Как найти объем прямого параллелепипеда формула

Объем параллелепипеда

{V= a cdot b cdot c}

Найти объем параллелепипеда довольно просто. Для этого необходимо знать длины трех его сторон или же две стороны (площадь основания) и высоту. Чтобы облегчить расчет объема параллелепипеда мы создали калькулятор для разных исходных данных. Просто введите известные значения и в режиме онлайн получите результат.

Параллелепипед — многогранник, состоящий из шести граней, причем все они являются параллелограммами.

Прямоугольный параллелепипед — это параллелепипед, у которого все грани прямоугольники.

Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.

Содержание:
  1. калькулятор объема параллелепипеда
  2. формула объема прямоугольного параллелепипеда через три стороны
  3. формула объема прямоугольного параллелепипеда через площадь основания и высоту
  4. формула объема наклонного параллелепипеда через длины сторон основания и высоту
  5. формула объема наклонного параллелепипеда через площадь основания и высоту
  6. примеры задач

Формула объема прямоугольного параллелепипеда через три стороны

Объем прямоугольного параллелепипеда через три стороны

{V= a cdot b cdot c}

a – длина параллелепипеда

b – ширина параллелепипеда

c – высота параллелепипеда

Так как в основании параллелепипеда лежит прямоугольник, то в данной формуле ab – это площадь прямоугольника, который лежит в основании параллелепипеда. И тогда формулу можно сократить до {V= S h}

Формула объема прямоугольного параллелепипеда через площадь основания и высоту

Объем прямоугольного параллелепипеда через площадь основания и высоту

{V= S_{осн} cdot h}

Sосн – площадь основания параллелепипеда

h – высота параллелепипеда

Формула объема наклонного параллелепипеда через длины сторон основания и высоту

Объем наклонного параллелепипеда через длины сторон основания и высоту

{V= a cdot b cdot h}

a – длина основания параллелепипеда

b – ширина основания параллелепипеда

h – высота параллелепипеда

Формула объема наклонного параллелепипеда через площадь основания и высоту

Объем наклонного параллелепипеда через площадь основания и высоту

{V= S_{осн} cdot h}

Sосн – площадь основания параллелепипеда

h – высота параллелепипеда

Примеры задач на нахождение объема параллелепипеда

Задача 1

Найдите объём прямоугольного параллелепипеда с измерениями 3см, 4см и 5см.

Решение

Для решения данной задачи нам подходит формула один. Подставим в нее значения длины, ширины и высоты прямоугольного параллелепипеда, произведем расчет и получим ответ.

V= a cdot b cdot c = 3 cdot 4 cdot 5 = 60 : см^3

Ответ: 60 см³

Проверим правильность ответа с помощью калькулятора .

Задача 2

Найдите объём наклонного параллелепипеда с площадью основания 12м² и высотой 3м.

Решение

Используем для решения четвертую формулу. Подставим в нее площадь основания и высоту.

V= S_{осн} cdot h = 12 cdot 3 = 36 : м^3

Ответ: 36 м³

Полученный ответ поможет проверить калькулятор .

Как найти объем параллелепипеда

На данной странице калькулятор поможет рассчитать объем параллелепипеда онлайн. Для расчета задайте высоту, ширину и длину. Вычисления производятся в миллиметрах, сантиметрах, метрах. Результат выводится в кубических сантиметрах, литрах и кубических метров.

Прямоугольный параллелепипед – это многогранник, у которого все грани являются прямоугольниками.

Через стороны


Параллелепипед с тремя сторонами


Формула объема параллелепипеда через его ребра:

a,b,c – ребра параллелепипеда.


Через стороны и высоту


Параллелепипед с высотой


Формула объема параллелепипеда:

a,b – ребра параллелепипеда; h – высота параллелепипеда.

Калькулятор объема параллелепипеда

Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.

Что известно

Размерность

Длина

см

Ширина

см

Площадь основания

см2

Высота

см

Раcсчитать

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

🧑🏾‍💻 Что считает калькулятор

Калькулятор объема параллелепипеда

Калькулятор объема параллелепипеда – это инструмент, который позволяет вычислять объем любого параллелепипеда и выводить результат в разных единицах измерения.

📦 Как использовать калькулятор

Укажите значение сторон для прямоугольного параллелепипеда или сторон и высоты для наклонного, после этого калькулятор произведет расчёт и выдаст его в указанных единицах измерения.

