольник.

Например, в правильной треугольной призме будет лежать равносторонний треугольник, а в правильной шестиугольной призме — правильный шестиугольник.

Определение параллелепипеда

Еще одной разновидностью прямоугольной призмы является параллелепипед.

Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами.

Параллелепипеды встречаются повсюду: коробки, мебель, комнаты, здания, склады, магазины. Поэтому изучить их не составит труда.

Свойство параллелепипеда, видимое невооруженным глазом: противоположные грани параллелепипеда равны. Как пример, вспомним ту же комнату: потолок и пол равны, так же как и стены, находящиеся напротив друг друга.

Нельзя не упомянуть про одно очень важное свойство параллелепипеда:

  • Все его диагонали пересекаются в одной точке и этой точкой делятся пополам. Это свойство справедливо для всех видов параллелепипеда.

Какие бывают параллелепипеды?

Параллелепипеды также бывают прямыми и наклонными. В этих случаях все определения такие же, как и для всех остальных призм.

Прямой параллелепипед

Рассмотрим несколько интересных свойств прямого параллелепипеда.

1 свойство. Боковые ребра прямого параллелепипеда перпендикулярны основаниям.

2 свойство. Высота прямоугольного параллелепипеда равна длине его бокового ребра.

3 свойство. Боковые грани, которые лежат напротив друг друга, равны между собой и являются прямоугольниками.

Прямые параллелепипеды можно разделить еще на два вида:

  • Прямой параллелепипед: в основании лежит параллелограмм;
  • Прямоугольный параллелепипед: в основании лежит прямоугольник.

Рассмотрим свойства прямоугольного параллелепипеда.

1 свойство. Все грани прямоугольного параллелепипеда являются прямоугольниками.

2 свойство. Все углы в прямоугольном параллелепипеде, образованные двумя гранями, равны 90°.

3 свойство. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин его ширины, длины и высоты.

Таким образом, мы получаем важную формулу для параллелепипеда.

Пример 1. Дан прямоугольный параллелепипед. Два ребра, выходящие из одной его вершины, равны (sqrt<35>) и (sqrt<46>). Диагональ параллелепипеда равна 15. Найдите третье ребро параллелепипеда.

Решение. Пусть третье ребро параллелепипеда равняется х. Получаем уравнение:

(15^2 = (sqrt<35>)^2 + (sqrt<46>)^2 + x^2)
225 = 35 + 46 + x 2
x 2 = 144
x = 12

У прямоугольного параллелепипеда существует еще несколько видов. Прямоугольные параллелепипеды делятся на:

  • Произвольный прямоугольный параллелепипед. В основании может лежать прямоугольник.

  • Правильный прямоугольный параллелепипед. В основании лежит правильный четырехугольник, то есть квадрат.
    При этом боковые ребра не равны ребрам основания. Следовательно, в основаниях будут лежать квадраты, а в боковых гранях прямоугольники.
  • Куб. В основании лежит квадрат, а боковые ребра равны ребрам основания.
    В кубе все ребра равны, а все его грани будут квадратом.

Таким образом, мы рассмотрели все виды параллелепипеда.

Формулы для призмы

Однако ни одна задача не может быть решена без формул. Поэтому необходимо рассмотреть несколько основных формул, которые могут встретиться не только в задачах, но и в жизни.

Немного вспомним моделирование, а именно развертку кубика. Мы знаем, что из листа бумаги без труда можно сложить кубик, если правильно его вычертить.

Как сложить игральные кости из листа бумаги?

Задумали вы вечером сыграть с семьей или друзьями в настольную игру. Но вот незадача: игральные кости опять куда-то запропастились. Не беда.Достаточно вычертить на листе бумаги несколько квадратов, вырезать получившуюся фигуру, согнуть по ребрам и склеить между собой с помощью клея. В итоге получатся кубики для игры.

На рисунке оранжевым показаны основания, а желтым боковые грани нашего будущего кубика. А теперь представим, что нам нужно найти площадь боковой поверхности. Как это сделать?

Нужно найти площади желтых квадратиков и сложить их.

Площадь боковой поверхности призмы — сумма площадей всех боковых ее граней.

Единой формулы тут нет, поскольку призмы могут очень сильно отличаться друг от друга. В произвольных призмах придется считать площадь каждой боковой грани, а уже после их складывать.

Но есть один фокус! Правда, он работает только для прямой призмы. Если по условию дана прямая призма, то можно воспользоваться формулой

В этой формуле Р — периметр основания, h — высота призмы, которая совпадает с высотой боковой грани.

Пример 1. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равняется 2, а высота 10.

Шаг 1. Поскольку правильная призма по определению прямая, мы можем воспользоваться формулой S = Ph.

Шаг 2. В основании правильной призмы лежит правильный шестиугольник, следовательно, периметр основания будет равен 6 * 2 = 12.

Шаг 3. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 12 * 10 = 120.

Пример 2. Дана прямая треугольная призма, в основании которой лежит прямоугольный треугольник с катетами 12 и 5. Высота призмы равна 13. Найдите площадь ее боковой поверхности.

Шаг 1. Поскольку призма прямая, можно воспользоваться формулой S = Ph.

Шаг 2. Найдем периметр основания. Для этого необходимо найти гипотенузу треугольника. Воспользуемся теоремой Пифагора: (sqrt <12^2 + 5^2>= sqrt <144 + 25>= sqrt <169>= 13).

Шаг 3. Найдем периметр основания: P = 12 + 5 + 13 = 30.

Шаг 4. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 30 * 13 = 390.

Мы научились находить площадь боковой поверхности. А как найти всю площадь призмы? Вспомним нашу развертку с кубиком. Чтобы найти всю площадь кубика, нужно найти площадь всех квадратов, из которых он состоит. То есть и площадь боковой поверхности, и площадь оснований.

Площадь полной поверхности призмы — сумма площадей всех граней.

Следовательно, нам нужно сложить площади всех боковых граней и дважды площадь основания. Получаем следующую формулу.

Вспомним обычный хлеб, черный или белый. Его форма очень приближена к параллелепипеду. Тогда его корочка будет площадью полной поверхности параллелепипеда. А все что внутри, то есть мякиш, можно принять за объем.

Пример 3. Дана прямая призма, в основании которой лежит ромб с диагоналями 12 и 16. Боковое ребро призмы равно 25. Найдите площадь поверхности призмы.

Шаг 1. Найдем площадь основания. Площадь ромба можно найти по формуле (frac<1> <2>* D_1 * D_2). Следовательно, площадь ромба равна (frac<1> <2>* 12 * 16 = 96).

Шаг 2. Заметим, что диагонали ромба образуют четыре равных прямоугольных треугольника. Следовательно, чтобы найти сторону ромба, достаточно рассмотреть прямоугольный треугольник с катетами 6 и 8. По теореме Пифагора сторона ромба будет равна (sqrt <6^2 + 8^2>= sqrt <36 + 64>= sqrt <100>= 10).

Шаг 3. Периметр ромба будет равен 4 * 10 = 40. Тогда площадь боковой поверхности равна 40 * 25 = 1000.

Шаг 4. Площадь полной поверхности будет равняться 1000 + 2 * 96 = 1000 + 192 = 1192.

Ответ: 1192

Пример 4. Площадь поверхности правильной четырехугольной призмы равняется 1980. Сторона основания равна 5. Найдите боковое ребро этой призмы.

Шаг 1. Воспользуемся формулой S = Sбок + 2Sосн. Площадь основания будет равняться площади квадрата, то есть 5 * 5 = 25.

Шаг 2. Подставим известные величины в формулу:

Шаг 3. Площадь боковой поверхности равна произведению периметра основания на высоту призмы. Периметр равен 5 * 4 = 20. Тогда получаем уравнение:

Шаг 4. Поскольку по условию дана правильная призма, то высота совпадает с боковым ребром. Следовательно, боковое ребро равняется 96,5.

Теперь рассмотрим, как найти объем призмы. Допустим, мы налили в прямоугольный аквариум немного воды. Как определить, сколько воды мы налили?

Для этого достаточно воспользоваться формулой объема призмы.

Эта формула общая, однако для каждой призмы она может принять свой вид в зависимости от того, какую формулу нужно использовать для поиска площади основания или высоты.

Например, чтобы найти объем воды в аквариуме, необходимо длину умножить на ширину и на высоту, а значит формула принимает вид V = abh.

Как найти объем воды в аквариуме?

Для этого достаточно перемножить ширину, длину аквариума и высоту воды. Тем самым мы найдем объем призмы, форму которой принимает вода в аквариуме.

Пример 5. Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 12 и 15. Боковое ребро призмы равно 4. Найдите объем этой призмы.

Шаг 1. Для начала найдем площадь основания. В этом случае мы можем воспользоваться формулой (frac<1><2>ab). Площадь равна (frac<1> <2>* 12 * 15 = 90).

Шаг 2. Воспользуемся формулой объема призмы и подставим известные величины:

Пример 6. Дан сосуд, в основании которого лежит правильный треугольник. В этот сосуд налили 3000 см 3 воды. Высота жидкости оказалась равной 10 см. После этого в сосуд опустили шарик и высота изменилась с 10 см на 14 см. Найдите объем шарика.

Решение. Немного вспомним физику, а именно тот факт, что объем вытесненной жидкости равен объему тела. Значит, чтобы найти объем шарика, необходимо найти насколько изменился объем воды.

Шаг 1. Найдем площадь основания сосуда. Для этого немного преобразуем формулу объема:
(S = frac)
Тогда:
(S = frac<3000> <10>= 300)

Шаг 2. А теперь найдем объем после того, как в воду погрузили шарик. Он будет равен 300 * 14 = 4200.

Шаг 3. Объем вытесненной жидкости равен 4200 — 3000 = 1200.

Ответ: 1200.

Мы рассмотрели основные формулы, которые применяются для решения задач. Стоит заметить, что они универсальны, и в каждой задаче их рационально преобразовывать под ситуацию.

Фактчек

  • Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. Равные многоугольники называются основаниями призмы, а остальные стороны — боковыми гранями. В призме есть ребра — линии пересечения двух ее граней. Ребра как бы образуют каркас призмы.
  • Призмы можно разделить на несколько видов по тому, какая фигура лежит в основании: треугольник, четырехугольник, шестиугольник или любой другой многоугольник. Призмы бывают прямые и наклонные. В прямых призмах боковые ребра перпендикулярны основанию, а в наклонных — нет. Правильная призма — прямая призма, в основании которой лежит правильный многоугольник.
  • Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. Параллелепипеды бывают наклонными и прямыми. Прямые параллелепипеды включают в себя прямоугольные параллелепипеды, которые, в свою очередь, делятся на произвольные, правильные и кубы.
  • В призме можно найти площадь боковой поверхности, площадь полной поверхности и объем. Для каждого из этих случаев необходимо пользоваться формулами.

Проверь себя

Задание 1.
Что такое диагональ призмы?

  1. Отрезок, соединяющий две соседние вершины в призме.
  2. Отрезок, соединяющий противоположные углы в боковой грани призмы.
  3. Отрезок, соединяющий противоположные углы в основании призмы.
  4. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Задание 2.
Что такое прямая призма?

  1. Призма, боковые ребра которой перпендикулярны основаниям.
  2. Призма, боковые ребра которой расположены под острым углом относительно основания.
  3. Призма, боковые ребра которой расположены под тупым углом относительно основания.
  4. Призма, в основании которой лежит прямоугольник.

Задание 3.
Как найти высоту прямой призмы?

  1. Высоту нужно найти с помощью оснований.
  2. Высота совпадает с боковым ребром.
  3. Необходимо найти расстояние между двумя вершинами, не принадлежащими одной грани.
  4. В прямой призме невозможно найти высоту.

Задание 4.
Какая фигура лежит в основании прямоугольного параллелепипеда?

  1. Параллелограмм с острыми углами.
  2. Ромб с острыми углами.
  3. Трапеция.
  4. Прямоугольник.

Задание 5.
Как найти площадь полной поверхности призмы?

  1. Нужно найти сумму площадей всех боковых граней.
  2. Нужно сложить площадь боковой поверхности и площадь основания.
  3. Нужно сложить площадь боковой поверхности и удвоенную площадь основания.
  4. Нужно сложить площади оснований.

Ответы: 1. — 4 2. — 1 3. — 2 4. — 4 5. — 3

Источник

Автор статьи

оксана николаевна кузнецова

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение призмы

Призма является частным случаем цилиндра. Параллелепипед является частным случаем призмы.

Призма обладает следующим свойством:

Любое сечение призмы плоскостью, параллельной её основанию, делит данную призму на две призмы так, что отношение боковых поверхностей и отношение объёмов этих призм равно отношению длин их боковых рёбер. Любое сечение призмы плоскостью, параллельной её боковому ребру, делит данную призму на две призмы так, что отношение объёмов этих призм равно отношению длин их боковых рёбер. Любое сечение призмы плоскостью, параллельной её боковому ребру, делит данную призму на две призмы так, что отношение объёмов этих призм равно отношению площадей их основания.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Виды призм

  1. Прямая призма. Боковые рёбра прямой призмы перпендикулярны плоскости основания.

  2. Наклонная призма. Боковые рёбра наклонной призмы находятся относительно плоскости основания под углом, отличным от $90^circ$.

  3. Правильная призма. Основанием прямой призмы является правильный многоугольник. Её боковые гран — равные прямоугольники.

Полуправильным многогранником называется правильная призма, боковые грани которой — квадраты.

Объём прямой призмы

Для вывода формулы вычисления объёма правильной призмы возьмём призму, в основании которой лежит треугольник. Достроим её до прямоугольного параллелепипеда (рисунок 1).

<a href=Тетраэдр, достроенный до параллелепипеда”>

Рисунок 1. Тетраэдр, достроенный до параллелепипеда

«Объем прямой и наклонной призмы» 👇

Из предыдущей главы мы знаем, что объём прямоугольного параллелепипеда равен:

где

Т.к. полученный параллелепипед состоит из исходной призмы и призмы, равной ей по объёму, то объём исходной призмы будет равен

Т.к.

где $a$, $b$, $c$ длины сторон $AB$, $BC$, $AC$ соответственно, и их произведение равно площади основания исходной призмы, то запишем в общем виде формулу нахождения объёма прямой призмы:

где $S_{осн.}$ — площадь основания призмы, $H$ — высота, проведённая к основанию призмы.

Данная формула верна для прямой призмы с любым многоугольником в основании.

Объём наклонной призмы

Для вывода формулы нахождения объёма наклонной призмы рассмотрим треугольную наклонную призму $ABCDFE$. Проведём через ребро $DC$ плоскость $alpha $, перпендикулярную основанию $ABCD$ исходной призмы, и построим треугольную усечённую призму (рисунок 2).

Наклонная призма, плоскость $alpha $

Рисунок 2. Наклонная призма, плоскость $alpha $

Теперь через ребро $AB$ проведём плоскость $beta $, параллельную плоскости $alpha $ (рисунок 3).

Наклонная призма, плоскости $alpha $ и $beta $

Рисунок 3. Наклонная призма, плоскости $alpha $ и $beta $

Если применить такое преобразования к наклонным граням ещё раз, то получится призма, у которой все боковые грани перпендикулярны основанию. Снова получился прямая призма.

Если её подвергнуть подобному преобразованию (сначала дополнить первой усечённой призмой, затем отсечь вторую усечённую призму), то достроенная и отсекаемая призмы совмещаются параллельным переносом на отрезок $AB$. Из этого следует, что фигуры имеют одинаковый объём.

Следовательно, объём построенной прямой призмы равен объёму исходной наклонной.

Объём наклонной призмы равен произведению площади основания на высоту:

Вывод

Объём любой призмы (наклонной и прямой) находится по формуле:

где $acdot b$ – площадь основания, $c$ – высота призмы.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Сегодня на уроке мы выведем формулу для нахождения
объёма наклонной призмы.

Прежде чем приступить к изучению нового материала
давайте вспомним формулу для нахождения объёма геометрического тела ,
повторим формулу для вычисления объёма прямой призмы .

Давайте сформулируем и докажем теорему.

Объём наклонной призмы равен произведению площади
основания на высоту
.

Доказательство.
Сначала докажем эту теорему для треугольной наклонной призмы.

Рассмотрим треугольную призму с объёмом ,
площадью основания  и
высотой .

Отметим на одном из оснований призмы точку  и
направим ось  перпендикулярно
основаниям.

Рассмотрим сечение призмы плоскостью,
перпендикулярной к оси  и,
значит, параллельной плоскости основания. Обозначим буквой  абсциссу
точки пересечения этой плоскости с осью ,
а через  –
площадь получившегося сечения.

Теперь давайте покажем, что площадь .
Четырёхугольник  –
параллелограмм, значит, .
Аналогично, четырёхугольник  –
параллелограмм, значит, .
Четырёхугольник
параллелограмм, значит, и отрезки .
Тогда получим, что треугольники  по
трём сторонам, то есть мы доказали, что площади этих треугольников равны .

Теперь давайте применим основную формулу для
вычисления объёмов тел .

Теперь давайте докажем эту теорему для произвольной
призмы высоты  и
площадью основания .

Такую призму можно разбить на треугольные призмы с
общей высотой .
Рассмотрим, например, выпуклую пятиугольную призму.

Вычислим объём каждой полученной треугольной призмы
по доказанной нами формуле. Мы знаем, что если тело
составлено из нескольких тел, то его объём равен сумме объёмов этих тел.

Тогда объём нашей пятиугольной призмы равен сумме
объёмов треугольных призм.

Поскольку мы разбивали пятиугольную призму на
треугольные с общей высотой, то в сумме объёмов высоту можно вынести за скобки.
В скобках получим сумму площадей треугольников, на которые мы разбили
пятиугольник. То есть в скобках мы получили площадь пятиугольника, который
лежит в основании призмы. Тогда получим, что объём наклонной призмы равен ,
что и требовалось доказать.

Но объём наклонной призмы можно вычислить по другой
формуле.

Объём наклонной призмы равен .
Эту формулу мы доказывать не будем, просто рассмотрим несколько задач и
посмотрим случаи, в которых проще вычислить объём призмы именно с помощью этой
формулы.

Решим несколько задач.

Задача:
найти объём наклонной призмы, у которой основанием является треугольник со
сторонами ,
,
,
а боковое ребро, равное ,
составляет с плоскостью основания угол в .

Решение:
для вычисления объёма призмы, воспользуемся только что доказанной формулой.

Площадь основания вычислим по формуле Герона.

 

 

Получим, что площадь основания призмы равна

Теперь давайте проведем высоту призмы и рассмотрим .
Так как  –
высота, значит, треугольник прямоугольный. По условию, боковое ребро равно ,
а угол между боковым ребром и плоскостью основания равен .
Это будет угол между боковым ребром призмы и его ортогональной проекцией на
плоскость основания. В данном случае, это будет ,
тогда .
По свойству катета, лежащего напротив угла в тридцать градусов, .
Тогда по теореме Пифагора нетрудно найти чему равна высота призмы. Высота
призмы равна .

Подставим найденные значения в формулу для вычисления
объёма призмы и получим, что объём призмы равен .

Задача:
найти объём наклонной призмы, основанием которой является параллелограмм .
Сторона ,
сторона ,
.
Высота призмы равна .

Решение:
воспользуемся только что доказанной формулой.

Для вычисления площади параллелограмма, лежащего в
основании, воспользуемся формулой: .

Площадь основания будет равна .

Подставим полученное значение в формулу для
вычисления объёма, получим, что объём призмы равен .

Задача:
найти объём наклонной треугольной призмы, если расстояния между ее боковыми рёбрами
равны ,
 и
,
а площадь боковой поверхности равна .

Решение:
расстояния между боковыми рёбрами – длина перпендикуляров. Таким образом,
проведя все перпендикуляры мы получим треугольник, который будет
перпендикулярным сечением призмы.

Поэтому нетрудно увидеть, что для вычисления объёма
мы воспользуемся тем, что объём наклонной призмы равен .

Но прежде вспомним, что площадь боковой поверхности
наклонной призмы равна .

Периметр перпендикулярного сечения равен .
Тогда длина бокового ребра равна .

Вычислим площадь перпендикулярного сечения по
формуле Герона. Получим, что площадь сечения равна

Подставим полученные значения в формулу для
вычисления объёма и получим, что объём призмы равен .

Итоги:

Сегодня на уроке мы вывели формулу для вычисления
объёма наклонной призмы.

Показали ещё одну формулу для вычисления объёма
наклонной призмы. Решили несколько задач.

На чтение 4 мин Просмотров 65к. Опубликовано 13 февраля, 2019

Здесь вы найдёте: Объем правильной треугольной призмы понятие, Объем призмы треугольной формула нахождения, Площадь треугольной призмы

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Содержание

  1. Призма треугольная — определение
  2. Элементы треугольной призмы
  3. Виды треугольных призм
  4. Прямая треугольная призма
  5. Наклонная треугольная призма
  6. Основные формулы для расчета треугольной призмы
  7. Объем треугольной призмы
  8. Площадь боковой поверхности призмы
  9. Площадь полной поверхности призмы
  10. Правильная призма — прямая призма, основанием которой является правильный многоугольник.
  11. Пример призмы
  12. Задачи на расчет треугольной призмы

Призма треугольная — определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Призма треугольная

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы.

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы.

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Треугольная призма - высота и сечение

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Прямая треугольная призма

Прямая треугольная призма

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Наклонная треугольная призма

Наклонная треугольная призма

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

 Объем призмы = площадь основания х высота

или

V=Sосн . h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

или

Sбок=Pосн.

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

формула определения полной поверхности призмы

так как Sбок=Pосн.h, то получим:

Sполн.пов.=Pосн.h+2Sосн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы:

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см2, то высота должна быть выражена в сантиметрах, а объем — в см3 . Если площадь основания в мм2, то высота должна быть выражена в мм, а объем в мм3 и т. д.

Пример призмы

Прямая треугольная призма

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2  · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Наклонная треугольная призма с сечением

Решение: 

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k2 = S122 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.

Добавить комментарий