Как найти объем сосуда с идеальным газом

Уравнение состояния идеального газа – основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения

Произведение числа Авогадро на постоянную Больцмана k называют универсальной газовой постоянной (R): R=k 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) k на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния () в состояние () (рис. 30.1).

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Разделив обе части первого уравнения на , а второго — на , получим: . Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды () давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния () в состояние (T), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство p. После сокращения на T получим: .

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: . Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния () в состояние (), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство . После сокращения на p получим:

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным p

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния () в состояние (), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство . После сокращения на V получим:

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно:

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза:

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Разделив уравнение (2) на уравнение (1) и учитывая, что получим: где Найдем значение искомой величины:

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): — универсальная газовая постоянная.
  3. Уравнение Клапейрона:
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:
Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Уравнение состояния идеального газа

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона — Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

Уравнение состояния идеального газа

Внимание! При решении задач важно все единицы измерения переводить в СИ.

Пример №1. Кислород находится в сосуде вместимостью 0,4 м 3 под давлением 8,3∙10 5 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

Из основного уравнения состояния идеального газа выразим массу:

Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона — Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

Подсказки к задачам

Важна только та масса, что осталась в сосуде. Поэтому:

Давление возросло на 15% p2 = 1,15p1
Объем увеличился на 2% V2 = 1,02V1
Масса увеличилась в 3 раза m2 = 3m1
Газ нагрелся до 25 о С T2 = 25 + 273 = 298 (К)
Температура уменьшилась на 15 К (15 о С) T2 = T1 – 15
Температура уменьшилась в 2 раза
Масса уменьшилась на 20% m2 = 0,8m1
Выпущено 0,7 начальной массы
Какую массу следует удалить из баллона? Нужно найти разность начальной и конечной массы:
Газ потерял половину молекул
Молекулы двухатомного газа (например, водорода), диссоциируют на атомы
Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ) M (O3) = 3Ar (O)∙10 –3 кг/моль M (O2) = 2Ar (O)∙10 –3 кг/моль
Открытый сосуд Объем V и атмосферное давление pатм остаются постоянными
Закрытый сосуд Масса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ— постоянные величины
Нормальные условия Температура T0 = 273 К Давление p0 = 10 5 Па
Единицы измерения давления 1 атм = 10 5 Па

Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

2,8 МПа = 2,8∙10 6 Па

1,5 МПа = 1,5∙10 6 Па

Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

Преобразим уравнения и получим:

Приравняем правые части и выразим искомую величину:

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На высоте 200 км давление воздуха составляет примерно 10 –9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

Уравнение состояния идеального газа

Содержание:

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона». Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Уравнение состояния идеального газа

Уравнение состояния идеального газа – это p = nkT называется уравнением Менделеева Клапейрона и оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа давления, объёма и температуры. Поэтому уравнение Менделеева Клапейрона называется ещё уравнением состояния идеального газа.

Термодинамические параметры газа

В предыдущих главах было показано, что при описании свойств газа можно пользоваться величинами, характеризующими молекулярный мир (микромир), например энергией молекулы, скоростью ее движения, массой и т. п. Числовые значения таких величин мы можем определять только с помощью расчета. Все такие величины принято называть микроскопическими (от греческого «микрос» — малый).

Однако для описания свойств газов можно пользоваться и такими величинами, числовые значения которых находят простым измерением с помощью приборов, например давлением, температурой и объемом газа. Значения таких величин определяются совместным действием огромного числа молекул, поэтому они называются макроскопическими (от греческого «макрос» — большой).

Соотношение (4.1): устанавливает связь между микроскопическими и макроскопическими величинами для газов. Поэтому формулу (4.1) называют основным уравнением молекулярно-кинетической теории газов. Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа. Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Если взять определенную массу газа т, то при постоянных р, V и Т газ будет находиться в равновесном состоянии. Когда происходят изменения этих параметров, то в газе протекает тот или иной процесс. Если этот процесс состоит из ряда непрерывно следующих друг за другом равновесных состояний газа, то он называется равновесным процессом. Равновесный процесс должен протекать достаточно медленно, так как при быстром изменении параметров давление и температура не могут иметь соответственно одинаковые значения во всем объеме газа. В этой главе рассматриваются только равновесные процессы в газах, при которых масса газа остается постоянной.

Когда процесс в газе заканчивается, то газ переходит в новое состояние, а его параметры приобретают новые постоянные числовые значения, вообще говоря, отличные от их значений в начале процесса. Если же при постоянной массе газа значения всех его параметров в начале и в конце процесса окажутся одинаковыми, то процесс называется круговым или замкнутым.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом. Газовый закон, выражающий связь между всеми тремя параметрами газа, называется объединенным газовым законом.

Отметим еще, что такого процесса в газе, при котором изменялся бы только один параметр газа, не существует, так как значения этих параметров взаимосвязаны. Примером сказанного является закон Шарля, выражающий связь между р и Т.

Объединенный газовый закон. Приведение объема газа к нормальным условиям

Связь между давлением, объемом и температурой определенной массы газа устанавливается с помощью соотношения (4.9):

Поскольку обозначает число молекул в единице объема газа, то , где N — общее число молекул, V — объем газа. Тогда получим

Так как при постоянной массе газа N остается неизменным, — постоянное число, т. е.

Поскольку значения р, V и Т в (5.2) относятся к одному и тому же состоянию газа, можно следующим образом сформулировать объединенный газовый закон: при постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Следовательно, если числовые значения параметров в начале процесса, происходящего с какой-либо определенной массой газа, обозначить через р1 , V1 и Т1, а их значения в конце процесса соответственно через р2 , V2 и Т2, то

Формулы (5.2) и (5.3) представляют собой математическое выражение объединенного газового закона.

На практике иногда нужно установить, какой объем V0 займет имеющаяся масса газа при нормальных условиях, т. е. при Т0=273 К и при р0=1,013 . 10 5 Па. Если значения параметров для этой массы газа в каком-либо произвольном состоянии, отличном от нормального, обозначить через р, V и Т, то на основании (5.3) получаем , или

Формула (5.4) позволяет приводить объем заданной массы газа к нормальным условиям.

Молярная газовая постоянная. Определение числового значения постоянной Больцмана

Формула (5.1) справедлива для любой массы газа, в которой содержится N молекул. Если применить эту формулу к одному молю какого-либо газа, то N нужно заменить постоянной Авогадро NA, а V — объемом одного моля Vмоль

Так как в одном моле любого газа содержится одно и то же число молекул NA, то произведение имеет одинаковое значение для всех газов, т. е. не зависит от природы газа. Произведение обозначается R и называется молярной газовой постоянной. Таким образом,

Числовое значение R можно найти, если применить (5.5) к состоянию одного моля газа при нормальных условиях, так как при этом м 3 /моль (§ 3.6). Действительно,

Это числовое значение R в СИ необходимо запомнить, так как им часто пользуются при расчетах и при решении задач.

Теперь легко найти числовое значение постоянной Больнмана . Из (5.6) получаем . Подставляя сюда числовые значения R и , вычисляем :

Уравнение Клапейрона — Менделеева. Плотность газа

Выясним, как будет выглядеть соотношение (5.1), если в него ввести молярную газовую постоянную R. Так как N — полное число молекул в массе газа т, а — число молекул в одном моле, то

где — число молей в массе газа /т. Поэтому

Поскольку , а равно массе газа т, деленной на массу одного моля газа , то получаем

Соотношение (5.7) называется уравнением Клапейрона — Менделеева или уравнением состояния для произвольной массы идеального газа. Для одного моля идеального газа уравнение Клапейрона — Менделеева принимает вид

С помощью формулы (5.7) легко выяснить, какими величинами определяется плотность газа. Так как , то из (5.7) имеем

Зависимость средней квадратичной скорости молекул газа от температуры

Выясним теперь, как можно с помощью вычислений находить среднюю квадратичную скорость движения молекул газа . Поскольку средняя кинетическая энергия поступательного движения молекул газа равна (3/2) , то можно написать , откуда

Отметим, что под т в формуле (5.10) подразумевается масса одной молекулы в кг. Так как , получим . Поскольку а есть масса одного моля газа (§ 3.6), имеем

Наконец, из (5.9) следует, что , поэтому

Среднюю квадратичную скорость можно находить по любой из формул (5.10)—(5.12). Из функции Максвелла можно получить формулы для средней арифметической скорости и наивероятнейшей скорости. Средняя арифметическая скорость

Наконец, наивероятнейшую скорость вычисляют так:

(Используя график функции Максвелла (рис. 3.3), поясните, почему меньше , а меньше

Изохорический процесс

Процессы, при которых масса газа и один из его параметров остаются постоянными, называются изопроцессами (от греческого «изос» — равный, одинаковый). Поскольку имеется три параметра газа, существует три различных изопроцесса. Первый из них (изохорический) рассмотрен выше (§ 4.3). Процесс в газе, который происходит при постоянной массе и неизменном объеме, называется изохорическим (от греческого «хора» — пространство). Графики для этого процесса называются изохорами (рис. 4.3).

Отметим, что к любому изопроцессу применим объединенный газовый закон и формулы (5.3), (5.7) и (5.8) с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объем V, поэтому формула (5.3) после сокращения на V принимает вид

Итак, изохорический процесс подчиняется закону Шарля: при постоянной-массе газа и неизменном объеме давление газа прямо пропорционально его абсолютной температуре. Это видно и из уравнения Клапейрона — Менделеева (5.7):

Так как V, т, и R остаются постоянными, то из (5.7) следует, что р пропорционально Т. Отметим, что закон Шарля можно формулировать и так, как это было сделано в § 4.3.

Изобарический- процесс

Процесс в газе, который происходит при постоянной массе и неизменном давлении, называется изобарическим (от греческого «барос» — тяжесть). Этот процесс был изучен французским физиком Л. Гей-Люссаком в 1802 г.

Поскольку при изобарическом процессе р постоянно, то после сокращения на р формула (5.3) принимает вид

Формула (5.16) является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объем газа прямо пропорционален его абсолютной температуре. (Это видно и из уравнения Клапейрона — Менделеева (5.7): так как р, т, и R постоянны, то объем V пропорционален Т.)

На рис. 5.1 схематически изображен опыт Гей-Люссака. Колба с газом помещается в сосуд с водой и льдом.

В пробку вставлена трубка, изогнутая таким образом, что свободный конец ее горизонтален. Газ в колбе отделен от окружающего воздуха небольшим столбиком ртути в трубке. Температуру газа определяют по термометру, а объем — по положению столбика ртути. Для этого на трубке нанесены деления, соответствующие определенному внутреннему объему трубки (при градуировке трубки можно учесть и расширение сосуда при нагревании, но оно сравнительно мало’).

Сначала по положению столбика ртути 1 определяют — объем газа при 0°С. Затем газ нагревают (столбик ртути перемещается в положение 2), в процессе нагревания записывают значения объема и температуры и строят график, который называется изобарой.

Оказывается, что изобара представляет собой прямую линию (рис. 5.2, а), которая пересекается с осью абсцисс в точке А.

Из подобия треугольников на рис. 5.2, а следует

Обозначив через , получим

Здесь — коэффициент объемного расширения газа (гл. 13).

Если повторять этот опыт для разных газов или для разных масс газа, то все графики будут пересекаться в точке А, соответствующей t=—273°С (рис. 5.2, б), т. е. коэффициент одинаков для всех газов. Это означает, что расширение газа при изобарическом процессе не зависит от его природы.

Отметим, что для газов коэффициенты и в формулах (4.2а) и (5.17) численно одинаковы, поэтому обычно пользуются одним .

Изотермический процесс

Процесс в газе, который происходит при постоянной температуре, называется изотермическим.

Изотермический процесс в газе был изучен английским ученым Р. Бойлем и французским ученым Э. Мариоттом. Установленная ими опытным путем связь получается непосредственно из формулы (5.3) после сокращения на Т:

Формула (5.18) является математическим выражением закона Бойля — Мариотта: при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объема газа на соответствующее давление есть величина постоянная:

Соотношение (5.19) можно получить и из (5.7) или (5.8), так как при постоянном Г справа в формулах (5.7) и (5.8) стоит постоянная величина. График зависимости р от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рис. 5.3 изображены три изотермы для одной и той же массы газа, но при разных температурах Т.

Отметим еще, что из формулы (5.9) непосредственно вытекает, что при изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

(Подумайте, как проверить закон Бойля — Мариотта на опыте.)

Внутренняя энергия идеального газа

Как отмечалось, силы взаимодействия молекул в идеальном газе отсутствуют. Это означает, что молекулярно-потенциальной энергии у идеального газа нет. Кроме того, атомы идеального газа представляют собой материальные точки, т. е. не имеют внутренней структуры, а значит, не имеют и энергии, связанной с движением и взаимодействием частиц внутри атома. Таким образом, внутренняя энергия идеального газа представляет собой только сумму знамений кинетической энергии хаотического движения всех его молекул:

Поскольку у материальной точки вращательного движения быть не может, то у одноатомных газов (молекула состоит из одного атома) молекулы обладают только поступательным движением. Так как среднее значение энергии поступательного движения молекул определяется соотношением(4.8): , то внутренняя энергия одного моля одноатомного идеального газа выразится формулой , где — постоянная Авогадро. Если учесть, что , то получим:

Для произвольной массы одноатомного идеального газа имеем

Если молекула газа состоит из двух жестко связанных атомов (двухатомный газ), то молекулы при хаотическом движении приобретают еще и вращательное движение, которое происходит вокруг двух взаимно перпендикулярных осей. Поэтому при одинаковой температуре внутренняя энергия двухатомного газа больше, чем одноатомного, и выражается формулой

Наконец, внутренняя энергия многоатомного газа (молекула содержит три или больше атомов) в два раза больше, чем у одно-атомного при той же температуре:

поскольку вращение молекулы вокруг трех взаимно перпендикулярных осей вносит в энергию теплового движения такой же вклад, как поступательное движение молекулы по трем взаимно перпендикулярным направлениям.

Отметим, что формулы (5.23) и (5.24) теряют силу для реальных газов при высоких температурах, так как при этом в молекулах возникают еще колебания атомов, что ведет к увеличению внутренней энергии газа. (Почему это не относится к формуле (5.22)?)

Работа газа при изменении его объема

Физический смысл молярной газовой постоянной. Опыт показывает, что сжатый газ в процессе своего расширения может выполнять работу. Приборы и агрегаты, действия которых основаны на этом свойстве газа, называют пневматическими. На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и т. д.

Представим себе цилиндр с подвижным поршнем, заполненный газом (рис. 5.4).

Пока давление газа внутри цилиндра и окружающего наружного воздуха одинаковы, поршень неподвижен. Пусть при этом температура газа и окружающей среды равна а давление равно р.

Будем теперь медленно нагревать газ в цилиндре до температуры . Газ при этом начинает изобарически расширяться (внешнее давление р остается постоянным), и поршень переместится из положения 1 в положение 2 на расстояние . При этом газ совершит работу против внешней силы. Сила F, совершающая эту работу, будет равна рS, где S — площадь сечения цилиндра. Из механики известно, что работа выражается формулой , или . Так как есть приращение объема газа в процессе его изобарического нагревания от до , имеем

Нетрудно сообразить, что при изохорическом процессе работа газа равна нулю, так как никакого изменения объема, занятого газом, в этом случае не происходит. Вообще следует помнить, что газ выполняет работу только в процессе изменения своего объема, т. е. при . Отметим, что при расширении газа работа газа положительна; при сжатии газа положительную работу выполняют внешние силы, а работа газа в этом случае отрицательна.

Выясним, как можно определить работу газа по графику зависимости р от V в том или ином газовом процессе. При изобарическом процессе график зависимости р от V представляет собой прямую линию, параллельную оси абсцисс, так как р постоянно. Из рис. 5.5 видно, что работа газа в этом случае численно равна заштрихованной площади.

Выясним, как найти работу газа при изотермическом процессе. На рис. 5.6 изображена изотерма идеального газа. При таком процессе газ выполняет работу, так как в этом случае отлично от нуля. Формулу (5.25) здесь применять нельзя, так как она верна при постоянном давлении р, а в изотермической процессе р изменяется. Однако можно взять такое малое приращение объема , при котором изменением давления можно пренебречь. Тогда приближенно можно считать, что при увеличении объема газа на давление остается постоянным. Работу при этом можно вычислять по формуле . На рис. 5.6 она выражается заштрихованной площадью.

Разбивая интервал на множество интервалов , настолько малых, что работу на каждом из них можно вычислять по формуле , полную работу газа найдем как сумму элементарных работ . Это означает, что работа газа будет равна сумме площадей, подобных заштрихованной площади на рис. 5.6. Следовательно, работа газа при изотермическом процессе выражается площадью, ограниченной двумя ординатами и , отрезком оси абсцисс и графиком зависимости р от V.

Можно строго доказать, что работа газа при любом процессе выражается площадью, ограниченной двумя ординатами, отрезком оси абсцисс и графиком того процесса в координатах V и р.

Выясним теперь физический смысл молярной газовой постоянной R. Применяя формулу (5.25) к одному молю идеального газа, получим

Но из уравнения Клапейрона — Менделеева (5.8) для одного моля можно записать для двух состояний газа:

Подставляя это выражение в (5.26), будем иметь , или

Из (5.27) следует, что молярная газовая постоянная численно равна работе, совершаемой одним молем идеального газа при его изобарическом нагревании на один кельвин.

Из соотношения видно, что постоянная Больцмана показывает, сколько работы в среднем приходится на одну молекулу идеального газа при изобарическом нагревании на один кельвин.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

[spoiler title=”источники:”]

http://natalibrilenova.ru/uravnenie-sostoyaniya-idealnogo-gaza/

[/spoiler]

Идеальный газ:
— теоретическая модель, широко применяемая для описания свойств и поведения реальных газов при умеренных давлениях и температурах;
— газ, взаимодействие между молекулами которого пренебрежимо мало;
— математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией.

Общие сведения

В модели идеального газа:

    • предполагается, что составляющие газ частицы не взаимодействуют друг с другом, то есть их размеры пренебрежимо малы, поэтому в объёме, занятом идеальным газом, нет взаимных столкновений частиц. Частицы идеального газа претерпевают столкновения только со стенками сосуда;
    • между частицами газа нет дальнодействующего взаимодействия, например, электростатического или гравитационного;
    • упругих столкновений между молекулами и стенками сосуда в рамках молекулярно-кинетической теории приводит к термодинамике идеального газа.

Модель идеального газа имеет широкое применения в ряде задач, например в инженерных расчетах (аэродинамический, гидравлический, теплотехнический и т.д.), связанные с воздухом и другими газами, при давлении и температуре близких к нормальным (стандартным) условиям.

При условиях сильно отличных от нормальных (стандартных) условий модель идеального газа дает результаты с погрешностью так, как модель не учитывает:

    • притяжение между молекулами;
    • конечные размеры молекул.

При высоких давления газа следует использовать различные варианты уравнений реальных газов, разработанных на базе модели идеального газа.  Наиболее из известных уравнений реального газа — полуэмпирическое уравнение Ван-дер-Ваальса.

Основные уравнения состояние идеального газа

Уравнения состояния идеального газа служат для получения неизвестных параметров идеального газа или газов схожих по свойствам с моделью идеального газа.

В данном разделе будут рассмотрены варианты уравнение состояния идеального газа на основе уравнения Менделеева — Клапейрона (или уравнение Клапейрона).

P⋅VM=R⋅T или P⋅V=(m/M)⋅R⋅T

Эти уравнение имеет наибольшее практическое значение при инженерных расчетах.  Но так же существуют другие варианты записи уравнения состояния идеального газа.

Основными параметрами идеального газа служат:

    • давление идеального газа (Р), Па;
    • температура идеального газа (T), °К;
    • объем идеального газа (V), м3;
    • молярная масса идеального газа (M), кг/моль;
    • количества идеального газа (n), моль;
    • масса идеального газа (m), кг;
    • молярный объем (VM), м3/моль;

Другие физические величины используемые в уравнении состояния идеального газа:

    • плотность идеального газа (ρ), кг/м3.

Калькуляторы параметров идеального газа

Калькулятор молярного объема идеального газа

Согласно закону Авогадро, одинаковые количества газов при одинаковых условиях занимают одинаковый объём. Молярный объём идеального газа рассчитается по формуле:

VM=(R⋅T)/P

Введите универсальную газовую постоянную (Run0)

Введите температуру газа (T0)

Введите давление газа (абсолютного) (PA0)

Результат расчета молярного объема газа (Vm0)

Формула расчета молярного объема газа:

Скачать результат расчета молярного объема газа:


Поделится ссылкой на расчет молярного объема:

Если по калькулятору, приведенному выше, посчитать молярный объем газа при нормальных условиях:

    • давление Р=101325 Па;
    • температура Т=273,15 ºК.

В результате получится молярный объем идеального газа при нормальных условиях равный 22,413971 литр/моль (частный случай закона Авогадро).

Молярные объёмы реальных газов и идеального газа для практических вычислений имеют не значительные отклонения и принимаются равными .

Калькулятор давления идеального газа

При решении инженерных задач часто необходимо определять давление газа в технических устройствах, для решения задачи по организации технологии, для выполнения расчета на прочность технических устройств или просто для выполнения гидравлических (аэродинамических расчетов).

Расчет давления газа, если известны:

    • масса газа;
    • объем занимаемый газом (внутри сосуда, трубопровода или другого устройства);
    • молярная масса газа;
    • температура газа,

выполняется по формуле:

P=(m⋅R⋅T)/(M⋅V)

Введите универсальную газовую постоянную (Run2)

Введите температуру газа (T2)

Введите молярную массу газа (Mg2)

Результат расчета давления газа (абсолютного) (PA2)

Формула расчета давления газа (абсолютного):

Скачать результат расчета давления газа (абсолютного):


Поделится ссылкой на расчет давления:

Калькулятор температуры идеального газа

Температуру газа необходимо обычно рассчитывать для:

    • возможности принятия технологических решения;
    • возможности проведения расчета на прочность технологического оборудования;
    • расчета теплоизоляции оборудования и защиты персонала от повышенной или пониженной температуры.

Расчет температуры газа, если известны:

    • масса газа;
    • объем занимаемый газом (внутри сосуда, трубопровода или другого устройства);
    • молярная масса газа;
    • абсолютное давление газа.

выполняется по формуле:

T=(P⋅M⋅V)/(m⋅R)

Введите давление газа (абсолютное) (PA3)

Введите молярную массу газа (Mg3)

Введите универсальную газовую постоянную (Run3)

Результат расчета температуры газа (T3)

Формула расчета температуры газа:

Скачать результат расчета температуры газа:


Поделится ссылкой на расчет температуры:

Калькулятор объема идеального газа

Расчет объем занимаемый газом (внутри сосуда, трубопровода или другого устройства), если известны:

    • масса газа;
    • давление газа;
    • молярная масса газа;
    • температура газа,

выполняется по формуле:

V=(m⋅R⋅T)/(M⋅P)

На основе этого уравнения, так же находят объемный расход газа при различных условиях.

Введите универсальную газовую постоянную (Run4)

Введите температуру газа (T4)

Введите молярную массу газа (Mg4)

Введите давление газа (абсолютного) (PA4)

Результат расчета объема газа (V4)

Формула расчета объема газа:

Скачать результат расчета объема газа:


Поделится ссылкой на расчет объема:

Калькулятор массы идеального газа

Масса газа рассчитывают для:

    • решения технологических задач;
    • возможности проведения расчета на прочность технологического оборудования и трубопроводов (сбор нагрузок);
    • на опасных производственных объектах с опасными веществами для расчета массы опасных веществ для возможности идентификации производственного объекта, как ОПО.

Расчет массы газа, если известны:

    • абсолютное давление газа;
    • молярная масса газа;
    • объем занимаемый газом (внутри сосуда, трубопровода или другого устройства);
    • температура газа,

выполняется по формуле:

m=(P⋅M⋅V)/(T⋅R)

Введите давление газа (абсолютное) (PA5)

Введите молярную массу газа (Mg5)

Введите температуру газа (T5)

Введите универсальную газовую постоянную (Run5)

Результат расчета массы газа (m5)

Формула расчета массы газа:

Скачать результат расчета массы газа:


Поделится ссылкой на расчет массы:

Калькулятор плотности идеального газа

Расчет плотности газа, если известны:

    • абсолютное давление газа;
    • молярная масса газа;
    • температура газа,

выполняется по формуле:

ρ=(P⋅M)/(T⋅R)

Введите давление газа (абсолютное) (PA6)

Введите молярную массу газа (Mg6)

Введите температуру газа (T6)

Введите универсальную газовую постоянную (Run6)

Результат расчета плотности газа (pl6)

Формула расчета плотности газа:

Скачать результат расчета плотности газа:


Поделится ссылкой на расчет плотности :

Калькулятор параметров идеального газа системы исходя из разных состояний системы

Выполняется по формуле:

P1⋅V1/T1=P2⋅V2/T2=P3⋅V3/T3=…=const

Рассмотрим изменение параметров системы по двумя состояниям:

P1⋅V1/T1=P2⋅V2/T2

Калькулятор давления идеального газа

P1=(P2⋅V2⋅T1)/(T2⋅V1)

Введите давление газа (абсолютное) (Pg2)

Введите температуру газа (Tg1)

Введите температуру газа (Tg2)

Результат расчета давления газа (абсолютного) (Pg1)

Формула расчета давления газа (абсолютного):

Скачать результат расчета давления газа (абсолютного):


Поделится ссылкой на расчет давления:

Калькулятор температуры идеального газа

T3=(P3⋅V3⋅T4)/(P4⋅V4)

Введите давление газа (абсолютное) (Pg3)

Введите температуру газа (Tg4)

Введите температуру газа (абсолютное) (Pg4)

Результат расчета температуры газа (Tg3)

Формула расчета температуры газа:

Скачать результат расчета температуры газа:


Поделится ссылкой на расчет температуры:

Калькулятор объема идеального газа

V5=(P6⋅V6⋅T5)/(P5⋅T6)

Введите давление газа (абсолютное) (Pg6)

Введите температуру газа (Tg5)

Введите давление газа (абсолютное) (Pg5)

Введите температуру газа (Tg6)

Результат расчета объема газа (Vg5)

Формула расчета объема газа:

Скачать результат расчета объема газа:


Поделится ссылкой на расчет объема:

Поделиться ссылкой:

Законы идеальных газов. Изопроцессы

Здесь рассматривается модель идеального газа, типичные процессы, которые с ней производятся: изотермический, изобарный, изохорный.


В статье рассматривается модель идеального газа и типичные процессы, которые с ней производятся: изотермический, изобарный, изохорный. Основную часть статьи представляют собой задачи с решениями, а в конце есть домашние задания.

Введение

В первую очередь хочется поговорить про идеальный газ. Что же он из себя представляет и почему он идеален?

Идеальный газ — теоретическая математическая модель газа, в которой пренебрегают размерами частиц и не учитывают силы взаимодействия между ними, предполагая, что их средняя кинетическая энергия много больше энергии их взаимодействия. Считается, что столкновения частиц газа между собой и со стенками сосуда абсолютно упругие.

Существует модель классического идеального газа, свойства которого описываются законами классической физики, и модель квантового идеального газа, подчиняющегося законам квантовой механики. Обе модели идеального газа справедливы для реальных классических и квантовых газов при достаточно высоких температурах и разряжениях.

В реальных же газах при некоторых расчетах мы не можем пренебрегать вышеуказанными приближениями. Например, вы можете столкнуться с газом Ван-дер-Ваальса, в уравнении которого есть поправка на объем и давление.

Какими величинами можно охарактеризовать состояние идеального газа?

Считая, что нам известен химический состав газа и его масса, для описания его состояния мы можем воспользоваться такими параметрами, как объем V, занимаемый газом, давление Р, температура Т. Связь между этими параметрами идеальных газов отражают четыре основных закона: закон Бойля — Мариотта, закон Гей-Люссака, закон Шарля и закон Клапейрона — Менделеева. Пользуясь уравнениями, описывающими эти законы, можно решать практически любые задачи, в которых нас интересует физическое состояние идеального газа.

Среди различных газовых процессов можно выделить такие, в которых одна из величин (TP или V) поддерживается постоянной.

Изотерма

Изотермическими называются процессы, в которых температура постоянна: Т = const. Такие процессы, описывает закон Бойля — Мариотта:

PV₁ = PV₂,

где индексы 1 и 2 относятся к начальному и конечному состояниям газа.

Одним из основополагающих знаний про изопроцессы, в частности, для понимания темы и для решения задач, является вид графиков этих процессов в разных координатах.

Законы идеальных газов. Изопроцессы, изображение №1

Задача. Посредине узкой, запаянной с обоих концов горизонтальной трубки (рис. 2) находится столбик ртути длиной h = 25 см. Ртуть разделяет в трубке два столба воздуха длиной l₀ = 1 м каждый. Давление воздуха 76 см. рт. ст., температура остается постоянной. На какое расстояние х переместится столбик ртути, если трубку поставить вертикально?

Законы идеальных газов. Изопроцессы, изображение №2

Решение. Рассмотрим отдельно два столбика воздуха в стоящей вертикально трубке и применим закон Бойля — Мариотта к каждому из них (площадь сечения трубки S):

(1) PlS = P₁(l₀ + x)S,

(2) PlS = P₁(l₀ – x)S.

Из условия механического равновесия столбика ртути следует, что при вертикальном положении трубки давление в нижнем столбе воздуха равно

P₂ = P₁ + ρgh,

(ρ — плотность ртути). Подставив это значение P₂ в (2), получим квадратное уравнение, решив которое, найдем, что

Законы идеальных газов. Изопроцессы, изображение №3

(Отрицательное значение корня не имеет смысла).
Интересно отметить, что при вычислении неизвестного х нам не нужны сведения о плотности ртути ρ, а также о соотношениях между единицами давления. Дело в том, что по определению давление Р, которое создает 1 см. рт. ст., равно P = ρg · 1 см. Следовательно, P / ρg = 76 см без каких-либо дополнительных пересчетов.

Изобара

В изобарных процессах постоянно давление (P = const). Закон, описывающий этот процесс, называется законом Гей-Люсакка:

V₁ / T₁ = V₂ / T₂.

Графики при изобарном процессе:

Законы идеальных газов. Изопроцессы, изображение №4

Изохора

При изохорном процессах постоянным поддерживается объем газа (V = const), и закон, описывающий этот процесс, носит название закона Шарля:

P₁ / T₁ = P₂ / T₂.

Законы идеальных газов. Изопроцессы, изображение №5

Примеры

Законы идеальных газов. Изопроцессы, изображение №6

Рассмотрим теперь одну графическую задачу.

Задача. С идеальным газом происходит циклический процесс, график которого в координатах «давление-объем» приведен на рисунке (участок графика 2–3 — изотерма). Построить графики зависимости P(T) и V(T) для этого процесса.

Решение. Исследуем отдельно все участки процесса: 1–2, 2–3 и 3–1. Как видно из данного в условии графика, процесс 1–2 является изохорическим с ростом давления.

Законы идеальных газов. Изопроцессы, изображение №7

Поэтому на графиках P(T) и V(T) ему отвечают прямая, продолжение которой проходит через начало координат, и горизонтальная прямая соответственно, причем и давление, и температура в этом процессе растут (участки 1–2).

Процесс 2–3 является изотермическим (это говорится в условии) с ростом объема газа и убыванием давления. Поэтому на графиках P(T) и V(T) ему отвечают вертикальные прямые: убывающая на графике P(T) и растущая на графике V(T) (участки 2–3). Как следует из рисунка, процесс 3–1 является изобарическим, в нем объем газа убывает. Поэтому ему отвечают горизонтальная прямая на графике P(T) и прямая, продолжение которой проходит через начало координат, на графике V(T). Поскольку, совершив процесс 1–2–3–1, газ возвращается в первоначальное состояние, все графики должны быть замкнуты. Это значит, что соответствующие прямые должны попасть в начальную точку 1 (участки 3–1).

Рассмотрим еще несколько задач.

Задача. Определить температуру газа, находящегося в закрытом сосуде, если при нагревании газа на ΔT = 1 °С давление газа увеличивается на величину, составляющую α часть от первоначального давления (α = 0,004).

Решение. Так как объем сосуда в рассматриваемом процессе не меняется, то давление и температура газа в нем связаны законом Шарля. Из этого закона для начального и конечного состояния газа имеем:

Законы идеальных газов. Изопроцессы, изображение №8

Решая это уравнение, находим:

Законы идеальных газов. Изопроцессы, изображение №9

Задача. Во фляжке вместимостью 0,5 л находится 0,3 л воды. Турист пьет из неё воду, плотно прижав губы к горлышку так, что во фляжку не попадает наружный воздух. Сколько воды удастся выпить туристу, если он может понизить давление оставшегося во фляжке воздуха до 80 кПа.

Решение. Согласно условию задачи, исходный объем воздуха во фляжке V₁ = 0,2 л, а исходное давление равно атмосферному P₁ = 100 кПа. Если считать процесс поглощения воды туристам изотермическим, то, конечно, объем воздуха можно найти из закона Бойля-Мариотта:

Законы идеальных газов. Изопроцессы, изображение №10

Таким образом, объем воздуха во фляжке увеличится на 0,05 л = 50 см³ — именно такой объем воды и сможет выпить турист.

Из сказанного ясно, что параметры, определяющие состояние данной массы газа, неизменного химического состава (РV и Т) и связаны друг с другом. Если известны две величины, можно найти третью.

Уравнение, определяющее связь температуры, объема и давления, называют уравнением состояния газа, или, в честь открывших его ученых, уравнением Менделеева-Клапейрона. Подробнее о нем мы расскажем в следующей статье.

Задачи для самостоятельного решения

Задачи разделены на 3 уровня Л — легкий, С — средний, П — повышенный.

Задача 1. (Л). При увеличении давления в 1.5 раза объем газа уменьшился на 30 мл. Найти первоначальный объем газа. (90 мл)

Задача 2. (Л). Какой объем займет газ при температуре 77 ℃, если при температуре 27 ℃ его объем был 6л? (7 л)

Задача 3. (C). С идеальным газом происходит процесс, график которого в координатах «давление-объем» приведен на рисунке. Определить отношение максимальной и минимальной абсолютных температур газа в течение всего процесса. Все необходимые величины приведены на рисунке, k и n — известные числа. (T / T = nk)

Законы идеальных газов. Изопроцессы, изображение №11

Задача 4. (C). Построить эквивалентные графики в P(T) и V(T) координатах.

Законы идеальных газов. Изопроцессы, изображение №12

Задача 5. (П). Водяной паук Серебрянка строит в воде воздушный домик, перенося на лапках и брюшке пузырьки атмосферного воздуха и помещая их под купол паутины, прикрепленный концами к водяным растениям. Сколько рейсов надо сделать пауку, чтобы на глубине 50 см построить домик объемом 1 см³, если каждый раз он берет 5 мм³ воздуха под атмосферным давлением? (N = 210 раз)

А.Ю. Рудь

Список литературы

  1. Буховцев Б. Законы идеальных газов // Квант. №5. Квант. М., 1972.
  2. Гельфгат И.М. 1001 задача по физике с решениями. М., 1998.
  3. Савельев И.В. Курс общей физики. Т.1. Механика, колебания и волны, молекулярная физика. М., 1970.
  4. Черноуцан А. Учебно-справочное пособие для старшеклассников и абитуриентов. М., 2000.

Random converter

  • Калькуляторы
  • Термодинамика — теплота

Калькулятор закона состояния идеального газа (давление–объем–температура–количество)

Illustration

Калькулятор закона состояния идеального газа определяет одну из четырех величин, входящих в уравнение состояния (давление, объем, температура или количество), если известны три другие величины.

Пример: Рассчитать давление в паскалях в 70-литровом баке работающего на метане автомобиля, если в нем хранится 800 молей метана при 30 °С.

Еще несколько примеров решения задач о состоянии идеального газа под приводится калькулятором.

Выберите неизвестную величину для решения уравнения состояния идеального газа:

PVTn

Абсолютное давление

P

Объем

V

Температура

T

ИЛИ

Поделиться ссылкой на этот калькулятор, включая входные параметры

Для расчета выберите неизвестную величину и введите три известные величины из четырех имеющихся в уравнении состояния газа (давление, объем, температура, количество). Четвертая величина будет рассчитана после нажатия на кнопку Рассчитать. Количество можно ввести в молях или указать молярную массу и массу газа. Для определения молярной массы любого газа можно использовать калькулятор молярной массы. Если нужно определить молярную массу смеси газов, например, сухого воздуха, нужно определить молярные массы каждого газа и умножить их на процентное содержание по массе каждого газа в воздухе.

Примеры решения задач по уравнению состояния идеального газа (уравнению Менделеева — Клапейрона)

Определения и формулы

Идеальный газ

Закон идеального газа

Закон Бойля — Мариотта (T=const, n=const)

Закон Авогадро (T=const, P=const)

Закон Гей-Люссака (P=const, n=const)

Закон Шарля (или второй закон Гей-Люссака) (V=const, n=const)

Примеры решения задач по уравнению состояния идеального газа (уравнению Менделеева — Клапейрона)

Задача 1: Плотность воздуха при нормальных условиях (температура 0 °С и атмосферное абсолютное давление 100 кПа) составляет 1,28 кг/м³. Определить среднюю молярную массу воздуха.

Решение: Поскольку плотность воздуха задана, это означает, что в калькулятор можно ввести массу одного кубического метра воздуха, равную 1,28 кг. Введите в калькулятор данные:

  • Выберите n (Количество в молях) в селекторе Выберите неизвестную величину.
  • Введите абсолютное давление P = 100 кПа.
  • Введите объем V = 1 м³.
  • Введите температуру T = 0 °C.
  • Нажмите кнопку Рассчитать.
  • Калькулятор покажет количество молей в 1 м3 воздуха.
  • Введите массу воздуха m = 1,28 кг и нажмите кнопку Рассчитать.
  • Калькулятор рассчитает молярную массу воздуха M = 0,029 кг/моль

Задача 2: Молярная масса газа кислорода (O₂) M = 32 г/моль. Определить абсолютную температуру 128 г. кислорода, находящегося в 10-литровом сосуде под давлением P = 3 МПа.

Решение: Нажмите кнопку Reset и введите в калькулятор данные задачи:

  • Выберите T (Температура) в селекторе Выберите неизвестную величину.
  • Введите молярную массу кислорода N = 32 г/моль.
  • Введите массу кислорода m = 128 г.
  • Калькулятор рассчитает количество кислорода в молях.
  • Введите объем V = 4 л и давление P = 3 МПа.
  • Нажмите кнопку Рассчитать.
  • Считайте температуру в кельвинах.

Задача 3: В сосуде высокого давления находится газ под давлением P = 0.5 МПа при температуре T = 15 °С. Объем газа V = 5 л. Рассчитать объем этой массы газа при нормальных условиях (P = 100 кПа, T = 0 °С).

Решение: Нажмите кнопку Reset и введите в калькулятор данные задачи:

  • Выберите T (Температура) в селекторе Выберите неизвестную величину.
  • Введите давление P = 500 кПа.
  • