Как найти объем произвольного тела

План урока:

Вычисление объема тела с помощью интеграла

Вычисление объема тел вращения

Объем наклонной призмы

Объем пирамиды

Объем конуса

Объем шара

Шаровой сегмент

Площадь сферы

Вычисление объема тела с помощью интеграла

Пусть у нас есть произвольная фигура, расположенная между двумя параллельными плоскостями:

1 obem slozhnyh tel

Как найти ее объем? Поступим следующим образом. Проведем прямую, перпендикулярную этим плоскостям. Эта прямая будет осью координат х. Пусть одна из плоскостей пересекает эту ось в точке а, а другая – в точке b. Таким образом, на координатной прямой появляется отрезок [a; b]. Далее разобьем этот отрезок на n равных отрезков, длина каждого из них будет равна величина ∆х. Обозначим концы этих отрезков как х0, х1, х2…, хn, причем точке х0 будет совпадать с точкой а, а точка хn – с точкой b. Ниже показано такое построение для n = 10:

2 obem slozhnyh tel

Далее через полученные точки проведем сечения, параллельные двум плоскостям, ограничивающим фигуру. Площадь сечения, проходящую через точку с номером i, обозначим как S(xi). Эти плоскости рассекут тело на n других тел. Обозначим объем тела, заключенного между сечениями с площадями S(xi) и S(xi+1) как V(xi). Можно приближенно считать, что эти тела имеют форму прямых цилиндров (напомним, что в общем случае цилиндром необязательно считается фигура, основанием которой является круг, основание может иметь и любую другую форму). Высота всех этих цилиндров будет равна величине ∆х. Тогда объем V(xi) может быть приближенно рассчитан так:

3 obem slozhnyh tel

Общий же объем исследуемой фигуры будет суммой объемов этих прямых цилиндров:

4 obem slozhnyh tel

Здесь знак ∑ означает сумму i слагаемых, каждое из которых равно величине S(xi)•∆х. Ясно, что чем больше мы возьмем число n, тем точнее будет полученная нами формула. Поэтому будет увеличивать число n до бесконечности, тогда приближенная формула станет точной:

5 obem slozhnyh tel

В правой части стоит предел суммы бесконечного числа слагаемых. Мы уже сталкивались с такими пределами, когда изучали определенный интеграл в курсе алгебры. Так как х0 = a, а число хn-1 при бесконечном увеличении n приближается к числу хn, то есть к b, то можно записать следующее:

6 obem slozhnyh tel

Здесь S(x) – это некоторая функция, которая устанавливает зависимость между площадью сечения объемной фигуры и координатой х, указывающей расположение этого сечения. Данная формула позволяет вычислять объем с помощью интеграла.

7 obem slozhnyh tel

Итак, для вычисления объема тела необходимо:

1) выбрать в пространстве какую-то удобную ось координат Ох;

2) найти площадь произвольного сечения фигуры, проходящей перпендикулярно оси Ох через некоторую координату х;

3) найти значение чисел а и b – координат сечений, ограничивающих тело в пространстве;

4) выполнить интегрирование.

Понятно, что сразу понять, как используется эта формула, тяжело. Поэтому рассмотрим простой пример.

Задание. Фигура расположена в пространстве между двумя плоскостями, перпендикулярными оси Ох, причем координаты этих сечений равны 1 и 2. Каждое сечение фигуры с координатой х является квадратом, причем его сторона равна величине 1/х. Найдите объем тела.

8 obem slozhnyh tel

Решение. В данной задаче ось Ох уже проведена. Известны и числа а и b – это 1 и 2, ведь именно плоскости, проходящие через точки х =1 и х = 2, ограничивают исследуемое тело. Теперь найдем площадь произвольного сечения с координатой х. Так как оно является квадратом со стороной 1/х, то его площадь будет квадратом этой стороны:

9 obem slozhnyh tel

Вычисление объема тел вращения

Телом вращения называют тело, которое может быть получено вращением какой-то плоской фигуры относительно некоторой оси вращения. Например, цилиндр получают вращением прямоугольника вокруг одной из его сторон, а усеченный конус – вращением прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.

10 obem slozhnyh tel

В задачах на вычисление объемов таких тел ось координат Ох уже задана естественным образом – это ось вращения тела. Ясно, что каждое сечение тела, перпендикулярное оси вращения, будет являться кругом.

Рассмотрим случай, когда вокруг оси Ох поворачивают график некоторой функции у = f(x), ограниченный прямыми х = а и у = b. Тогда получится тело, сечениями которого являются круги, причем их радиусы будут равны величине f(x). Напомним, что площадь круга вычисляют по формуле:

11 obem slozhnyh tel

11 2 esli telo vraschenija polucheno vrascheniem edited

Рассмотрим, как на практике используется эта формула.

Задание. Объемное тело получено вращением ветви параболы

12 obem slozhnyh tel

вокруг оси Ох. Оно ограничено плоскостями х = 0 и х = 4. Каков объем такой фигуры?

13 obem slozhnyh tel

Решение. Здесь пределами интегрирования, то есть числами а и b, будут 0 и 4. Используем формулу для тела вращения:

14 obem slozhnyh tel

Объем наклонной призмы

Теперь, используя методы интегрирования, мы можем составить формулы для вычисления объема некоторых фигур. Начнем с треугольной наклонной призмы.

Пусть есть треугольная призма АВСА2В2С2. Проведем ось Ох так, чтобы точка О располагалась в плоскости АВС. Пусть Ох пересечет плоскость А2В2С2 в некоторой точке О2. Тогда отрезок ОО2 будет высотой призмы, ведь он окажется перпендикулярным к обоим основаниям.

15 obem slozhnyh tel

Обозначим длину высоты ОО2 буквой h. Далее докажем, что всякое сечение А1В1С1 призмы, перпендикулярное оси Ох, будет равно ∆АВС. Действительно, если АВС⊥ОО2 и А1В1С1⊥ОО2, то АВС||А1В1С1. Прямые АВ и А1В1 принадлежат одной грани АВВ2А1, но не пересекаются, ведь они находятся в параллельных плоскостях. Аналогично АС||А1С1 и ВС||В1С1. Теперь посмотрим на четырехугольник АВВ1А1. АВ||A1В1 и АА1||ВВ1. Тогда АВВ1А1 по определению является параллелограммом. Это означает, что отрезки АВ и А1В1 одинаковы. Аналогично доказывается, что одинаковы отрезки АС и А1С1, а также ВС и В1С1. Но тогда одинаковы и ∆АВС и ∆А1В1С1.

Итак, площади всех сечений одинаковы и равны площади основания призмы. Обозначим ее как S. Так как S не зависит от координаты, то интегрирование будет выглядеть так:

16 obem slozhnyh tel

Итак, объем треугольной наклонной призмы – это произведение площади ее основания на высоту. Теперь рассмотрим произвольную призму, в чьем основании находится n-угольник. Такой n-угольник можно разбить на треугольные призмы с общей высотой h и площадями оснований S1, S2, S3, …

17 obem slozhnyh tel

Тогда площадь S основания всей призмы будет суммой этих чисел:

18 obem slozhnyh tel

18 2 obem naklonnoj prizmy raven proizvedeniju edited

Задание. Основание призмы – это треугольник со сторонами 10, 10 и 12. Боковое ребро имеет длину 8 и образует с основанием угол в 60°. Вычислите объем призмы.

19 obem slozhnyh tel

Решение. Пусть в основании призмы АВСА1В1С1 лежит ∆АВС со сторонами АВ = 12 и АС = ВС = 10. Его площадь можно найти разными способами, но быстрее всего применить формулу Герона. Сначала найдем полупериметр ∆АВС:

20 obem slozhnyh tel

Далее надо найти высоту призмы. Опустим из точки В1 перпендикуляр В1О на плоскость АВС. Тогда в прямоугольном ∆ОВВ1 ∠В = 60° (по условию задачи и по определению угла между плоскостью и прямой). Зная длину бокового ребра ВВ1, найдем высоту ОВ1:

21 obem slozhnyh tel

Объем пирамиды

Для начала рассмотрим треугольную пирамиду. Вершину пирамиды примем за начало координат точку О, а ось Ох проведем перпендикулярно основанию, причем ось будет направлена от вершины пирамиды к основанию.

22 obem slozhnyh tel

Пусть ось Ох пересечет основание АВС в точке М. Тогда ОМ – это высота, чью длину мы обозначим как h.

Далее построим сечение А1В1С1, параллельное АВС. Это сечение пересечется с ОМ в точке ОМ1. Тогда ОМ1 – это координата х, характеризующая расположение сечения А1В1С1.

Осталось составить выражение для площади ∆А1В1С1. Так как АВ||A1B1, то ∠АВО и ∠А1В1О одинаковы как соответственные углы. Тогда у ∆АВО и ∆А1В1О есть два равных угла (ведь ∠АОВ у них общий), а потому эти треугольники подобны по первому признаку подобия. Это означает, что

23 obem slozhnyh tel

Надо как-то найти значение коэффициента k, который, очевидно, как-то зависит от переменной х. Рассмотрим теперь ∆ОМВ и ∆ОМ1В1. Они прямоугольные, ведь ОМ перпендикулярен плоскостям этих треугольников. Также у них есть общий угол ∠ОВМ. Значит, они подобны, и поэтому

24 obem slozhnyh tel

Итак, если пирамида имеет высоту h и площадь основания S, то объем пирамиды равен:

25 obem slozhnyh tel

Выведенная нами формула справедлива для треугольной пирамиды. Однако если в основании пирамиды лежит произвольный многоугольник, то, разбив этот многоугольник на треугольники, мы разобьем и пирамиду на несколько треугольных пирамид. У них будет общая высота h и площади оснований S1, S2, S3…, которые в сумме составляют площадь многоугольника S.

26 obem slozhnyh tel

Объем треугольных пирамид рассчитывается по выведенной нами формуле:

27 obem slozhnyh tel

27 2 obem piramidy raven odnoj treti ot proizvedenija edited

Задание. В основании пирамиды высотой 15 лежит квадрат со стороной 4. Вычислите ее объем.

Решение. Сначала находим площадь основания. Для этого надо сторону квадрата умножить саму на себя:

28 obem slozhnyh tel

Задание. В кубе АВСDA1В1С1D1 отмечены точки Е и F – середины ребер ВС и CD соответственно. Во сколько раз объем пирамиды С1EFC меньше объема куба?

29 obem slozhnyh tel

Решение. Обозначим длину ребра куба буквой а. Тогда его объем рассчитывается так:

30 obem slozhnyh tel

Задание. Отрезок MN перпендикулярен плоскости пятиугольника АВСDE. Точка K, принадлежащая этой плоскости, делит отрезок MN в отношении 2:1. Во сколько раз объем пирамиды MABCDE больше объема пирамиды NABCDE?

31 obem slozhnyh tel

Решение. Запишем формулы для объемов этих пирамид. При этом учтем, что MK – высота для MABCDE, а NK – это высота для NABCDE.

32 obem slozhnyh tel

Далее рассмотрим такую фигуру, как усеченная пирамида. Ясно, что ее объем можно вычислить, если из объема исходной пирамиды вычесть объем отсеченной верхушки.

33 obem slozhnyh tel

Снова рассмотрим пирамиду ОАВС, через которую проведено сечение А1В1С1, параллельное основанию.

34 obem slozhnyh tel

Обозначим площадь нижнего основания пирамиды как S2, а площадь верхнего основания – как S1. Далее высоту усеченной пирамиды (отрезок ММ1) обозначим как h. Мы уже выяснили ранее, что основания АВС и А1В1С1 – это подобные треугольники, причем коэффициент их подобия k равен отношению высот ОМ и ОМ1. Тогда можно записать:

35 obem slozhnyh tel

Далее используем основное свойство пропорции:

36 obem slozhnyh tel

Далее числитель дроби мы раскладываем на множители, используя формулу разности кубов:

37 obem slozhnyh tel

37 2 obem usechennoj piramidy edited

Задание. Основаниями усеченной пирамиды являются квадраты со сторонами 9 см и 5 см, а высота пирамиды составляет 6 см. Найдите ее объем.

Сначала вычислим площади оснований:

38 obem slozhnyh tel

Объем конуса

Рассмотрим конус с высотой h и радиусом основания R. Совместим начало координат с вершиной конуса и направим ось Ох в сторону основания конуса. Тогда она пересечет основание в какой-то точке М c координатой h. Далее через точку М1 на оси Ох, имеющей координату х, проведем сечение, перпендикулярное оси Ох. Это сечение будет окружностью.

39 obem slozhnyh tel

Также построим образующую ОА, которая будет проходить через сечение в точке А1. Теперь сравним ∆ОАМ и ∆ОА1М1. Они прямоугольные, и у них есть общий угол ∠АОМ. Это значит, что они подобны, и поэтому справедливо отношение:

40 obem slozhnyh tel

Полученную формулу можно переписать в другом виде так, чтобы она содержала площадь основания, причем она будет похожа на аналогичную формулу для пирамиды:

41 obem slozhnyh tel

41 2 obem konusa mozhet byt vychislen po formulam edited

Задание. Радиус конуса – 8 см, а его высота составляет 12 см. Определите его объем.

Решение. Здесь надо просто применить выведенную формулу:

42 obem slozhnyh tel

Задание. В сосуде, имеющем форму перевернутого конуса, вода доходит до уровня, соответствующего 2/3 высоты сосуда. При этом ее объем составляет 192 мл. Каков объем всего сосуда?

43 obem slozhnyh tel

Решение. В задаче фигурируют два конуса. Один из них – это сам сосуд, а второй – его часть, заполненная водой. При выведении формулы объема мы уже выяснили, что радиусы таких конусов пропорциональны их высотам:

44 obem slozhnyh tel

Мы уже заметили, что формулы для объема пирамида и конуса идентичны. По сути, конус можно рассматривать как особый случай пирамиды, у которой в основании лежит не многоугольник, а окружность. Аналогично и усеченный конус можно считать особым случаем усеченной пирамиды, а поэтому для расчета его объема можно применять такую же формулу:

45 obem slozhnyh tel

Задание. Вычислите объем усеченного конуса с высотой 9 и радиусами оснований 7 и 4.

Решение. Сначала находим площади оснований:

46 obem slozhnyh tel

Объем шара

Пришло время разобраться и с таким телом, как шар. Здесь можно использовать тот же метод интегрирования, что и в случае с конусом и пирамидой. Но можно поступить и иначе – использовать выведенную нами для тел вращения формулу

47 obem slozhnyh tel

Шар как раз является телом вращения. Он получается при вращении полуокружности вокруг диаметра, на который эта дуга опирается.

48 obem slozhnyh tel

Напомним известное нам уравнение окружности, чей центр совпадает с началом координат:

49 obem slozhnyh tel

Здесь надо уточнить, что если у получившейся функции впереди записан знак «+», то ее график соответствует полуокружности, находящейся над осью Ох. Если же используется знак «–», то получается уже нижняя полуокружность, расположенная под осью Ох:

50 obem slozhnyh tel

В принципе мы можем поворачивать любую из этих полуокружностей вокруг Ох, но мы выберем верхнюю полуокружность. Заметим, что эта дуга начинается в точке х = – R и заканчивается в точке х = R, эти числа будут пределами интегрирования. Тогда объем шара равен:

51 obem slozhnyh tel

51 2 obem shara vychisljaetsja edited

Задание. Найдите объем шара с радиусом 6.

Решение. Подставляем радиус из условия в формулу:

52 obem slozhnyh tel

Задание. В цилиндр вписан шар. Во сколько раз объем цилиндра больше объема такого шара?

53 obem slozhnyh tel

Решение. Ясно, что так как шар вписан в цилиндр, то радиусы этих тел одинаковы. Обозначим этот радиус как R. Также ясно, что раз шар касается оснований цилиндра, то расстояние между ними (то есть высота цилиндра) равно двум радиусам шара:

54 obem slozhnyh tel

Шаровой сегмент

Когда плоскость проходит через шар, она рассекает его на две фигуры, которые именуются шаровым сегментом. Если из центра шара О провести радиус ОА длиной R в направлении плоскости сечения, который перпендикулярен этой плоскости, то он пересечет ее какой-то точке В. Длину отрезка АВ называют высотой шарового сегмента и обозначают буквой h:

55 obem slozhnyh tel

Ясно, что при этом отрезок ОВ – это расстояние от секущей плоскости (или от основания сегмента) до центра шара, причем этот отрезок имеет длину R –h.

Можно считать, что шаровой сегмент, как и шар, получается при вращении дуги окружности вокруг оси Ох. Однако если сам шар при этом ограничен плоскостями x = R и х = – R, то сегмент ограничен другими плоскостями: х = R и х = R – h. Это значит, что его объем можно вычислить с помощью интеграла также, как и объем шара, отличаться будет лишь нижний предел интегрирования:

56 obem slozhnyh tel

56 2 obem sharovogo segmenta edited

Заметим, что шар можно рассматривать как шаровой сегмент, чья высота вдвое больше его радиуса. И действительно, если в выведенную формулу мы подставим значение h = 2R, то получим уже известную нам формулу объема шара.

Задание. Найдите объем шарового сегмента высотой 6, если он отсечен от шара радиусом 15.

Решение. Используем выведенную формулу:

57 obem slozhnyh tel

Задание. Диаметр шара разделили на три равных отрезка. Через концы этих отрезков провели секущие плоскости, перпендикулярные диаметру. Чему равен объем тела, заключенного между этими двумя плоскостями (оно называется шаровым слоем), если радиус шара обозначен буквой R?

58 obem slozhnyh tel

Решение. Ясно, что для вычисления объема шарового слоя достаточно вычесть из объема шара объемы двух шаровых сегментов, образующихся при проведении секущих плоскостей. Так как они разделили диаметр на три одинаковых отрезка, то высота этих сегментов будет в три раза меньше диаметра шара:

59 obem slozhnyh tel

Площадь сферы

В предыдущих уроках мы уже узнали формулу для вычисления площади сферы, однако тогда мы ее не доказывали. Однако теперь мы можем ее доказать, используя формулу объема шара. Но сначала напомним саму формулу:

60 obem slozhnyh tel

Впишем сферу в многогранник с n гранями. Ясно, что расстояние от граней этого многогранника до центра сферы равно радиусы сферы R. Далее построим пирамиды, чьи вершины находятся в центре сферы, а основания – это грани многогранника. Заметим, что такие пирамиды будут иметь одинаковые высоты длиной R.

Обозначим площади граней многогранника как S1, S2, S3,…Sn. Тогда объемы пирамид, построенных на этих гранях, вычисляются так:

61 obem slozhnyh tel

Заметим, что в сумме эти объемы дают объем всего многогранника, а сумма площадей S1, S2, S3,…Sn – это площадь всей его поверхности. Тогда можно записать:

62 obem slozhnyh tel

62 2 obem mnogogrannika v kotoryj vpisana sfera edited

Теперь начнем неограниченно уменьшать размеры граней многогранника. Тогда число n будет расти, объем многогранника будет приближаться к объему шара, а площадь многогранника – к площади к сфере. Тогда и доказанное равенство можно будет записать так:

63 obem slozhnyh tel

Задание. Необходимо изготовить закрытый сосуд с заранее заданным объемом V. Предлагается два варианта формы этого сосуда – шар и куб. Так как поверхность сосуда покрывается очень дорогой краской, то необходимо выбрать вариант с меньшей площадью поверхности. Какую форму для сосуда следует выбрать?

Решение. Обозначим радиус шара как R, а ребро куба как а. Тогда можно записать:

64 obem slozhnyh tel

Теперь надо выяснить, какое из полученных значений больше. Для этого поделим площадь куба на площадь сферы. Если получится число, большее единицы, то площадь куба больше:

65 obem slozhnyh tel

Получившееся число больше единицы, ведь 6 больше числа π, равного 3,1415926… Значит, и площадь куба больше, а потому необходимо выбрать сосуд, имеющий форму шара.

Ответ: шар.

Примечание. Более сложными математическими методами можно доказать, что если второй сосуд имеет не форму куба, а вообще любую форму, отличную от шара, то всё равно следует выбирать именно сосуд в форме шара. То есть из всех поверхностей, ограничивающих определенный объем, именно сфера имеет наименьшую площадь. Этот факт имеет и физическое следствие – капли дождя и мыльные пузыри стремятся принять форму шара, также как и любые жидкости, находящиеся в невесомости.

Итак, мы научились вычислять объемы таких тел, как конус, пирамида, шар, призма. Также помощью интегрирования можно находить объемы и ещё более сложных тел, если мы можем составить функцию, описывающую площадь их сечения.

Объём
произвольного тела может быть вычислен
с помощью интегрального исчисления.

Если
задано тело вращения заданное функцией
y = f(x), то его объём можно определить по
формуле

34.Объем тела вращения.

Объем
тела вращения равен 


Придадим x приращение Δx > 0 (x + Δx < b).
Построим два цилиндра с общей
высотой Δx (рис. 7.2.2).
Меньший цилиндр имеет своим основанием
круг площадью S (x),
а больший – круг площадью S (x + Δx).
Если ΔV –
прирост объема тела вращения,
то S (xx < ΔV < S (x + Δxx,
откуда 

Поскольку
функция f (x) непрерывна,
то непрерывна и функция 

следовательно, 

Переходя
к пределу в двойном неравенстве, имеем 

то
есть V’ (x) = S (x).

Объем V (x) является
первообразной для функции S (x) на
промежутке [ab].
Отсюда имеем 

35.Площадь поверхности вращения

Поверхность
вращения
 — поверхность,
образуемая при вращении вокруг прямой
(оси поверхности) произвольной линии
(прямой,
плоской или пространственной кривой).
Например, если прямая пересекает ось
вращения, то при её вращении
получится коническая поверхность,
если параллельна оси — цилиндрическая,
если скрещивается с осью —
однополостныйгиперболоид
вращения
.
Одна и та же поверхность может быть
получена вращением самых разнообразных
кривых. Площадь
поверхности
 вращения,
образованной вращением плоской кривой
конечной длины вокруг оси, лежащей в
плоскости кривой, но не пересекающей
кривую, равна произведению длины кривой
на длину окружности с радиусом, равным
расстоянию от оси до центра
масс
 кривой.
Это утверждение называется второй теоремой
Гюльдена
,
или теоремой Паппа о центроиде.

Площадь
поверхности
 вращения,
образованной вращением кривой 
 вокруг
оси 
 можно
вычислить по формуле

Площадь
поверхности
 вращения,
образованной вращением кривой 
 вокруг
оси 
можно
вычислить по формуле

Для
случая, когда кривая задана в полярной
системе координат
 
 действительна
формула

36. Механические приложения определённого интеграла (работа сил, статические моменты, центр тяжести).

Вычисление
работы сил

Материальная
точка движется по непрерывно
дифференцируемой кривой, при этом на
нее действует сила, направленная по
касательной к траектории в направлении
движения. Полная работа, совершаeмая
силой F(s):

Если
положение точки на траектории движения
описывается другим параметром, то
формула приобретает вид:

Вычисление
статических моментов и центра тяжести

Пусть
на координатной плоскости Оху некоторая
масса М распределена с плотностью р =
р(у) на некотором множестве точек S (это
может быть дуга кривой или ограниченная
плоская фигура). Обозначим s(у) – меру
указанного множества (длина дуги или
площадь).

Определение
2. Число 
 называется
k-м моментом массы М относительно оси
Ох.

При
k = 0 М0 =
М – масса,

k
= 1 М1 –
статический момент,

k
= 2 М2 –
момент инерции.

Аналогично
вводятся моменты относительно оси Оу.
В пространстве подобным же образом
вводятся понятия моментов массы
относительно координатных плоскостей.

Если
р = 1, то соoтветствующие моменты называются
геометрическими. Координаты центра
тяжести однородной (р – const) плоской
фигуры определяются по формулам:

где
М1y,
М1x –
геометрические статические моменты
фигуры относительно осей Оу и Ox; S –
площадь фигуры.

37.
n-мерное
евклидово пространство.

Определение
1. Упорядоченная последовательность n
действительных чисел {х1,
х2;…;
хn}
называется точкой п- мерного пространства,
при этом числа xi,
i = 1,…, n называются координатами
точки.

Обозначение:
X = (х1,
х2;…;
хn).

Определение
2. Если для любых двух точек X = (х1,
х2;…;
хn)
и У = (y1,
y2;…;
yn)
n-мерного пространства определено
расстояние между ними по формуле


,

то
такое пространство называется n-мерным
евклидовым.

Обозначение:
Еn.

Определение
3. Пусть X – фиксированная точка пространства
Еn
 >
0 – произвольное положительное число.
Множество точек Y пространства Еn таких,
что

р(Х;
Y) ,

называется
n-мерным шаром с центром в точке X и
радиусом 
 или
просто 
-окрестностъю
точки X в пространстве Еn.

Определение
4. Если существует отображение множества
натуральных чисел в множество точек
пространства Еn

то
множество точек Х1;
Х2;
… называется последовательностью точек
этого пространства.

Обозначение:
m}.

Определение
5. Точка X 
 Еn называется
пределом последовательности {Хm},
если

Определение
6. Пусть Е 
 Еn –
некоторое подмножество n-мерного
евклидова пространства. Отображение
точек множества Е в множество действительных
чисел R называется функцией п
переменных.

Обозначение:
у = f(х1,
х2;…;
хn);
у = f(Х).

Множество
Е называется областью определения
функции n переменных.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Объёмы поверхностей геометрических тел:

То, чем в предыдущие эпохи занимались только зрелые умы ученых мужей, в более позднее время стало доступным для понимания юношей.

С древних времен люди применяли геометрию для решения конкретных житейских проблем — нахождения объемов сосудов, строений и кораблей, количества краски, необходимой для ремонта помещения. На основании практического опыта были разработаны методы вычисления объемов тел и площадей поверхностей. Но нахождение соответствующих формул, а тем более их доказательств заняло немало страниц в истории геометрической науки. Многие выдающиеся ученые внесли свой вклад в развитие теории объемов, а популяризаторы математики — в упрощение и доступное изложение этой теории.

Основной целью данной главы является формирование представлений об объемах и площадях поверхностей, обоснование соответствующих формул для основных пространственных фигур. Вы. научитесь использовать различные методы нахождения объемов, как строго геометрические, так и те, которые объединяют в себе геометрию и начала анализа. При изучений объемов тел полезно будет вспомнить и систематизировать материал о площадях фигур на плоскости. Подходы, которые применялись для получения основных формул площадей, будут надежным фундаментом для построения теории объемов.

В данной главе речь пойдет о всех основных фигурах, которые вы изучали в течение года, в частности о тесной связи многогранников и тел вращения. Это даст вам возможность, с одной стороны, вспомнить основные факты из курса геометрии, а с другой — на основании формул для площадей поверхностей многогранников получить соответствующие результаты для тел вращения.

Задачи данной главы содержат много геометрических конфигураций, что позволит вам переосмыслить весь курс стереометрии с точки зрения применения своих знаний на практике, в частности для нахождения, пожалуй, самых распространенных в жизни геометрических величин — объемов и площадей поверхностей. Ради этого бесценного опыта вы и изучали, в конце концов, геометрию в пространстве.

Объемы

Понятие объема хорошо известно на уровне повседневного опыта: мы покупаем пакет сока определенного объема, рассчитываем, какой объем займет в квартире новая мебель, берем для приготовления блюда кастрюлю соответствующего объема. Придадим этим наглядным представлениям об объеме тела определенную математическую строгость.

Понятие объема многогранников

Для дальнейших рассуждений полезно объединить практический опыт и известную уже теорию площадей многоугольников. По аналогии с ней мы и будем строить теорию объемов пространственных тел, в первую очередь многогранников.

Объем характеризует величину части пространства, которую занимает геометрическое тело, и измеряется, как и площадь, в определенных единицах. Единицей измерения площадей является площадь единичного квадрата, а за единицу измерения объема принимается объем единичного куба, то есть куба, ребро которого равно единице длины. Например, если за единицу измерения длины принимается 1 мм, 1 см, 1 дм или 1 м, то за единицу измерения объема принимается объем куба с ребром 1 мм, 1 см, 1 дм или 1 м. Соответствующая единица объема называется кубическим миллиметром (1 мм3), кубическим сантиметром (1 см3), кубическим дециметром или литром (1 дм3 или 1 л), кубическим метром (1 м3). Таким образом, вычисление объемов тел разной формы основано на сравнении с объемом единичного куба.

Измерить объем тела на практике можно, например, погрузив его в воду и подсчитав количество вытесненной телом воды. Но во многих случаях это не целесообразно, поэтому очень полезно вывести и научиться применять формулы для вычисления объемов. Соответствующая теория основана на аксиомах объема многогранников.

  1. Равные многогранники имеют равные объемы.
  2. Бели многогранник составлен из нескольких многогранников, то его объем равен сумме объемов этих многогранников.
  3. Объем куба с ребром, равным единице длины, равен единице объема.

Итак, объем многогранника — это положительная величина, Числовое значение которой удовлетворяет аксиомам объема. : – Как правило, объем обозначают буквой V.

Приведенные аксиомы имеют и практическую основу. Действительно, все пакеты, имеющие форму прямоугольного параллелепипеда и одинаковые размеры, содержат одинаковое количество сока.

Тела, имеющие равные объемы, называются равновеликими.

Если же каждый из двух пакетов можно разлить в одинаковое количество маленьких пакетиков, то сумма объемов этих пакетиков будет равна объему каждого из них, то есть данные пакеты имеют одинаковый объем.

Тела, составленные из одних и тех же многогранников, называются равносоставленными. Например, равносоставленными будут тела, изображенные на рисунке 190, а, б: прямая треугольная призма и прямой параллелепипед. Действительно, каждая из этих фигур составлена из двух одинаковых прямых призм, таких как на рисунке 190, в.

Очевидно, что объемы равносоставленных многогранников равны по второй аксиоме. Интересно, что обратное утверждение неверно (в отличие от аналогичной теоремы для площадей). Так, многогранники равного объема не всегда можно разбить на конечное число равных многогранников. В частности, куб и правильный тетраэдр равных объемов (рис. 190) не являются равносоставленными.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Объем параллелепипеда

Простейшей фигурой с точки зрения вычисления объема является прямоугольный параллелепипед.

Теорема (формула объема прямоугольного параллелепипеда)

Объем прямоугольного параллелепипеда равен произведению трех его измерений:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где Объёмы поверхностей геометрических тел - определение и примеры с решением — измерения прямоугольного параллелепипеда.

Приведем рассуждения, на которых основано доказательство данной теоремы.

Сначала рассмотрим прямоугольный параллелепипед с измерениями а, 1, 1. Так как в отрезке а единица измерения длины помещается а раз, то единичный куб помещается в параллелепипед также а раз. Значит, объем прямоугольного параллелепипеда равен а (рис. 191, а).

Аналогично объем прямоугольного параллелепипеда с измерениями Объёмы поверхностей геометрических тел - определение и примеры с решением 1 равен Объёмы поверхностей геометрических тел - определение и примеры с решением (рис. 191, б), а прямоугольного параллелепипеда с измерениями Объёмы поверхностей геометрических тел - определение и примеры с решением — равен abc (рис. 191, в).

Полное доказательство данной теоремы приведено в Приложении 2.

Следствие (формула объема куба)

Объем куба равен кубу его ребра:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где а – ребро куба.

Нам известно, что площадь прямоугольника равна произведению двух его измерений, а параллелограмма — произведению его стороны на проведенную к ней высоту. По аналогии нетрудно предположить, что объем произвольного параллелепипеда также можно найти через площадь основания и соответствующую высоту.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Теорема (формула объема параллелепипеда)

Объем параллелепипеда равен произведению площади его основания на высоту:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где Объёмы поверхностей геометрических тел - определение и примеры с решением— площадь основания параллелепипеда, h — высота.

Доказательство:

Очевидно, что для прямоугольного параллелепипеда данная формула верна. Докажем ее для наклонного параллелепипеда Объёмы поверхностей геометрических тел - определение и примеры с решением (рис. 192). Проведем через ребра ВС и AD плоскости, перпендикулярные основанию ABCD. Дополним наклонный параллелепипед треугольной призмой Объёмы поверхностей геометрических тел - определение и примеры с решением и отсечем треугольную призму Объёмы поверхностей геометрических тел - определение и примеры с решением Эти призмы равны, так как совмещаются параллельным переносом на вектор Объёмы поверхностей геометрических тел - определение и примеры с решением. Значит, полученный параллелепипед имеет тот же объем, что и исходный.

При описанном преобразовании параллелепипеда площадь его основания и высота сохраняются, а две боковые грани становятся перпендикулярными плоскости основания ABC. Если выполнить аналогичное преобразование с помощью плоскостей, проходящих через АВ и DC перпендикулярно основанию ABCD, получим прямой параллелепипед с основанием ABCD, равновеликий исходному. При этом высоты параллелепипедов также сохраняются.

Теперь проведем через точки А я В плоскости, перпендикулярные АВ (рис. 193). Дополняя прямой параллелепипед одной треугольной призмой (I) и отсекая равную ей другую призму (2), получим прямоугольный параллелепипед, равновеликий предыдущему.

Объем полученного прямоугольного параллелепипеда равен Объёмы поверхностей геометрических тел - определение и примеры с решением. Так как при описанных выше преобразованиях данного параллелепипеда в прямоугольный каждый раз образуется параллелепипед, равновеликий предыдущему, а площадь

Объёмы поверхностей геометрических тел - определение и примеры с решениемОбъёмы поверхностей геометрических тел - определение и примеры с решением

основания и высота сохраняются, то и объем исходного параллелепипеда можно вычислить с помощью полученной формулы. Итак, объем наклонного параллелепипеда Объёмы поверхностей геометрических тел - определение и примеры с решением

Таким образом, объем произвольного параллелепипеда вычисляется по формуле Объёмы поверхностей геометрических тел - определение и примеры с решением

Теорема доказана.

Пример №1

В основании наклонного параллелепипеда лежит прямоугольник со сторонами 3 см и 4 см. Боковое ребро параллелепипеда равно 6 см. Найдите объем данного параллелепипеда, если две его боковые грани перпендикулярны плоскости основания, а две другие наклонены к ней под углом 30°.

Решение:

Пусть дан параллелепипед Объёмы поверхностей геометрических тел - определение и примеры с решением (рис. 194), в основании которого лежит прямоугольник ABCD со сторонами 3 см и 4 см. Боковые ребра параллелепипеда равны и имеют длину б см. Противолежащие боковые грани параллелепипеда параллельны, следовательно, наклонены к плоскости его основания под равными углами.

Пусть грани Объёмы поверхностей геометрических тел - определение и примеры с решением перпендикулярны грани ABCD, а грани Объёмы поверхностей геометрических тел - определение и примеры с решением образуют с ABCD угол 30°. Проведем в плоскости Объёмы поверхностей геометрических тел - определение и примеры с решением перпендикуляр Объёмы поверхностей геометрических тел - определение и примеры с решением к AD. По свойству перпендикулярных плоскостей Объёмы поверхностей геометрических тел - определение и примеры с решением, следовательно, Объёмы поверхностей геометрических тел - определение и примеры с решением — высота данного параллелепипеда. Так как Объёмы поверхностей геометрических тел - определение и примеры с решением является перпендикуляром, Объёмы поверхностей геометрических тел - определение и примеры с решением — наклонной, KD — ее проекцией на плоскость ABC, причем Объёмы поверхностей геометрических тел - определение и примеры с решением, то по теореме о трех перпендикулярах Объёмы поверхностей геометрических тел - определение и примеры с решением. Значит, угол Объёмы поверхностей геометрических тел - определение и примеры с решением равен углу между плоскостями Объёмы поверхностей геометрических тел - определение и примеры с решением. По условию Объёмы поверхностей геометрических тел - определение и примеры с решением. Из прямоугольного треугольника Объёмы поверхностей геометрических тел - определение и примеры с решением получим: Объёмы поверхностей геометрических тел - определение и примеры с решением = 3 см.

Таким образом,

Объёмы поверхностей геометрических тел - определение и примеры с решением

Ответ: 36 см3.

Объем призмы

На плоскости для получения формулы площади треугольника было удобно дополнить треугольник до параллелограмма. Далее, для получения формулы площадей других многоугольников, целесообразно было разбить их на треугольники. Применим аналогичные приемы для вывода формулы объема призмы.

Теорема (формула объема призмы)

Объем призмы равен произведению площади ее основания на высоту:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где Объёмы поверхностей геометрических тел - определение и примеры с решением — площадь основания призмы, h — ее высота.

Доказательство:

Пусть дана треугольная призма Объёмы поверхностей геометрических тел - определение и примеры с решением. Дополним ее до параллелепипеда Объёмы поверхностей геометрических тел - определение и примеры с решением, как показано на рисунке 195. Дополняющая призма симметрична данной относительно центра симметрии параллелепипеда точки О. Значит, она равна данной призме. Тогда, по аксиомам объема, объем параллелепипеда равен удвоенному объему данной призмы. Но Объёмы поверхностей геометрических тел - определение и примеры с решением значит, Объёмы поверхностей геометрических тел - определение и примеры с решением

Применим только что выведенную формулу объема треугольной призмы к рассмотрению произвольной призмы.

Разобьем основание призмы на треугольники, а призму — на соответствующие треугольные призмы с высотой h (рис. 196).

По аксиоме, объем данной призмы равен сумме объемов составляющих ее треугольных призм:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где Объёмы поверхностей геометрических тел - определение и примеры с решением — площади треугольников, на которые разбито основание призмы.

Теорема доказана.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Пример №2

Объем наклонной призмы равен произведению бокового ребра на площадь перпендикулярного ему сечения: Объёмы поверхностей геометрических тел - определение и примеры с решением, где I — боковое ребро призмы, Объёмы поверхностей геометрических тел - определение и примеры с решением — площадь перпендикулярного ему сечения. Докажите.

Решение:

Рассмотрим наклонную призму F1 с ребром АА1 = I (рис. 197). Проведем два ее перпендикулярных сечения, расстояние между плоскостями которых I и которые не имеют с данной призмой общих точек. При этом получим прямую призму F2 и многогранник F3 (рис. 197). Многогранник, гранник, как совмещаются параллельным переносом на вектор Объёмы поверхностей геометрических тел - определение и примеры с решением . Поэтому их объемы равны. Эти многогранники имеют общую часть F3. Отсюда по аксиоме объема следует, что объемы призм F1 и F2 также равны. Но последняя призма является прямой, и ее объем равен Объёмы поверхностей геометрических тел - определение и примеры с решением. Значит, объем данной призмы равен Объёмы поверхностей геометрических тел - определение и примеры с решением.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Объем цилиндра

При обосновании формулы площади круга в планиметрии мы использовали вписанные в окружности и описанные около них многоугольники. Применим аналогичные рассуждения и в пространстве, заменив круг на цилиндр, а многоугольники — на призмы. Дадим соответствующие определения.

Определение:

Прямая призма называется вписанной в цилиндр, если ее основания вписаны в основания цилиндра.

При этом цилиндр называется описанным около призмы. Очевидно, что боковые ребра призмы — образующие цилиндра, а высоты прямой призмы и описанного около нее цилиндра равны (рис. 198).

Объёмы поверхностей геометрических тел - определение и примеры с решением

Определение:

Прямая призма называется описанной около цилиндра, если ее основания описаны около оснований цилиндра.

При этом цилиндр называется вписанным в призму (рис. 199). Очевидно, что высоты прямой призмы и вписанного в нее цилиндра равны.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Теорема (формула объема цилиндра)

Объем цилиндра равен произведению площади его основания на высоту:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где Объёмы поверхностей геометрических тел - определение и примеры с решением — площадь основания цилиндра, h — высота, R — радиус цилиндра.

Доказательство:

Впишем в данный цилиндр радиуса R и высоты h правильную п-угольную призму с площадью основания S’n и опишем около него правильную n-угольную призму с площадью основания Объёмы поверхностей геометрических тел - определение и примеры с решением(рис. 200). Тогда, по доказанному при обосновании формулы для площади круга, Объёмы поверхностей геометрических тел - определение и примеры с решением

Объёмы поверхностей геометрических тел - определение и примеры с решением

Отсюда следует, что при неограниченном возрастании п объемы вписанных призм Объёмы поверхностей геометрических тел - определение и примеры с решением и объемы описанных призм Объёмы поверхностей геометрических тел - определение и примеры с решением стремятся к величине Объёмы поверхностей геометрических тел - определение и примеры с решением . Значит, существуют призмы, содержащиеся в данном цилиндре, и призмы, содержащие его, объемы которых сколь угодно мало отличаются от Объёмы поверхностей геометрических тел - определение и примеры с решением. Тогда объем цилиндра выражается формулой V = Объёмы поверхностей геометрических тел - определение и примеры с решением.

Теорема доказана.

Пример №3

Основание прямой призмы — треугольник со стороной с-и прилежащими к ней углами Объёмы поверхностей геометрических тел - определение и примеры с решением. Диагональ грани, содержащей сторону с, образует с плоскостью основания призмы угол ф. Найдите объем цилиндра, описанного около призмы.

Решение:

Пусть дана прямая треугольная призма Объёмы поверхностей геометрических тел - определение и примеры с решением, в основании которой лежит треугольник Объёмы поверхностей геометрических тел - определение и примеры с решением. Так как Объёмы поверхностей геометрических тел - определение и примеры с решением, то Объёмы поверхностей геометрических тел - определение и примеры с решением — наклонная, АВ — ее проекция на плоскость ABC. Значит, по определению угол Объёмы поверхностей геометрических тел - определение и примеры с решением равен углу между АВ и плоскостью ABC. По условию Объёмы поверхностей геометрических тел - определение и примеры с решением (рис. 201).

Рассмотрим цилиндр, описанный около данной призмы. Его основания описаны около оснований призмы, высота равна высоте призмы.

По теореме синусов для треугольника ABC имеем:

Объёмы поверхностей геометрических тел - определение и примеры с решением

Из прямоугольного треугольника Объёмы поверхностей геометрических тел - определение и примеры с решением

Объёмы поверхностей геометрических тел - определение и примеры с решением

Следовательно, объем цилиндра равен:

Объёмы поверхностей геометрических тел - определение и примеры с решением

Ответ:Объёмы поверхностей геометрических тел - определение и примеры с решением

Объёмы поверхностей геометрических тел - определение и примеры с решением

Объемы пирамиды, конуса и шара

Рассмотрим способ вычисления объемов тел, в основе которого лежит понятие интеграла, известное из курса алгебры и начал анализа.

Общая формула объема

Пусть тело Т, объем которого требуется вычислить, расположено между двумя параллельными плоскостями Объёмы поверхностей геометрических тел - определение и примеры с решением. Введем систему координат так, чтобы ось Ох была перпендикулярна плоскостям Объёмы поверхностей геометрических тел - определение и примеры с решением (рис. 202). Пусть плоскость а задана уравнением х = а, а плоскость Объёмы поверхностей геометрических тел - определение и примеры с решением — х = Ь (а<Ь).

Будем рассматривать случай, когда любое сечение тела Ф(х) плоскостью, перпендикулярной-оси Ох и пересекающей эту ось в точке (х;0;0), является кругом или многоугольником (такой случай возможен, если Ф(х) — точка).

Обозначим площадь фигуры Ф(х) через S(x). Допустим, что S(x) — непрерывная функция при Объёмы поверхностей геометрических тел - определение и примеры с решением. Разобьем отрезок [a;b] на n равных отрезков точками Объёмы поверхностей геометрических тел - определение и примеры с решением и через точки с абсциссами х, проведем плоскости, перпендикулярные оси Ох (рис. 203).

Эти плоскости разобьют тело Т на n тел: Объёмы поверхностей геометрических тел - определение и примеры с решением. Если сечение Ф(х1) — круг, то объем тела Т, приближенно равен объему цилиндра с основанием Ф(х1) и высотой Объёмы поверхностей геометрических тел - определение и примеры с решением Если сечение Ф(х1) — многоугольник, то объем тела Ti приближенно равен объему прямой призмы с основанием ф(х, ) и высотой Объёмы поверхностей геометрических тел - определение и примеры с решением

Объёмы поверхностей геометрических тел - определение и примеры с решением

Учитывая, что объем цилиндра и призмы равен произведению площади основания на высоту, то есть Объёмы поверхностей геометрических тел - определение и примеры с решением получаем:

Объёмы поверхностей геометрических тел - определение и примеры с решением

При неограниченном возрастании n правая часть данной формулы приближается сколь угодно близко к объему тела Т. С другой стороны, так как S(x) непрерывна на Объёмы поверхностей геометрических тел - определение и примеры с решением, это же выражение приближается к соответствующему интегралу. Итак, Объёмы поверхностей геометрических тел - определение и примеры с решением

Таким образом, мы получили формулу для вычисления объема тела с помощью интеграла. Будем называть ее интегральной формулой объема.

Из этой формулы вытекает интересное и удобное в применении следствие, формулировка которого принадлежит итальянскому математику Бонавентуре Кавальери.

Принцип Кавальери

Если при пересечении двух тел F1 и F2 плоскостями, параллельными одной и той же плоскости а, в сечениях получаются фигуры с равными площадями, то объемы данных тел равны.

Это утверждение легко вывести из интегральной формулы объема, если расположить систему координат так, чтобы ось Ох была перпендикулярна плоскости а (рис. 204). Применение интеграла и принципа Кавальери позволяет значительно упростить нахождение формул, выражающих объемы многих важных тел.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Объем пирамиды и конуса

В пунктах 15.3 и 15.4 мы установили, что объемы призмы и цилиндра определяются одной и той же формулой:

Объёмы поверхностей геометрических тел - определение и примеры с решением

Поэтому вполне естественно предположить, что будут совпадать формулы для объемов пирамиды и конуса.

Теорема (формула объема пирамиды)

Объем пирамиды равен трети произведения площади основания на высоту:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где Объёмы поверхностей геометрических тел - определение и примеры с решением — площадь основания пирамиды, h — высота.

Доказательство:

Разместим пирамиду в системе координат так, чтобы ось Ох была направлена вдоль высоты, а основание’ принадлежало бы плоскости Объёмы поверхностей геометрических тел - определение и примеры с решением (рис. 205). Пусть некоторая плоскость параллельна основанию пирамиды и пересекает ее высоту в точке (х;0;0). Обозначим через S(x) площадь сечения пирамиды этой плоскостью. По доказанному в п. 10.2 она отсекает пирамиду, подобную данной. В частности, подобными являются многоугольники основания и сечения. Пусть k — коэффициент подобия. Тогда Объёмы поверхностей геометрических тел - определение и примеры с решением

Отсюда Объёмы поверхностей геометрических тел - определение и примеры с решением

Применяя теперь для пирамиды интегральную формулу объема, получим:

Объёмы поверхностей геометрических тел - определение и примеры с решением

Объёмы поверхностей геометрических тел - определение и примеры с решением

Теорема доказана.

Следствие (формула объема усеченной пирамиды)

Объем усеченной пирамиды вычисляется по формуле:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где h – высота усеченной пирамиды, Объёмы поверхностей геометрических тел - определение и примеры с решениемплощади ее оснований.

Доказательство:

Дополним данную усеченную пирамиду до полной с высотой Н (рис. 206). Тогда высота дополняющей пирамиды будет равна H-h. Из подобия полной и дополняющей пирамид, площади оснований которых равны Объёмы поверхностей геометрических тел - определение и примеры с решением соответственно, получаем:

Объёмы поверхностей геометрических тел - определение и примеры с решениемОбъёмы поверхностей геометрических тел - определение и примеры с решением

По аксиомам объема, объем усеченной пирамиды равен разности объемов полной и дополняющей пирамид. Следовательно,

Объёмы поверхностей геометрических тел - определение и примеры с решением

Формула доказана.

Заметим, что при доказательстве теоремы об объеме пирамиды и ее следствия, кроме интегральной формулы объема, мы применили только тот факт, что плоскость, параллельная основанию, отсекает пирамиду, для площади основания S(x) и высоты h-x которой верна формула Объёмы поверхностей геометрических тел - определение и примеры с решением

Но эта формула, по доказанному в п. 13.2, также верна и для конуса (рис. 207). Поэтому аналогичными формулам объема и их доказательствам для пирамиды и усеченной пирамиды будут формулы объема и их доказательства для конуса и усеченного конуса.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Теорема (формула объема конуса)

Объем конуса равен трети произведения площади основания на высоту:

Объёмы поверхностей геометрических тел - определение и примеры с решением

где Объёмы поверхностей геометрических тел - определение и примеры с решением — площадь основания конуса, R — радиус, h — высота.

Следствие (формула объема усеченного конуса)

Объем усеченного конуса вычисляется по формуле

Объёмы поверхностей геометрических тел - определение и примеры с решением

где h – высота усеченного конуса, Объёмы поверхностей геометрических тел - определение и примеры с решением – площади его оснований, Объёмы поверхностей геометрических тел - определение и примеры с решением – радиусы его оснований.

С помощью вписанных и описанных призм мы вывели формулу для объема цилиндра. Подобную связь можно установить также для конусов и пирамид.

Определение:

Пирамида называется вписанной в конус, если их вершины совпадают, а основание пирамиды вписано в основание конуса.

При этом конус называется описанным около пирамиды.

Очевидно, что высоты пирамиды и описанного конуса равны, а боковые ребра пирамиды являются образующими конуса (рис. 208).

Определение:

Пирамида называется описанной около конуса, если их вершины совпадают, а основание пирамиды описано около основания конуса.

При этом конус называется вписанным в пирамиду.

Очевидно, что высоты пирамиды и вписанного конуса равны, а высоты боковых граней пирамиды являются образующими конуса (рис. 209).

Рассмотрим правильные л-угольные пирамиды, вписанные в данный конус, и правильные л-угольные пирамиды, описанные около него (рис. 210).

Объёмы поверхностей геометрических тел - определение и примеры с решениемОбъёмы поверхностей геометрических тел - определение и примеры с решениемОбъёмы поверхностей геометрических тел - определение и примеры с решением

Если число n сторон оснований этих пирамид неограниченно возрастает, то площади их оснований стремятся к площади круга, лежащего в основании конуса. Следовательно, их объемы стремятся Объёмы поверхностей геометрических тел - определение и примеры с решением Тогда существуют вписанные в конус и описанные около него пирамиды с объемами, сколь угодно мало отличающимися от Объёмы поверхностей геометрических тел - определение и примеры с решением

Из этих рассуждений становится понятным другое обоснование формулы объема конуса Объёмы поверхностей геометрических тел - определение и примеры с решением

Объем шара и его частей

Непосредственно получить только из геометрических рассуждений формулу для объема шара очень сложно. Но с помощью интегральной формулы объема и принципа Кавальери доказательство соответствующих результатов является простым и наглядным.

Теорема (формула объема шара)

Объем шара радиуса R вычисляется по формуле Объёмы поверхностей геометрических тел - определение и примеры с решением

Доказательство:

Найдем сначала объем полушара, применив принцип Кавальери.

Пусть дан полушар Fl радиуса R. На плоскость а, содержащую основание полушара, поставим цилиндр, радиус и высота которого также равны R. В цилиндр впишем конус, вершина которого совпадает с центром основания цилиндра в плоскости а, а основание — с другим основанием цилиндра (рис. 211).

Объёмы поверхностей геометрических тел - определение и примеры с решением

Сравним объем V1 полушара с объемом V2 тела F2, ограниченного нижним основанием цилиндра и боковыми поверхностями цилиндра и конуса.

Проведем плоскость Объёмы поверхностей геометрических тел - определение и примеры с решением, параллельную плоскости а и удаленную от нее на расстояние х Объёмы поверхностей геометрических тел - определение и примеры с решением. Эта плоскость пересечет данный полушар по кругу радиуса Объёмы поверхностей геометрических тел - определение и примеры с решением и площади Объёмы поверхностей геометрических тел - определение и примеры с решением, а тело F2 — по кольцу. Так как осевое сечение конуса является равнобедренным прямоугольным треугольником, внешний радиус кольца равен R, а внутренний — х. Значит, площадь полученного кольца составит Объёмы поверхностей геометрических тел - определение и примеры с решением и будет равна площади сечения полушара. По принципу Кавальери, объем полушара равен объему тела F2, то есть разности объемов цилиндра и конуса: Объёмы поверхностей геометрических тел - определение и примеры с решением

Объем шара вдвое больше объема полушара, следовательно, вычисляется по формуле Объёмы поверхностей геометрических тел - определение и примеры с решением. Теорема доказана.

Пример №4

Сечение шара, удаленное от его центра на 1 см, имеет площадь 8л см2. Найдите объем шара.

Решение:

Пусть дан шар с центром О. Сечение шара некоторой плоскостью а является кругом с центром Объёмы поверхностей геометрических тел - определение и примеры с решением, причем Объёмы поверхностей геометрических тел - определение и примеры с решением. Так как О удалена от а на 1 см, то Объёмы поверхностей геометрических тел - определение и примеры с решением = 1 см.

Пусть точка К сферы, ограничивающей шар, принадлежит данному сечению (рис. 212). Тогда площадь сечения равна Объёмы поверхностей геометрических тел - определение и примеры с решением, откуда Объёмы поверхностей геометрических тел - определение и примеры с решением (см). Из прямоугольного треугольника Объёмы поверхностей геометрических тел - определение и примеры с решением по теореме Пифагора имеем:

Объёмы поверхностей геометрических тел - определение и примеры с решением

Объёмы поверхностей геометрических тел - определение и примеры с решением

По формуле объема шара

Объёмы поверхностей геометрических тел - определение и примеры с решением

Ответ: Объёмы поверхностей геометрических тел - определение и примеры с решением

Найдем теперь объемы частей шара.

Определение:

Шаровым сегментом называется часть шара, отсекаемая от него некоторой плоскостью.

Объёмы поверхностей геометрических тел - определение и примеры с решением

На рисунке 213 плоскость сечения, проходящая через точку В, разделяет шар на два шаровых сегмента. Круг, получившийся в сечении, называется основанием этих сегментов, а длины отрезков диаметра, перпендикулярного плоскости сечения,— высотами сегментов. Так, на рисунке 213 Объёмы поверхностей геометрических тел - определение и примеры с решением — высота меньшего сегмента, Объёмы поверхностей геометрических тел - определение и примеры с решением — высота большего сегмента.

Теорема (формула объема шарового сегмента)

Объем шарового сегмента вычисляется по формуле

Объёмы поверхностей геометрических тел - определение и примеры с решением

где R — радиус шара, Н — высота сегмента.

Доказательство:

Применим для шарового сегмента интегральную формулу объема.

Введем декартову систему координат так, чтобы ее начало совпадало с центром шара.

Тогда часть шара, ограниченная плоскостями Объёмы поверхностей геометрических тел - определение и примеры с решением, является шаровым сегментом с высотой Н (рис. 214).

Объёмы поверхностей геометрических тел - определение и примеры с решением

Радиус сечения шарового сегмента плоскостью, пересекающей ось Ох в точке (х;0;0), равен Объёмы поверхностей геометрических тел - определение и примеры с решением Следовательно, площадь этого сечения Объёмы поверхностей геометрических тел - определение и примеры с решением По интегральной формуле объема для шарового сегмента получаем:

Объёмы поверхностей геометрических тел - определение и примеры с решением

Теорема доказана.

Заметим, что при Н -2R из только что доказанной формулы следует еще один способ нахождения формулы объема шара:

Объёмы поверхностей геометрических тел - определение и примеры с решением

Определение:

Шаровым сектором называется тело, ограниченное сферической поверхностью шарового сегмента и боковой поверхностью конуса, основанием которого является основание сегмента, а вершиной – центр шара.

Очевидно, что если шаровой сегмент меньше полушара, его дополняют конусом для получения шарового сектора; если же шаровой сегмент больше полушара, то для получения шарового сектора конус из него удаляют (рис. 215).

Теорема (формула объема шарового сектора)

Объем шарового сектора вычисляется по формуле

Объёмы поверхностей геометрических тел - определение и примеры с решением

где R — радиус шара, Я — высота соответствующего шарового сегмента.

Доказательство:

Рассмотрим случай шарового сектора, высота Я соответствующего шарового сегмента для которого меньше R (рис. 216). Объёмы поверхностей геометрических тел - определение и примеры с решениемОбъёмы поверхностей геометрических тел - определение и примеры с решением

Тогда его объем равен сумме объема сегмента Объёмы поверхностей геометрических тел - определение и примеры с решением и объема конуса V2. Следовательно,

Объёмы поверхностей геометрических тел - определение и примеры с решением

Случай, когда высота Н больше или равна R, рассмотрите самостоятельно.

Теорема доказана.

Определение:

Шаровым слоем (поясом) называется часть шара, заключенная между двумя параллельными секущими плоскостями.

Расстояние между этими плоскостями называется высотой шарового слоя, а сечения, ограничивающие слой,— основаниями шарового слоя (рис. 217).

Заметим, что объем шарового слоя можно вычислить двумя способами:

  1. как разность объемов двух шаровых сегментов;
  2. как разность объема шара и объемов двух сегментов, не входящих в слой.

Объемы подобных тел

Из повседневного опыта нам хорошо известно, что при увеличении размеров предмета его объем также увеличивается. Например, легко сравнить объемы двух аквариумов, размеры одного из которых вдвое меньше соответствующих размеров другого (рис. 218): объемы отличаются в 8 раз.

Объёмы поверхностей геометрических тел - определение и примеры с решениемОбъёмы поверхностей геометрических тел - определение и примеры с решением

Кроме того, можно проследить за подобными с коэффициентом k многоугольниками на плоскости. Как известно, их периметры отличаются в k раз, площади — в k2 раз. Естественно предположить, что объемы подобных с коэффициентом k пространственных тел отличаются к3 раз. Проверим это для тел, формулы объема которых нам уже известны.

Объёмы поверхностей геометрических тел - определение и примеры с решением

Объёмы поверхностей геометрических тел - определение и примеры с решением

Итак, для всех рассмотренных тел верно следующее утверждение: объемы тел, подобных с коэффициентом k, относятся как k3.

Этот факт верен и для любых простых тел, то есть тел, которые можно разбить на конечное число треугольных пирамид. В частности, любые многогранники, подобные с коэффициентом к, имеют объемы, которые отличаются в k3 раз.

Пример №5

Через середину высоты пирамиды проведена плоскость, параллельная основанию. В каком отношении она делит объем пирамиды?

Решение:

Пусть дана пирамида с вершиной S и высотой SO. Плоскость, параллельная основанию пирамиды, пересекает SO в точке Объёмы поверхностей геометрических тел - определение и примеры с решением(рис. 219).

По условию = Объёмы поверхностей геометрических тел - определение и примеры с решением Но отсекаемая пирамида подобна данной, причем отношение их высот равно коэффициенту подобия, то есть Объёмы поверхностей геометрических тел - определение и примеры с решением По свойству объемов подобных тел объем отсекаемой пирамиды в 8 раз меньше объема данной пирамиды. Следовательно, данная плоскость, параллельная основанию пирамиды, делит ее объем в отношении 1:7.

Ответ: 1:7.

Объёмы поверхностей геометрических тел - определение и примеры с решением

  • Фигуры вращения: цилиндр, конус, шар
  • Объем фигур вращения
  • Длина дуги кривой
  • Геометрические фигуры и их свойства
  • Правильные многоугольники
  • Вписанные и описанные многоугольники
  • Площадь прямоугольника
  • Объем пространственных фигур


Загрузить PDF


Загрузить PDF

Возможно, вы уже знаете, как вычислить объем куба или конуса, подставив необходимые значения в формулы. Но каков объем вилки или игрушечного автомобиля? Объем таких предметов можно вычислить при помощи емкости с водой. Или же попытайтесь мысленно разбить предмет на правильные геометрические фигуры, вычислите их объемы и сложите полученные результаты.

  1. Изображение с названием Calculate the Volume of an Irregular Object Step 1

    1

    Убедитесь, что тело является водонепроницаемым, так как описанный метод подразумевает погружение тела в воду. Если тело полое или в него может проникнуть вода, то вы не сможете точно определить его объем, используя этот метод. Если тело поглощает воду, убедитесь, что вода не повредит его. Не погружайте в воду электрические или электронные предметы, так как это может привести к поражению электрическим током и/или к повреждению самого предмета.[1]

    • Если возможно, запечатайте тело в водонепроницаемый пластиковый пакет (предварительно выпустив из него воздух). В этом случае вы вычислите довольно точное значение объема тела, так как объем пластикового пакета, скорее всего, будет небольшим (по сравнению с объемом тела).
  2. Изображение с названием Calculate the Volume of an Irregular Object Step 2

    2

    Найдите емкость, в которой помещается тело, объем которого вы вычисляете. Если вы измеряете объем небольшого предмета, воспользуйтесь мерным стаканом с нанесенной градуировкой (шкалой) объема. В противном случае найдите емкость, объем которой можно легко вычислить, например, емкость в форме прямоугольного параллелепипеда, куба или цилиндра (стакан тоже можно рассматривать как емкость цилиндрической формы).

    • Возьмите сухое полотенце, чтобы положить на него тело, вытащенное из воды.
  3. Изображение с названием Calculate the Volume of an Irregular Object Step 3

    3

    Наполните емкость водой так, чтобы в нее можно было полностью погрузить тело, но при этом оставьте достаточно места между поверхностью воды и верхней кромкой емкости. Если основание тела имеет неправильную форму, например, закругленные нижние углы, заполните емкость так, чтобы поверхность воды достигала часть тела правильной формы, например, прямые прямоугольные стенки.[2]

  4. Изображение с названием Calculate the Volume of an Irregular Object Step 4

    4

    Отметьте уровень воды. Если емкость с водой прозрачная, отметьте ее уровень с внешней стороны емкости при помощи водостойкого маркера. В противном случае отметьте уровень воды с внутренней стороны емкости, используя цветную клейкую ленту.

    • Если вы используете мерный стакан, то отмечать ничего не нужно. Просто запишите уровень воды согласно градуировке (шкале) на стакане.[3]
  5. Изображение с названием Calculate the Volume of an Irregular Object Step 5

    5

    Погрузите тело полностью в воду. Если оно поглощает воду, подождите по крайней мере тридцать секунд, а затем вытащите тело из воды. Уровень воды должен опуститься, так как часть воды находится в теле. Удалите отметки (маркер или клейкую ленту) о предыдущем уровне воды и отметьте новый уровень. Затем еще раз погрузите тело в воду и оставьте его там.

  6. Изображение с названием Calculate the Volume of an Irregular Object Step 6

    6

    Если тело плавает, прикрепите к нему тяжелый предмет (в качестве грузила) и продолжите вычисления с ним. После этого повторите вычисления исключительно с грузилом, чтобы найти его объем. Затем вычтите объем грузила из объема тела с прикрепленным грузилом и вы найдете объем тела.

    • При вычислении объема грузила прикрепите к нему то, чем вы крепили грузило к рассматриваемому телу (например, ленту или булавки).
  7. Изображение с названием Calculate the Volume of an Irregular Object Step 7

    7

    Отметьте уровень воды с погруженным в нее телом. Если вы используете мерный стакан, запишите уровень воды согласно шкале на стакане. Теперь вы можете вытащить тело из воды.[4]
    Вероятно, не стоит оставлять предмет под водой более чем на пару минут, поскольку в противном случае вода может негативно сказаться на нем.

  8. Изображение с названием Calculate the Volume of an Irregular Object Step 8

    8

    Знайте, почему этот метод работает. Изменение объема воды равно объему тела неправильной формы. Способ измерения объема тела с помощью емкости с водой основан на том, что при погружении тела в жидкость объем жидкости с погруженным в нее телом увеличивается на величину объема тела (то есть тело вытесняет объем воды, равный объему этого тела).[5]
    В зависимости от формы используемой емкости с водой существуют различные способы вычисления объема вытесненной воды, который равен объему тела.

  9. Изображение с названием Calculate the Volume of an Irregular Object Step 9

    9

    Найдите объем, используя мерную шкалу стакана. Если вы использовали емкость с мерной шкалой, то у вас уже должны быть записаны два значения уровня воды (ее объема). В этом случае из значения объема воды с погруженным в нее телом вычтите значение объема воды до погружения тела. Вы получите объем тела.[6]

  10. Изображение с названием Calculate the Volume of an Irregular Object Step 10

    10

    Найдите объем, используя емкость прямоугольной формы. Если вы использовали емкость в форме прямоугольного параллелепипеда, измерьте расстояние между двумя метками (уровень воды до погружения тела и уровень воды после погружения тела), а также длину и ширину емкости с водой. Объем вытесненной воды найдите посредством перемножения длины и ширины емкости, а также расстояния между двумя метками (то есть вы вычисляете объем небольшого прямоугольного параллелепипеда). Вы получите объем тела.

    • Не измеряйте высоту емкости с водой. Измерьте только расстояние между двумя метками.
    • Используйте онлайн-калькулятор, чтобы вычислить объем прямоугольного параллелепипеда.
  11. Изображение с названием Calculate the Volume of an Irregular Object Step 11

    11

    Найдите объем, используя емкость в форме цилиндра. Если вы использовали емкость в форме цилиндра, измерьте расстояние между двумя метками (уровень воды до погружения тела и уровень воды после погружения тела), а также диаметр цилиндра. Затем разделите диаметр на 2, чтобы вычислить радиус. Объем вытесненной воды, а значит и объем тела, найдите по формуле (то есть вы вычисляете объем небольшого цилиндра):

    • V = πr2h, где π ≈ 3,14; r – радиус цилиндра; h – расстояние между двумя метками.
    • Посредством этой формулы вы вычислите объем вытесненной воды, а значит и объем тела.
    • Используйте этот онлайн-калькулятор, чтобы вычислить объем цилиндра.

    Реклама

  1. Изображение с названием Calculate the Volume of an Irregular Object Step 12

    1

    Если возможно, мысленно разбейте тело, объем которого необходимо найти, на правильные геометрические фигуры. В описании тела может быть скрыта подсказка, например, дано тело кубической формы с конусовидной вершиной.[7]

    • Рассмотрите данное тело с разных сторон, чтобы определить, как разбить его на правильные геометрические фигуры, которые должны быть разными (например, на куб и конус).[8]
  2. Изображение с названием Calculate the Volume of an Irregular Object Step 13

    2

    Запишите значения, необходимые для вычисления объема фигур. Чтобы найти объем куба, прямоугольного параллелепипеда или пирамиды необходимо знать длину, ширину и высоту. Чтобы найти объем цилиндра или конуса, вы должны знать радиус и высоту. Нарисуйте фигуры, на которые вы разбили данное вам тело, и запишите значения соответствующих величин.

    • Если в задаче дан диаметр, разделите его на 2 и получите радиус.
    • Возможно, вам придется проделать дополнительные вычисления. Например, высота тела кубической формы с конусовидной вершиной равна 30 единиц, а высота кубической части этого тела равна 20 единиц. Здесь не дана высота конусовидной части тела. Но ее можно найти, вычтя высоту кубической части от общей высоты тела: 30 единиц – 20 единиц = 10 единиц.
  3. Изображение с названием Calculate the Volume of an Irregular Object Step 14

    3

    Вычислите объем каждой фигуры, на которые вы разбили данное вам тело, при помощи формул. Запишите результат каждого вычисления.[9]

    • Для получения информации о вычислении объема правильных геометрических фигур прочитайте эту статью.
  4. Изображение с названием Calculate the Volume of an Irregular Object Step 15

    4

    Сложите полученные результаты. После того как вы вычислили объем каждой фигуры, на которые вы разбили данное вам тело, сложите полученные результаты и вы найдете объем данного вам тела.

    Реклама

Советы

  • Если емкость для воды впитывает ее, заполните емкость небольшими одинаковыми предметами, объем которых можно легко вычислить (например, детскими кубиками). Подсчитайте количество этих предметов, необходимое для заполнения всей емкости, а затем умножьте это количество на объем одного предмета. Вы найдете приблизительное значение объема емкости для воды.

Реклама

Предупреждения

  • Как правило, отметку водостойким маркером очень сложно удалить (с любой поверхности).
  • Предметы с металлическими частями могут покрыться ржавчиной при их погружении в воду.

Реклама

Что вам понадобится

  • Вода
  • Тело, объем которого необходимо найти
  • Емкость для воды (в форме цилиндра или прямоугольного параллелепипеда)
  • Рулетка или линейка
  • Полотенце
  • Маркер или цветная клейкая лента

Об этой статье

Эту страницу просматривали 72 641 раз.

Была ли эта статья полезной?

Вычисление объема тела

Вычисление объема тела по известным площадям параллельных сечений

Пусть требуется найти объем Вычисление объема тела тела, причем известны площади Вычисление объема тела сечений этого тела плоскостями, перпендикулярными некоторой оси, например оси Вычисление объема тела: Вычисление объема тела, Вычисление объема тела.

Применим схему II (метод дифференциапа).

1. Через произвольную точку Вычисление объема тела проведем плоскость Вычисление объема тела, перпендикулярную оси Вычисление объема тела (см. рис. 187). Обозначим через Вычисление объема телаплощадь сечения тела этой плоскостью; Вычисление объема тела считаем известной и непрерывно изменяющейся при изменении Вычисление объема тела. Через Вычисление объема тела обозначим объем части тела, лежащее левее плоскости Вычисление объема тела. Будем считать, что на отрезке Вычисление объема тела величина Вычисление объема тела есть функция от Вычисление объема тела, т. е. Вычисление объема тела.

2. Находим дифференциал Вычисление объема телафункции Вычисление объема тела. Он представляет собой «элементарный слой» тела, заключенный между параллельными плоскостями, пересекающими ось Вычисление объема тела в точках Вычисление объема тела и Вычисление объема тела, который приближенно может быть принят за цилиндр с основанием Вычисление объема тела и высотой Вычисление объема тела. Поэтому дифференциал объема Вычисление объема тела.

3. Находим искомую величину Вычисление объема тела путем интегрирования Вычисление объема тела в пределах от Вычисление объема тела до Вычисление объема тела:

Вычисление объема тела

Полученная формула называется формулой объема тела по площади параллельных сечений.

Пример №41.6.

Найти объем эллипсоида Вычисление объема тела.

Решение:

Рассекая эллипсоид плоскостью, параллельной плоскости Вычисление объема тела и на расстоянии Вычисление объема тела от нее Вычисление объема тела, получим эллипс (см. рис. 188):

Вычисление объема тела

Вычисление объема тела

Площадь этого эллипса равна Вычисление объема тела Вычисление объема тела. Поэтому, по формуле (41.6), имеем

Вычисление объема тела

Объем тела вращения

Пусть вокруг оси Вычисление объема тела вращается криволинейная трапеция, ограниченная непрерывной линией Вычисление объема тела, отрезком Вычисление объема тела и прямыми Вычисление объема тела и Вычисление объема тела (см. рис. 189). Полученная от вращения фигура, называется телом вращения. Сечение этого тела плоскостью, перпендикулярной оси Вычисление объема тела, проведенной через произвольную точку Вычисление объема тела оси Вычисление объема тела (Вычисление объема тела), есть круг с радиусом Вычисление объема тела. Следовательно, Вычисление объема тела.

Применяя формулу (41.6) объема тела по площади параллельных сечений, получаем

Вычисление объема тела

Если криволинейная трапеция ограничена графиком непрерывной функции Вычисление объема тела и прямыми Вычисление объема тела, то объем тела, образованною вращением этой трапеции вокруг оси Вычисление объема тела, по аналогии с формулой (41.7), равен

Вычисление объема тела

Вычисление объема тела

Пример №41.7.

Найти объем тела, образованною вращением фигуры, ограниченной линиями Вычисление объема тела вокруг оси Вычисление объема тела (см. рис. 190).

Решение:

По формуле (41.8) находим:

Вычисление объема тела

На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:

  • Решение задач по высшей математике

Другие темы по высшей математике возможно вам они будут полезны:

Добавить комментарий