📐 Что влияет на точность расчетов калькулятора

Точность расчетов калькулятора объема параллелепипеда зависит от нескольких факторов:

  1. Корректность ввода данных. Если вводимые значения длины, ширины и высоты параллелепипеда некорректны, то расчет объема будет неправильным. Поэтому, важно убедиться в правильности вводимых значений перед выполнением расчета.
  2. Точность математических операций. Расчет объема параллелепипеда требует выполнения математических операций, таких как умножение. Если калькулятор не выполняет математические операции точно, то результаты расчетов будут неточными.
  3. Точность округления. в некоторых случаях, результаты расчетов могут быть округлены. Если калькулятор округляет результаты до неправильного числа знаков, то результаты будут неточными.
  4. Алгоритм расчета. Различные калькуляторы могут использовать разные алгоритмы расчета. Если алгоритм расчета неправильный, то результаты могут быть неточными.
  5. Ошибки программирования. Если в программе калькулятора есть ошибки, то результаты расчетов могут быть неправильными. Поэтому, важно использовать калькуляторы, которые были разработаны и протестированы надежными разработчиками.

🗂️ Где можно применить калькулятор

Калькулятор объема параллелепипеда может быть использован во многих областях, где требуется расчет объема параллелепипеда. Некоторые из таких областей включают:

  1. Строительство. Калькулятор объема параллелепипеда может использоваться строителями при расчете объема блоков в форме параллелепипеда, бетонных блоков, кирпичей и других материалов, используемых в строительстве.
  2. Производство. Калькулятор объема параллелепипеда может использоваться в производственных процессах для расчета объема материалов, таких как металл, пластик, стекло и другие, используемых в производстве изделий.
  3. Логистика. Калькулятор объема параллелепипеда может использоваться при планировании грузоперевозок, чтобы определить, сколько грузовых мест может вместить транспортное средство.
  4. Образование. Калькулятор объема параллелепипеда может использоваться учителями математики в школах и университетах для обучения геометрии и расчета объема.
  5. Интерьер и дизайн. Калькулятор объема параллелепипеда может использоваться в дизайне интерьера для расчета объема элементов в форме параллелепипеда, таких как шкафы, полки, столы и другие.
  6. Ремонт и обслуживание. Калькулятор объема параллелепипеда может использоваться в ремонте и обслуживании, чтобы определить количество материалов, необходимых для замены элементов, таких как плитка, обои и другие.

🤔 Как вычислить объем параллелепипеда самостоятельно

Объем параллелепипеда можно вычислить самостоятельно, используя формулу:

V = a * b * h

где a, b, и h – это соответственно длины трех сторон параллелепипеда.

Шаги для вычисления объема параллелепипеда:

  1. Измерьте длину одной из сторон параллелепипеда и запишите ее значение. Обозначим ее как “a”.
  2. Измерьте длину второй стороны и запишите ее значение. Обозначим ее как “b”.
  3. Измерьте высоту параллелепипеда и запишите ее значение. Обозначим ее как “h”.
  4. Умножьте значение “a” на значение “b”.
  5. Умножьте результат из шага 4 на значение “h”.
  6. Полученный результат будет объемом параллелепипеда.

Например, если длина первой стороны равна 3 см, длина второй стороны равна 4 см, а высота равна 5 см, то объем параллелепипеда будет:

V = 3 см * 4 см * 5 см = 60 куб. см

🤓 Полезные советы

Несколько советов, которые могут помочь при вычислении объема параллелепипеда:

  1. Определите тип параллелепипеда: правильный, прямоугольный или наклонный. Это позволит выбрать правильную формулу для расчета объема.
  2. Измерьте длину, ширину и высоту параллелепипеда в соответствующих единицах измерения. Обычно используются метры, сантиметры или дюймы.
  3. Убедитесь, что все измерения были взяты в одной системе измерения. Если это не так, преобразуйте измерения в одну систему измерения.
  4. Примените правильную формулу для расчета объема, в зависимости от типа параллелепипеда. Для правильного параллелепипеда объем равен длине ребра в кубе. Для прямоугольного параллелепипеда объем равен произведению длины, ширины и высоты. Для наклонного параллелепипеда объем равен площади основания, умноженной на высоту.
  5. Проверьте свои вычисления, чтобы избежать ошибок. Дважды проверьте формулу и убедитесь, что все измерения были взяты правильно.
  6. Используйте калькулятор или компьютерную программу для автоматического расчета объема. Это может сократить время и снизить вероятность ошибок.
  7. Округляйте результат до нужного количества знаков после запятой, в зависимости от требований задачи.

❓ Вопросы и ответы

А вот несколько ответов на часто задаваемые вопросы про вычисление объема параллелепипеда.

Что такое параллелепипед и как он выглядит?

Параллелепипед – это геометрическое тело, имеющее шесть прямоугольных граней. Он выглядит как прямоугольный блок с равными гранями и прямыми углами между ними.

Как рассчитать объем параллелепипеда?

Объем параллелепипеда можно вычислить, умножив длину, ширину и высоту параллелепипеда. Формула для расчета объема V = l * w * h, где V – объем, l – длина, w – ширина и h – высота параллелепипеда.

Как измерить длину, ширину и высоту параллелепипеда?

Для измерения длины, ширины и высоты параллелепипеда необходимо использовать линейку или мерную ленту. Длину измеряют вдоль одной из его граней, ширину – вдоль другой грани, а высоту – перпендикулярно этим граням.

Как связаны площадь основания и высота с объемом параллелепипеда?

Объем параллелепипеда зависит от площади его основания и высоты. Чем больше площадь основания и высота параллелепипеда, тем больше будет его объем.

В каких единицах измеряется объем параллелепипеда?

Объем параллелепипеда измеряется в кубических единицах длины, таких как кубические метры, кубические сантиметры, кубические дюймы и т. д.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.
  • Калькулятор площади трапеции. Рассчитайте онлайн площадь трапеции, не только зная длины ее оснований и высоту, но и по другим известным параметрам, например, диагоналям.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

В данной публикации мы рассмотрим, как можно найти объем параллелепипеда и разберем примеры решения задач для закрепления материала.

  • Формула вычисления объема параллелепипеда

    • 1. Общая формула

    • 2. Объем прямоугольного параллелепипеда

  • Примеры задач

Формула вычисления объема параллелепипеда

1. Общая формула

Объем любого параллелепипеда равняется произведению площади его основания на высоту.

V = Sосн ⋅ h

Объем параллепипеда

  • Sосн – площадь основания (ABCD или EFHG, равны между собой);
  • h – высота.

Данная формула справедлива для всех видов геометрической фигуры:

  • наклонной – боковые грани не перпендикулярны основаниям;
  • прямой – все боковые грани (4 шт.) являются прямоугольниками;
  • прямоугольной – все грани (боковые и основания) являются прямоугольниками;
  • ромбоэдра – все грани являются равными ромбами;
  • куба – все грани представляют собой равные квадраты.

2. Объем прямоугольного параллелепипеда

Объем фигуры равен произведению его длины на ширину на высоту.

V = a ⋅ b ⋅ c

Объем прямоугольного параллепипеда

Формула следует из следующих утверждений:

  • Основанием фигуры является прямоугольник, площадь которого считается как произведение его длины (a) на ширину (b).
  • Высота фигуры – это длина боковой грани (c).

Примеры задач

Задание 1
Найдите объем параллелепипеда, если известно, что площадь его основания равняется 20 см2, а высота – 7 см.

Решение:
Используем первую формулу, подставив в нее известные нам значения:
V = 20 см2 ⋅ 7 см = 140 см3.

Задание 2
Дан прямоугольный параллелепипед. Длина и ширина его основания равны 9 см и 5 см, соответственно, а высота составляет 6 см. Найдите объем фигуры.

Решение:
Воспользуемся формулой для данного типа фигуры:
V = 9 см ⋅ 5 см ⋅ 6 см = 270 см3.

Определение параллелепипеда

Параллелепипед — это призма, основанием которой является параллелограмм.

Онлайн-калькулятор объема параллелепипеда

Как и у куба, у этого многогранного тела есть двенадцать ребер, шесть граней и восемь вершин. Вид параллелепипеда зависит от геометрической фигуры, лежащей в основании, и от угла, образованного им при пересечении с гранями.

obemparallelepipeda.svg

Если его гранями являются прямоугольники, то он называется прямоугольным.
Если такие прямоугольники имеют отношение только к боковым граням, то он называется прямым.
Иногда бывают случаи, когда эти грани образуют не прямой угол с основанием. Тогда в данном случае параллелепипед является наклонным.
Если он состоит исключительно из равных ромбов, то он называется ромбоэдром.
Если все грани параллелепипеда являются одинаковыми квадратами, то получаем куб. Таким образом, куб — это частный случай параллелепипеда.

Формула объема прямоугольного параллелепипеда

Объемом такого параллелепипеда называется произведение всех его трех измерений: длины, ширины, высоты. Вычисляется он так:

Объем прямоугольного параллелепипеда

V=a⋅b⋅cV=acdot bcdot c

a,b,ca, b, c — длина, ширина и высота прямоугольного параллелепипеда.

Рассмотрим несколько примеров.

Задача 1

Найти объем прямоугольного параллелепипеда, если известны его длина, равная 5 см.5text{ см.}, ширина, имеющая длину 10 см.10text{ см.} и высота длиной в 7 см.7text{ см.}

Решение

a=5a=5
b=10b=10
c=7c=7

Сразу подставляем в формулу численные значения:

V=a⋅b⋅c=5⋅10⋅7=350 см3V=acdot bcdot c=5cdot 10cdot 7=350text{ см}^3

Ответ

350 см3.350text{ см}^3.

Формула объема наклонного параллелепипеда

Объем наклонного параллелепипеда

V=Sосн⋅hV=S_{text{осн}}cdot h

SоснS_{text{осн}} — площадь основания наклонного параллелепипеда;
hh — его высота.

Задача 2

Вычислить объем наклонного параллелепипеда, если в его основании лежит прямоугольник со сторонами в 4 см.4text{ см.} и 5 см.5text{ см.}, а высота его равна 10 см.10text{ см.}

Решение

a=4a=4
b=5b=5
h=10h=10

Находим площадь основания, то есть площадь прямоугольника:

Sосн=a⋅b=4⋅5=20S_{text{осн}}=acdot b=4cdot 5=20

Сам объем равен:

V=Sосн⋅h=20⋅10=200 см3V=S_{text{осн}}cdot h=20cdot 10=200text{ см}^3

Ответ

200 см3.200text{ см}^3.

Формула объема параллелепипеда через определитель

Альтернативным способом нахождения объема параллелепипеда является вычисление смешанного произведения векторов, на которых построен данный параллелепипед.

Пусть параллелепипед построен на векторах a⃗vec{a}, b⃗vec{b} и c⃗vec{c} с координатами:

a⃗=(ax,ay,az)vec{a}=(a_x, a_y, a_z)
b⃗=(bx,by,bz)vec{b}=(b_x, b_y, b_z)
c⃗=(cx,cy,cz)vec{c}=(c_x, c_y, c_z),

тогда объем соответствующего параллелепипеда это определитель, составленный из этих координат:

Объем параллелепипеда как определитель

V=∣axayazbxbybzcxcycz∣V=begin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}

Задача 3

Найти объем параллелепипеда через смешанное произведение векторов, координаты которых таковы: a⃗=(2,3,5)vec{a}=(2, 3, 5), b⃗=(1,4,4)vec{b}=(1, 4, 4), c⃗=(3,5,7)vec{c}=(3, 5, 7).

Решение

a⃗=(2,3,5)vec{a}=(2, 3, 5)
b⃗=(1,4,4)vec{b}=(1, 4, 4)
c⃗=(3,5,7)vec{c}=(3, 5, 7)

По формуле:

V=∣235144357∣=2⋅4⋅7+3⋅4⋅3+5⋅1⋅5−5⋅4⋅3−2⋅4⋅5−3⋅1⋅7=56+36+25−60−40−21=−4V=begin{vmatrix}
2 & 3 & 5 \
1 & 4 & 4 \
3 & 5 & 7 \
end{vmatrix}=2cdot4cdot7 + 3cdot4cdot3 + 5cdot1cdot5 – 5cdot4cdot3 – 2cdot4cdot5 – 3cdot1cdot7 = 56 + 36 + 25 – 60 – 40 – 21 = -4

Мы должны взять модуль этого числа, так как объем это неотрицательная величина:

V=4 см3V=4text{ см}^3

Ответ

4 см3.4text{ см}^3.

У вас не получается решить задачу по геометрии? Наши эксперты помогут вам!

Тест по теме «Объем параллелепипеда»

Добавить комментарий