Как найти объем шара формула 6 класс

Многие из нас любят играть в футбол или, по крайней мере, почти каждый из нас
слышал про эту знаменитую спортивную игру. Всем известно,
что в футбол играют мячом.

Если спросить прохожего, форму какой геометрической фигуры имеет мяч, то часть
людей скажут, что форму шара, а часть, что формы сферы. Так кто же
из них прав? И в чем разница между сферой и шаром?

Важно!
Галка

Шар — это пространственное тело. Внутри шар
чем-либо заполнен. Поэтому у шара можно найти объем.

Примеры шара в жизни: арбуз и стальной шарик.

Шар и сфера, подобно кругу и окружности, имеют центр, радиус и диаметр.

Центр, радиус и диаметр шара (сферы)

Важно!
Галка

Сфера — поверхность шара. У сферы можно найти площадь поверхности.

Примеры сферы в жизни: волейбольный мяч и шарик для игры в настольный
теннис.

Как найти площадь сферы

Запомните!
!

Формула площади сферы:
S = 4πR2

Для того, чтобы найти площадь сферы, необходимо вспомнить,
что такое степень числа.
Зная определение степени,
можно записать формулу площади сферы следующим образом.

S = 4π R2 =
4πR · R;

Закрепим полученные знания и решим задачу на площадь сферы.

Зубарева 6 класс. Номер 692(а)

Условие задачи:

  • Вычислите площадь сферы, если её радиус равен
    1 м. (возьмите π как
    3)

Вспомнив, как выделить целую часть
и перемножить дроби,
воспользуемся формулой площади сферы:


S = 4 · πR2 =
4 · 3 ·

(1 ) 2 =

4 · ·

() 2 =

4 · ·

=

=

= =

=

=
45
м2

Как найти объем шара

Запомните!
!

  • Формула объема шара:
    V = πR3

Зная определение степени,
можно записать формулу объема шара следующим образом.

  • V =
    π R3 =

    π R · R · R;

Для отработки полученных знаний решим задачу на объем шара.

Зубарева 6 класс. Номер 691(а)

Условие задачи:

  • Вычислите радиус шара, если его объем равен
    4
    м3 (возьмите π как
    3)

Выразим из формулы объема шара радиус.

  • V =
    π R3
  • π R3
    = V

  • π R3

    =

  • R3

    =

Подставим в формулу известные нам значения. Число π
возьмем как задано в задании «3».


R3

= (3 ·

4) /

(4 · 3)

Чтобы не запутаться, отдельно рассчитаем
числитель дроби.


3 ·
4 =

3 ·
=

=

Теперь снова подставим полученное значение в нашу формулу:

  • R3

    =
    / (4 · 3)

    =

    / (4 · )

    =

    / () =

    =

    · () =

    = =

    =

    = 1

  • R3 = 1
  • R = 1 м

Важно!
Галка

Уважаемые родители!

При окончательном расчете радиуса
не надо заставлять ребенка считать кубический корень. Учащиеся
6-го класса еще не проходили и не знают определение корней в математике.

В 6 классе при решении такой задачи используйте метод перебора.

Спросите ученика, какое число, если его умножить 3 раза на самого себя даст
единицу.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

14 февраля 2019 в 22:59

Руслан Магомедов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Руслан Магомедов
Профиль
Благодарили: 0

Сообщений: 1

Рассчитайте объем чашки высотой 7 см с диаметром 6,5 с

0
Спасибоthanks
Ответить


В данной публикации мы рассмотрим, как можно найти объем шара и разберем примеры решения задач для закрепления материала.

  • Формула вычисления объема шара

  • Примеры задач

Формула вычисления объема шара

1. Через радиус

Объем (V) шара равняется четырем третьим произведения его радиуса в кубе и числа π.

Формула объема шара через радиус

Объем шара

Примечание: в расчетах значение числа π округляется до 3,14.

2. Через диаметр

Диаметр шара равняется двум его радиусам: d = 2R. А значит, формула вычисления объема может выглядеть следующим образом:

Формула объема шара через диагональ

Примеры задач

Задание 1
Вычислите объем шара, если его радиус равняется 3 см.

Решение:
Применив первую формулу (через радиус) получаем:
Формула вычисления объема шара через радиус

Задание 2
Найдите объем шара, если известно, что его диаметр равен 12 см.

Решение:
Используем вторую формулу, в которой задействован диаметр:
Формула нахождения объема шара через радиус

Нужно знать его радиус. Умножить 4/3 на число “пи” и на радиус шара в третьей степени. К примеру, объем шара с радиусом 2 метра будет: 4/3х3,14х8=33,5 куб.метра

автор вопроса выбрал этот ответ лучшим

Алиса в Стран­е
[363K]

5 лет назад 

Все, что нам нужно для вычисления объема шара – это просто знать его радиус и нехитрую формулу для расчета. Формула вот такая:

Допустим, радиус нашего шара равен 10 сантиметрам, подставляем 10 см в нашу формулу и получаем: V = 4/3 х 3,14 х 1000 = 4187 кубических сантиметров.

Марин­а Волог­да
[295K]

5 лет назад 

Чтобы найти объем шара (сферы) следует знать его радиус или диаметр.

Если радиус шара (сферы) известен, применяем следующую формулу:

Где “r” – радиус шара.

Известно, что “Пи” всегда равно 3,14.

Так же иногда в задачах дается диаметр шара (сферы). Если известен диаметр шара, применяется следующая формула:

Где “d” – это диаметр.

Любоп­ытств­о
[135K]

5 лет назад 

В выпускном, одиннадцатом (насколько я помню) классе учат находить объём шара вот так: высчитывают его по формуле: 4/3 Пи Х радиус в кубе. Думаю, что значение Пи всем известно, но на всякий случай сообщаю: π = 3,14.

В Рокот­ов
[278K]

5 лет назад 

Сначала определимся что такое шар – это точки пространства равноудаленные от центра шара. Чтобы найти объем шара, при известном значении пи (3,14), нужно знать значения его радиуса или половины радиуса -диаметра, при известном радиусе искомое можно получить по формуле:

Zolot­ynka
[551K]

5 лет назад 

Для начала разберемся, что представляет собой такая геометрическая фигура как шар.

Итак, шар – это твердое тело, у которого есть особенность: любая точка на поверхности шара будет находиться на одном и том же расстоянии от его центра. Данное расстояние известно как радиус. Максимально прямое расстояние через центр шара принято называть диаметром. Диаметр -вдвое больше радиуса.

Теперь посмотрим, как найти объем шара?

Объем сферы равен четырем третям произведения числа pi и радиуса, возведенного в куб. Формула будет выглядеть следующим образом:

**

Число pi, в задачах принято сокращать до двух десятых- 3,14.

Ninaa­rc
[481K]

5 лет назад 

Шар представляет собой часть пространства, которое ограничено сферой. Для определения объема шара имеется специальная формула, в которую следует подставить нужные значения. Формула для вычисления объема шара выглядит таким образом:

Из формулы становится ясно, что нам должен быть известен радиус шара (r), который затем потребуется возвести в третью степень. А число ПИ нам хорошо известно, оно в числовом значении выглядит так: π = 3,14.

Трибу­нька
[54.9K]

8 лет назад 

Чтобы вычислить объем шара надо знать формулу, где R – радиус шара.

текст при наведении

текст при наведении

Вот есть отличный сайт где можно онлайн высчитать объём шара. Этот сайт очень полезен для школьников, так как там много формул по геометрии, математике, физике и химии.

Кроме формул некоторые задачи можно решить сразу на сайте. Есть справочные таблицы. Сайт очень удобно и грамотно сделан, все легко и просто на нём искать.

Нахождение объема шара, тема урока по Геометрии, если я не ошибаюсь, одиннадцатого класса общеобразовательной школы.

Для нахождения объема геометрического тела Шар, нужно знать диаметр диаметр этого тела, разделив который на два получим его радиус. А далее подставляем это значение (радиус) в ниже приведенную формулу, и на выходе получаем объем шара.

РУДЬК­О
[257K]

5 лет назад 

Объём шара, это всем известная формула, которая на словах звучит как “четыре третьих пи эр в кубе”. То есть это проиизведение частного от 43 умноженное на число “Пи” и радиуса шара, возведённого в третью степень, то есть в “куб”.

vksvo­vko
[1.6K]

6 лет назад 

4/3*Пи*радиус в кубе.

это и есть объем шара.

Есть ещё один интересный способ – опустить его в измерительную емкость с водой, и сколько он вытеснит воды столько и его объем. таким способом можно измерять любой предмет.

Знаете ответ?

Объем шара через радиус

{V= dfrac{4}{3} pi R^3}

На этой странице вы можете рассчитать объем шара. Предлагаем вам 4 формулы и калькуляторы для них. Различаются они исходными данными. Вы можете найти объем шара зная его радиус, диаметр, длину окружности или площадь поверхности. Просто введите значение в калькулятор и получите мгновенный результат.

Шар – это геометрическое тело, состоящее из точек пространства, которые удалены от центра на одинаковое расстояние. Это расстояние называют радиусом шара.

Содержание:
  1. калькулятор объема шара
  2. формула объема шара через радиус
  3. формула объема шара через диаметр
  4. формула объема шара через длину окружности
  5. формула объема шара через площадь поверхности
  6. примеры задач

Формула объема шара через радиус

Объем шара через радиус

{V = dfrac{4}{3} pi R^3}

R – радиус шара

Формула объема шара через диаметр

Объем шара через диаметр

{V = dfrac{1}{6} pi D^3}

D – диаметр шара

Формула объема шара через длину окружности

Эта формула легко выводится из формулы объема шара через его радиус и формулы для нахождения длины окружности {L = 2pi r}

Объем шара через длину окружности

{V = dfrac{L^3}{6 pi^2}}

L – длина окружности

Формула объема шара через площадь поверхности

Объем шара через площадь поверхности

{V = sqrt{ dfrac{S^3}{36 pi}}}

S – площадь поверхности

Примеры задач на нахождение объема параллелепипеда

Задача 1

Найдите объем шара радиус которого равен 12см.

Решение

Используем формулу шара через радиус. Просто подставим в нее значение радиуса шара и вычислим объем.

V = dfrac{4}{3} pi R^3 = dfrac{4}{3} pi cdot 12^3 = dfrac{4}{3} pi cdot 1728 = dfrac{4 cdot 1728}{3} pi = 2304 cdot pi : см^3 approx 7238.22947 : см^3

Ответ: 2304 cdot pi : см^3 approx 7238.22947 : см^3

Чтобы убедиться в правильности решения задачи, воспользуемся калькулятором .

Задача 2

Найдите объем шара диаметр которого равен 12см.

Решение

В этой задаче воспользуемся формулой шара через диаметр.

V = dfrac{1}{6} pi D^3 = dfrac{1}{6} pi cdot 12^3 = dfrac{1}{6} pi cdot 1728 = dfrac{1728}{6} pi = 288 pi : см^3 approx 904.77868 : см^3

Ответ: 288 pi : см^3 approx 904.77868 : см^3

И снова в проверке ответа нам поможет калькулятор .

Задача 3

Найдите объем шара диаметр которого равен 6см.

Решение

Эта задача аналогична задаче 2.

V = dfrac{1}{6} pi D^3 = dfrac{1}{6} pi cdot 6^3 = dfrac{1}{6} pi cdot 216 = dfrac{216}{6} pi = 36 pi : см^3 approx 113.09734 : см^3

Ответ: 36 pi : см^3 approx 113.09734 : см^3

И снова в проверке ответа нам поможет калькулятор .

football-157930_640.png

Рис. (1). Футбольный мяч

Шар — это геометрическое тело.

Предметы, имеющие форму шара, окружают нас очень часто.

Форму шара имеет мяч (футбольный, теннисный, баскетбольный).

Представление о шаре дают арбуз, апельсин, горошина.

Шарообразна и наша планета Земля.

Шар характеризует длина радиуса и диаметра.

Lode2.png

Рис. (2). Шар

Перед нами изображение шара с центром в точке (O). Все точки поверхности шара находятся на одинаковом расстоянии от его центра.

Это означает, что если мы выберем на поверхности три любые точки, например, точку (A), точку (B) и точку (C), соединим их с центром шара, то полученные отрезки будут равны ((OA = OB = OC)).

Такие отрезки называют радиусами.

(OA) — радиус шара, (OB) — радиус шара и (OC) — также радиус шара.

Так как центр шара можно соединить с бесконечно многими точками на поверхности шара, то можно провести бесконечно много радиусов.

Радиус шара — это отрезок, который соединяет точку поверхности шара и его центр.

На чертеже отрезок (AB) соединяет две точки поверхности шара и проходит через его центр.

Отрезок (AB) — это диаметр шара. Заметим, что отрезок (AB) состоит из двух отрезков (OA) и (OB).

Эти отрезки являются радиусами шара.

Поэтому диаметр шара в два раза больше его радиуса.

Диаметром шара называется отрезок, соединяющий две точки поверхности шара и проходящий через его центр.

Есть название и для поверхности шара. Её называют сферой.

Для шара можно вычислить объём по формуле:

Для сферы можно вычислить поверхность по формуле:

Источники:

Рис. 1. Футбольный мяч. Указание авторства не требуется, 2021.06.03, бесплатно для коммерческого использования,, https://pixabay.com/images/id-157930/
Рис. 2. Шар. © Якласс 

Добавить комментарий