Как найти объем прямой призмы через угол

Определение призмы

Призма — многогранное тело, основаниями которого являются два равных многоугольника, лежащие в параллельных плоскостях. Остальными гранями являются параллелограммы.

Такие параллелограммы в призме называются боковыми.

obemprizmy.svg

Онлайн-калькулятор объема призмы

Призмы разделяют на некоторые типы:

  1. Треугольная призма — у нее основания — треугольники;
  2. Четырехугольная призма — у нее основания — четырехугольники;
  3. Пентапризма — пятиугольная призма.

Деление, в общем, продолжается до бесконечности.

Виды призм

Прямая — у такой призмы боковые грани образуют с основаниями прямой угол.
Правильная — ее основанием является какой-либо правильный многоугольник.
Усеченной называется призма, у которой основания не параллельны друг другу.

Формула объема призмы

Объем прямой призмы находится так же, как и объем других многогранников — путем умножения площади основания на высоту.

Объем призмы

V=Sосн⋅hV=S_{text{осн}}cdot h

SоснS_{text{осн}} — площадь основания призмы;
hh — высота призмы.

Разберем задачу на нахождение объема прямой призмы.

Задача

Найти объем призмы, если ее основанием является равнобедренный треугольник с равными сторонами по 5 см5text{ см} и основанием в 6 см6text{ см}. Высота призмы равна 10 см10text{ см}.

Решение

a=5a=5
b=6b=6
h=10h=10

Вычисляем площадь основания. Нужно провести высоту в данном равнобедренном треугольнике. Тогда, по теореме Пифагора, получаем:

a2=l2+(b2)2a^2=l^2+Big(frac{b}{2}Big)^2,

где ll — высота равнобедренного треугольника.

Отсюда:

l2=a2−(b2)2l^2=a^2-Big(frac{b}{2}Big)^2

l=a2−(b2)2l=sqrt{a^2-Big(frac{b}{2}Big)^2}

l=25−9l=sqrt{25-9}

l=4l=4

Площадь равнобедренного треугольника SS это половина от произведения его основания на высоту:

S=12⋅b⋅l=12⋅6⋅4=12S=frac{1}{2}cdot bcdot l=frac{1}{2}cdot 6cdot 4=12

В нашем случае этот треугольник является основанием призмы, поэтому:

S=SоснS=S_{text{осн}}

Тогда объем призмы найдется по формуле:

V=Sосн⋅h=12⋅10=120 см3V=S_{text{осн}}cdot h=12cdot 10=120text{ см}^3

Ответ

120 см3.120text{ см}^3.

На нашем сайте вы можете оформить решение задач на заказ по самым низким ценам!

Тест по теме «Объем призмы»

Объем призмы

Для нахождения объема призмы применяется общая универсальная формула:

V = Sh

Универсальная формула нахождения объема любой призмы и универсальная формула нахождения объема любой правильной призмы (в основании которой лежит правильный многоугольник)
где:

V – объем призмы
Vn – объем призмы, в основании которой лежит правильный многоугольник с n сторонами
Sb – площадь основания призмы
h – высота призмы
n – количество сторон правильного многоугольника, который лежит в основании призмы
a – длина стороны правильного многоугольника

Как найти объем треугольной призмы (с треугольником в основании)

Если в основании призмы лежит треугольник, то для нахождения ее объема можно применить формулы нахождения площади треугольника и умножить полученное значение на высоту призмы.
Треугольная призма с отмеченными на рисунке сторонами основания описанной и вписанной окружностью и высотой основания

Формулы нахождения объема призмы, в основании которой лежит произвольный треугольник через его стороны, углы, радиус вписанной и описанной окружности
Объем треугольной призмы можно найти через высоту основания ha и сторону a, на которую эта высота опущена (Формула 2). Не путайте ha и h.
Объем треугольной призмы можно найти через радиус вписанной окружности r и сумму длин сторон основания (a,b,c).(Формула 3)
Объем треугольной призмы можно вычислить как произведение длин сторон основания на четыре радиуса описанной окружности R, умноженное на высоту призмы. (Формула 4)
Также, зная радиус описанной окружности, объем треугольной призмы можно найти как произведение синусов всех углов основания на квадрат радиуса описанной окружности, умноженное на удвоенную высоту призмы (Формула 5).
Если известен угол между двумя сторонами основания и сами эти стороны, то половина произведения сторон основания на синус угла между ними и на высоту призмы, также позволит вычислить ее объем (Формула 6).

 Есть также формулы нахождения объема призмы для специальных случаев, когда в основании лежит геометрическая фигура с “особенностями”. Например, если в основании прямой призмы лежит равносторонний, прямоугольный или равнобедренный треугольник, тогда количество формул, которыми можно воспользоваться для расчета объем призмы, существенно расширяется:

Прямые призмы, в основании которых лежит треугольник - правильный (равносторонний), прямоугольный, равнобедренный с обозначениями размеров сторон, вписанными и описанными окружностями

Объем правильной треугольной призмы (с правильным треугольником в основании)

На рисунке выше правильная треугольная призма изображена синим цветом.

Формула объема призмы с правильным треугольником в основании для нахождения его через стороны, радиус вписанной и описанной окружности через высоту
Где:
V – объем правильной треугольной призмы
ha – высота основания, опущенная на сторону основания a
h – высота призмы
r – радиус вписанной в основание окружности
R – радиус окружности, описанной вокруг основания правильной треугольной призмы

Объем призмы с прямоугольным треугольником в основании

Призма с прямоугольным треугольником в основании, с отмеченными сторонами, углами, вписанной и описанной окружностями
Формулы вычисления объема призмы с прямоугольным треугольником в основании. Исходя из длин сторон прямоугольного треугольника, его углов, радиусов вписанной или описанной окружности
Где:
V – объем призмы с прямоугольным треугольником в основании
h – высота призмы
α – угол основания, противолежащий стороне a (катету a) прямоугольного треугольника
β – угол основания, противолежащий стороне b (катету b) прямоугольного треугольника
a,b – катеты прямоугольного треугольника, который является основанием призмы
c – гипотенуза прямоугольного треугольника, который является основанием призмы
r – радиус вписанной в основание призмы окружности
R – радиус описанной вокруг основания призмы, которое является прямоугольным треугольником, окружности

Учтите, что если, вокруг прямоугольного треугольника описана окружность, то гипотенуза треугольника лежит на ее диаметре, то есть c = 2R. Поэтому, при необходимости, можно заменить в формулах c на (2R).

Объем призмы с равнобедренным треугольником в основании

Призма с равнобедренным треугольником в основании с обозначенными высотой равнобедренного треугольника, сторонами и углами
  Если в основании призмы лежит равнобедренный треугольник, для нахождения ее объема можно воспользоваться следующими формулами:
Формулы нахождения объема призмы с равнобедренным треугольником в основании
где:
V– объем призмы с равнобедренным треугольником в основании
h – высота призмы
hb – высота равнобедренного треугольника, опущенная на его основание
a – длина одной из равных сторон равнобедренного треугольника, лежащего в основании призмы
b – основание равнобедренного треугольника
α – угол между сторонами и основанием равнобедренного треугольника
β – угол между равными сторонами равнобедренного треугольника, который лежит в основании призмы

Объем параллелепипеда и куба

Если в основании прямой призмы лежит прямоугольник, то количество формул для нахождения объема такой призмы также будет больше:
Прямые четырехугольные призмы, в основании которых лежит четырехугольник - параллелепипед и куб с обозначенными размерами сторон
Формулы нахождения объема параллелепипеда и куба, в том числе через радиус вписанной и описанной окружности
где:
V – объем призмы, в основании которой лежит прямоугольник
Vc – объем куба
h – высота призмы
a – длина стороны основания
b – длина второй стороны основания
R – радиус окружности, описанной вокруг основания куба
r – радиус окружности, вписанной в основание куба


0
 

 Призма. Параллелепипед. Куб. Решение задач |

Описание курса

| Площадь боковой поверхности призмы 

Призма

Автор статьи

Щебетун Виктор

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Понятие призмы

Определение 1

Геометрическая фигура, образованная двумя равными $n-$угольниками, лежащими в параллельных плоскостях, вершины которых соединены между собой так, что соответствующая вершина первого $n-$угольника соединена с соответствующей вершиной второго $n-$уголника, называется призмой (рис. 1).

Призма

Рисунок 1. Призма

Параллельные $n-$уголники называются основаниями призмы, параллелограммы их соединяющие — боковыми гранями, стороны параллелограммов — сторонами призмы, а вершины $n-$угольников — вершинами призмы.

Виды призм

В зависимости от количества углов в основании призмы ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Рисунок 2.

Отметим, что параллелепипед является частным случаем четырехугольной призмы.

Определение 2

Призма, у которой все двугранные углы равны ${90}^0$ называется прямой (рис. 3). В противном же случае она является наклонной.

Прямая призма

Рисунок 3. Прямая призма

Определение 3

Прямая призма, в основании которой лежат правильные $n-$уголники называется правильной (рис. 4).

Рисунок 4.

Площадь призмы

Полная площадь призмы определяется следующим образом

где $S_{бок}$ – сумма площадей всех ее боковых граней, а $S_{осн}$ – площадь основания данной призмы.

Рассмотрим и докажем следующую теорему.

«Призма» 👇

Доказательство.

Рассмотрим прямую $n-$угнольную призму, длины оснований которой равны $a_1, a_2,dots ,a_n$ соответственно. Как мы знаем, высота прямой призмы равняется боковой стороне данной призмы. Обозначим её через $h$. Тогда, так как боковые грани являются прямоугольниками, площади боковых граней равняются, соответственно

Так как площадь боковой поверхности — сумма площадей всех боковых граней, то

Теорема доказана.

Объем призмы

Теорема 2

Объем прямой призмы с прямым треугольником при основании определяется как произведение площади его основания на высоту.

Доказательство.

Рассмотрим прямую призму $ABDA_1B_1D_1$ c прямоугольным треугольником при основании. Дополним его до прямоугольного параллелепипеда (рис. 5)

Рисунок 5.

Следовательно,

Теорема доказана.

Теорема 3

Объем прямой призмы определяется как произведение площади его основания на высоту.

Доказательство.

  1. Рассмотрим прямую треугольную призму $ABDA_1B_1D_1$. Разделим ее на две призмы с прямыми треугольниками при основании с объемами $V_1 и V_2$ ($BC$ и $B_1C_1$ — высоты оснований) (рис. 6).

    Рисунок 6.

    По теореме 2, получим

    [V_{пр}=V_1+ V_2=S_{ABC}h+S_{DBC}h={h(S}_{ABC}+S_{DBC})=S_{осн}h]

  2. Любую призму мы всегда может разделять на несколько прямоугольных призм, следовательно эта формула верна для произвольно размерной прямой призмы.

Теорема доказана.

Пример задачи

Пример 1

Найти объем прямой призмы с равнобедренным треугольником при основании и высотой $h=3$, если боковая сторона треугольника равна $4$, а угол между ними равен ${30}^0$.

Решение.

Так как боковая сторона основания равна $3$, а угол между ними равен ${30}^0$. То

[S_{осн}=frac{1}{2}cdot 4cdot 4cdot sin{30}^0=8cdot frac{1}{2}=4]

По теореме 3, получим

[V=4cdot 3=12]

Ответ: $12.$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 19.04.2023

Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

$С_1Н$ – высота

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$h$ – высота призмы.

$S_{бок}=P_{осн}·h$

$S_{п.п}=S_{бок}+2S_{осн}$

$V=S_{осн}·h$

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  1. $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ – радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.

В основании лежит четырехугольник

1. Прямоугольник

$S=a·b$, где $а$ и $b$ – смежные стороны.

2. Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба

$S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.

3. Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны.

2. Квадрат

$S=a^2$, где $а$ – сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^2√3}/{4}={3·a^2√3}/{2}$, где $а$ – сторона правильного шестиугольника.

Пример:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Решение:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

$АВ=√{5^2+12^2}=√{25+144}=√{169}=13$

$Р=13·4=52$

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$

Ответ: $1280$

Цилиндр – это та же призма, в основании которой лежит круг.

$S_{бок}=P_{осн}·h=2πRh$

$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR^2=2πR(h+R)$

$V=S_{осн}·h=πR^2 h$

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ – средняя линия, так как соединяет середины соседних сторон.

$MN {//} AC, MN = {AC}/{2}$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ – коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.

Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ – радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα;$

$b^2=a^2+c^2-2·a·c·cos⁡β;$

$c^2=b^2+a^2-2·b·a·cosγ.$

На этой странице вы узнаете

  • Чем упаковка стикеров похожа на призму?
  • Как можно попасть в призму в реальной жизни?
  • Как сложить игральные кости из листа бумаги?
  • Как найти объем воды в аквариуме? 

Слышали такое выражение «смотреть сквозь призму чего-либо»? Оно значит ситуацию, в которой мы воспринимаем что-либо под влиянием каких-то убеждений или представлений. Замысловато, конечно… Возможно, потому что и сама призма — непростое понятие. Давайте разберемся с ней с точки зрения математики.

Определение призмы

Многие из нас пользуются стикерами. Для записи своих дел, для закладок, для пометок при ведении конспектов. Даже если мы ими не пользуемся, то наверняка видели их в магазинах или у родственников и друзей. 

Один такой стикер можно принять за плоскость. Теперь вспомним, как выглядит упаковка с ними. Много-много стикеров накладываются друг на друга и получается небольшая объемная фигура, сверху и снизу которой лежат два абсолютно одинаковых листа. При этом сразу заметим, что нижний и верхний стикеры будут параллельны друг другу. 

На самом деле, упаковка со стикерами является не чем иным, как призмой! 

Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. 

Чем упаковка стикеров похожа на призму?

Упаковка стикеров является объемной фигурой, в основаниях которой лежат равные прямоугольники. А боковые  стороны упаковки являются параллелограммом. Таким образом, упаковка стикеров полностью соответствует определению призмы. 

Определение может показаться немного запутанным, но в нем нет ничего страшного. Разберемся, поближе взглянув на составные призмы. 

Строение призмы

Представим себе обычную коробку. Ее дно и крышка равны между собой и лежат в параллельных плоскостях. Это и есть равные многоугольники. Также их называют основаниями призмы. 

Посмотрим на стенки коробки. Они являются параллелограммами, просто с прямыми углами. Подробнее про параллелограммы можно прочитать в статье «Параллелограмм». Эти параллелограммы называются боковыми гранями призмы. 

Возьмем линейку и измерим расстояние между основаниями призмы. Для этого из любой точки одного основания проведем перпендикуляр к другому. 

Подробнее про расстояния между плоскостями можно узнать в статьях «Углы в пространстве» и «Расстояния между фигурами». 

Может возникнуть вопрос, что мы сейчас нашли? Мы нашли высоту призмы. 

Высота призмы — перпендикуляр, опущенный из любой точки одного основания на другое основание призмы. 

В задачах намного удобнее опускать перпендикуляр не из произвольной точки, а из вершины призмы. 

Рассмотрим элементы призмы

Ребро — это линия пересечения двух плоскостей. 

Представим, что вместо картонных стенок в нашей коробке ткань, которую нам нужно натянуть на каркас так, чтобы коробка не изменилась. В этом случае все прямые этого каркаса и будут ребрами.

Ребра бывают двух видов

  • ребра оснований,
  • боковые ребра. 

Отличить их также легко: ребра основания являются стороной многоугольника, который в нем лежит, в то время как боковые ребра не принадлежат основаниям. 

У боковых ребер есть одно очень важное свойство: они равны между собой и параллельны. 

Диагональ призмы — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. 

Например, мы можем взять клетку попугая и от угла до угла сделать ему жердочку, чтобы птичке было весело жить. Эта жердочка и будет диагональю призмы. 

Виды призм

Вернемся к рассуждениям о том, чем упаковка стикеров похожа на призму. Например, куб и параллелепипед будут отличаться. А если в основании призмы будет лежать треугольник или шестиугольник? Или двадцатиугольник? Разделим призмы на несколько видов.

Мы рассмотрим две классификации. 

В первом случае будем рассматривать призмы по фигурам, которые лежат в основании. В многоугольнике может быть множество сторон, а значит, и в основании призмы может быть треугольник, четырехугольник, шестиугольник, десятиугольник и так далее. 

В зависимости от фигуры в основании призмы могут называться по-разному. Вот три основных, которые чаще всего встречаются при решении заданий:

  • треугольная призма,
  • четырехугольная призма,
  • шестиугольная призма. 

Аналогичным образом можно дать название любой призме, например, десятиугольная призма или стоугольная призма. 

В определении призмы сказано, что в боковых гранях лежат параллелограммы. До этого мы чертили только прямоугольники, но в боковых гранях могут лежать не только они. 

С этим связана вторая классификация призм. По этому признаку призмы делятся всего на два вида:

  • прямые,
  • наклонные. 

Разберемся в них чуть подробнее. 

Прямая призма — призма, боковые ребра которой перпендикулярны основаниям. 

В этом случае боковые ребра и ребра оснований действительно образовывают прямоугольник. 

Наклонная призма — призма, боковые ребра которой находятся под углом к основаниям. 

Где мы можем найти прямые и наклонные призмы? Оказывается, в архитектуре. Обычный жилой дом типовой застройки будет прямой призмой. А вот примером наклонной призмы может служить комплекс зданий “Ворота Европы” в Мадриде. 

Чуть подробнее остановимся на прямых призмах. Они встречаются достаточно часто и обладают несколькими важными свойствами. 

Посмотрите на свою комнату. Если по плану квартиры она будет многоугольником, то вы как бы сидите в призме. Теперь ответим на вопрос: как найти высоту комнаты? 

Простой ответ: померить по стене. А если посмотреть на угол, то можно заметить, что ребро призмы совпадает с высотой. Таким образом, мы получаем первое свойство прямых призм. 

Свойство 1. Высота прямой призмы совпадает с её боковым ребром. 

Посмотрим на стены комнаты, на их форму. Они все являются прямоугольниками, верно? 

Свойство 2. Все боковые грани прямой призмы — прямоугольники. 

Как можно попасть в призму в реальной жизни?

Многие комнаты и помещения, особенно в типовой застройке, обладают формой призмы. Сидя в комнате, в классе, в столовой, даже в автобусе — мы как бы находимся  внутри большой призмы.

Если мы в основании прямой призмы разместим правильный многоугольник, у нас получится правильная призма.

Правильная призма — прямая призма, в основании которой лежит правильный многоугольник. 

Например,  в правильной треугольной призме будет лежать равносторонний треугольник, а в правильной шестиугольной призме — правильный шестиугольник. 

Определение параллелепипеда

Еще одной разновидностью прямоугольной призмы является параллелепипед. 

Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. 

Параллелепипеды встречаются повсюду: коробки, мебель, комнаты, здания, склады, магазины. Поэтому изучить их не составит труда. 

Свойство параллелепипеда, видимое невооруженным глазом: противоположные грани параллелепипеда равны. Как пример, вспомним ту же комнату: потолок и пол равны, так же как и стены, находящиеся напротив друг друга. 

Нельзя не упомянуть про одно очень важное свойство параллелепипеда

  • Все его диагонали пересекаются в одной точке и этой точкой делятся пополам. Это свойство справедливо для всех видов параллелепипеда. 

Какие бывают параллелепипеды? 

Параллелепипеды также бывают прямыми и наклонными. В этих случаях все определения такие же, как и для всех остальных призм. 

Прямой параллелепипед

Рассмотрим несколько интересных свойств прямого параллелепипеда. 

1 свойство. Боковые ребра прямого параллелепипеда перпендикулярны основаниям. 

2 свойство. Высота прямоугольного параллелепипеда равна длине его бокового ребра. 

3 свойство. Боковые грани, которые лежат напротив друг друга, равны между собой и являются прямоугольниками. 

Прямые параллелепипеды можно разделить еще на два вида:

  • Прямой параллелепипед: в основании лежит параллелограмм;
  • Прямоугольный параллелепипед: в основании лежит прямоугольник. 

Рассмотрим свойства прямоугольного параллелепипеда. 

1 свойство. Все грани прямоугольного параллелепипеда являются прямоугольниками. 

2 свойство. Все углы в прямоугольном параллелепипеде, образованные двумя гранями, равны 90°. 

3 свойство. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин его ширины, длины и высоты. 

Таким образом, мы получаем важную формулу для параллелепипеда. 

d2 = a2 + b2 + c2

Пример 1. Дан прямоугольный параллелепипед. Два ребра, выходящие из одной его вершины, равны (sqrt{35}) и (sqrt{46}). Диагональ параллелепипеда равна 15. Найдите третье ребро параллелепипеда. 

Решение. Пусть третье ребро параллелепипеда равняется х. Получаем уравнение:

(15^2 = (sqrt{35})^2 + (sqrt{46})^2 + x^2)
225 = 35 + 46 + x2
x2 = 144
x = 12

Ответ: 12. 

У прямоугольного параллелепипеда существует еще несколько видов. Прямоугольные параллелепипеды делятся на:

  • Произвольный прямоугольный параллелепипед. В основании может лежать прямоугольник. 
  • Правильный прямоугольный параллелепипед. В основании лежит правильный четырехугольник, то есть квадрат. 
    При этом боковые ребра не равны ребрам основания. Следовательно, в основаниях будут лежать квадраты, а в боковых гранях прямоугольники. 
  • Куб. В основании лежит квадрат, а боковые ребра равны ребрам основания. 
    В кубе все ребра равны, а все его грани будут квадратом. 

Таким образом, мы рассмотрели все виды параллелепипеда. 

Формулы для призмы

Однако ни одна задача не может быть решена без формул. Поэтому необходимо рассмотреть несколько основных формул, которые могут встретиться не только в задачах, но и в жизни. 

Немного вспомним моделирование, а именно развертку кубика. Мы знаем, что из листа бумаги без труда можно сложить кубик, если правильно его вычертить. 

Как сложить игральные кости из листа бумаги?

Задумали вы вечером сыграть с семьей или друзьями в настольную игру. Но вот незадача: игральные кости опять куда-то запропастились. Не беда.Достаточно вычертить на листе бумаги несколько квадратов, вырезать получившуюся фигуру, согнуть по ребрам и склеить между собой с помощью клея. В итоге получатся кубики для игры.

На рисунке оранжевым показаны основания, а желтым боковые грани нашего будущего кубика. А теперь представим, что нам нужно найти площадь боковой поверхности. Как это сделать?

Нужно найти площади желтых квадратиков и сложить их. 

Площадь боковой поверхности призмы — сумма площадей всех боковых ее граней. 

Единой формулы тут нет, поскольку призмы могут очень сильно отличаться друг от друга. В произвольных призмах придется считать площадь каждой боковой грани, а уже после их складывать. 

Но есть один фокус! Правда, он работает только для прямой призмы. Если по условию дана прямая призма, то можно воспользоваться формулой 

Sбок. = P * h

В этой формуле Р — периметр основания, h — высота призмы, которая совпадает с высотой боковой грани. 

Пример 1. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равняется 2, а высота 10. 

Решение

Шаг 1. Поскольку правильная призма по определению прямая, мы можем воспользоваться формулой S = Ph. 

Шаг 2. В основании правильной призмы лежит правильный шестиугольник, следовательно, периметр основания будет равен 6 * 2 = 12. 

Шаг 3. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 12 * 10 = 120. 

Ответ: 120. 

Пример 2. Дана прямая треугольная призма, в основании которой лежит прямоугольный треугольник с катетами 12 и 5. Высота призмы равна 13. Найдите площадь ее боковой поверхности. 

Решение. 

Шаг 1. Поскольку призма прямая, можно воспользоваться формулой S = Ph. 

Шаг 2. Найдем периметр основания. Для этого необходимо найти гипотенузу треугольника. Воспользуемся теоремой Пифагора: (sqrt{12^2 + 5^2} = sqrt{144 + 25} = sqrt{169} = 13). 

Шаг 3. Найдем периметр основания: P = 12 + 5 + 13 = 30. 

Шаг 4. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 30 * 13 = 390. 

Ответ: 390. 

Мы научились находить площадь боковой поверхности. А как найти всю площадь призмы? Вспомним нашу развертку с кубиком. Чтобы найти всю площадь кубика, нужно найти площадь всех квадратов, из которых он состоит. То есть и площадь боковой поверхности, и площадь оснований. 

Площадь полной поверхности призмы — сумма площадей всех граней. 

Следовательно, нам нужно сложить площади всех боковых граней и дважды площадь основания. Получаем следующую формулу. 

S = Sбок + 2Sосн

Вспомним обычный хлеб, черный или белый. Его форма очень приближена к параллелепипеду. Тогда его корочка будет площадью полной поверхности параллелепипеда. А все что внутри, то есть мякиш, можно принять за объем. 

Пример 3. Дана прямая призма, в основании которой лежит ромб с диагоналями 12 и 16. Боковое ребро призмы равно 25. Найдите площадь поверхности призмы. 

Решение. 

Шаг 1. Найдем площадь основания. Площадь ромба можно найти по формуле (frac{1}{2} * D_1 * D_2). Следовательно, площадь ромба равна (frac{1}{2} * 12 * 16 = 96). 

Шаг 2. Заметим, что диагонали ромба образуют четыре равных прямоугольных треугольника. Следовательно, чтобы найти сторону ромба, достаточно рассмотреть прямоугольный треугольник с катетами 6 и 8. По теореме Пифагора сторона ромба будет равна (sqrt{6^2 + 8^2} = sqrt{36 + 64} = sqrt{100} = 10).

Шаг 3. Периметр ромба будет равен 4 * 10 = 40. Тогда площадь боковой поверхности равна 40 * 25 = 1000. 

Шаг 4. Площадь полной поверхности будет равняться 1000 + 2 * 96 = 1000 + 192 = 1192.

Ответ: 1192

Пример 4. Площадь поверхности правильной четырехугольной призмы равняется 1980. Сторона основания равна 5. Найдите боковое ребро этой призмы. 

Решение. 

Шаг 1. Воспользуемся формулой S = Sбок + 2Sосн. Площадь основания будет равняться площади квадрата, то есть 5 * 5 = 25. 

Шаг 2. Подставим известные величины в формулу: 

1980 = Sбок + 2 * 25
Sбок = 1930

Шаг 3. Площадь боковой поверхности равна произведению периметра основания на высоту призмы. Периметр равен 5 * 4 = 20. Тогда получаем уравнение:

20h = 1930
h = 96,5

Шаг 4. Поскольку по условию дана правильная призма, то высота совпадает с боковым ребром. Следовательно, боковое ребро равняется 96,5.

Ответ: 96,5. 

Теперь рассмотрим, как найти объем призмы. Допустим, мы налили в прямоугольный аквариум немного воды. Как определить, сколько воды мы налили?

Для этого достаточно воспользоваться формулой объема призмы. 

V = Sосн. * h

Эта формула общая, однако для каждой призмы она может принять свой вид в зависимости от того, какую формулу нужно использовать для поиска площади основания или высоты. 

Например, чтобы найти объем воды в аквариуме, необходимо длину умножить на ширину и на высоту, а значит формула принимает вид V = abh. 

Как найти объем воды в аквариуме? 

Для этого достаточно перемножить ширину, длину аквариума и высоту воды. Тем самым мы найдем объем призмы, форму которой принимает вода в аквариуме. 

Пример 5. Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 12 и 15. Боковое ребро призмы равно 4. Найдите объем этой призмы. 

Решение. 

Шаг 1. Для начала найдем площадь основания. В этом случае мы можем воспользоваться формулой (frac{1}{2}ab). Площадь равна (frac{1}{2} * 12 * 15 = 90).

Шаг 2. Воспользуемся формулой объема призмы и подставим известные величины: 

V = 90 * 4 = 360.

Ответ: 360. 

Пример 6. Дан сосуд, в основании которого лежит правильный треугольник. В этот сосуд налили 3000 см3 воды. Высота жидкости оказалась равной 10 см. После этого в сосуд опустили шарик и высота изменилась с 10 см на 14 см. Найдите объем шарика. 

Решение. Немного вспомним физику, а именно тот факт, что объем вытесненной жидкости равен объему тела. Значит, чтобы найти объем шарика, необходимо найти насколько изменился объем воды. 

Шаг 1. Найдем площадь основания сосуда. Для этого немного преобразуем формулу объема: 
(S = frac{V}{h})
Тогда:
(S = frac{3000}{10} = 300)

Шаг 2. А теперь найдем объем после того, как в воду погрузили шарик. Он будет равен 300 * 14 = 4200. 

Шаг 3. Объем вытесненной жидкости равен 4200 — 3000 = 1200.

Ответ: 1200. 

Мы рассмотрели основные формулы, которые применяются для решения задач. Стоит заметить, что они универсальны, и в каждой задаче их рационально преобразовывать под ситуацию. 

Фактчек 

  • Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. Равные многоугольники называются основаниями призмы, а остальные стороны — боковыми гранями. В призме есть ребра — линии пересечения двух ее граней. Ребра как бы образуют каркас призмы. 
  • Призмы можно разделить на несколько видов по тому, какая фигура лежит в основании: треугольник, четырехугольник, шестиугольник или любой другой многоугольник. Призмы бывают прямые и наклонные. В прямых призмах боковые ребра перпендикулярны основанию, а в наклонных — нет. Правильная призма — прямая призма, в основании которой лежит правильный многоугольник. 
  • Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. Параллелепипеды бывают наклонными и прямыми. Прямые параллелепипеды включают в себя прямоугольные параллелепипеды, которые, в свою очередь, делятся на произвольные, правильные и кубы. 
  • В призме можно найти площадь боковой поверхности, площадь полной поверхности и объем. Для каждого из этих случаев необходимо пользоваться формулами. 

Проверь себя

Задание 1.
Что такое диагональ призмы?

  1. Отрезок, соединяющий две соседние вершины в призме.
  2. Отрезок, соединяющий противоположные углы в боковой грани призмы.
  3. Отрезок, соединяющий противоположные углы в основании призмы.
  4. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.  

Задание 2.
Что такое прямая призма?

  1. Призма, боковые ребра которой перпендикулярны основаниям.
  2. Призма, боковые ребра которой расположены под острым углом относительно основания.
  3. Призма, боковые ребра которой расположены под тупым углом относительно основания.
  4. Призма, в основании которой лежит прямоугольник.

Задание 3.
Как найти высоту прямой призмы?

  1. Высоту нужно найти с помощью оснований.
  2. Высота совпадает с боковым ребром.
  3. Необходимо найти расстояние между двумя вершинами, не принадлежащими одной грани.
  4. В прямой призме невозможно найти высоту. 

Задание 4.
Какая фигура лежит в основании прямоугольного параллелепипеда?

  1. Параллелограмм с острыми углами.
  2. Ромб с острыми углами.
  3. Трапеция.
  4. Прямоугольник. 

Задание 5. 
Как найти площадь полной поверхности призмы?

  1. Нужно найти сумму площадей всех боковых граней.
  2. Нужно сложить площадь боковой поверхности и площадь основания.
  3. Нужно сложить площадь боковой поверхности и удвоенную площадь основания.
  4. Нужно сложить площади оснований. 

Ответы: 1. — 4 2. — 1 3. — 2 4. — 4 5. — 3

Добавить комментарий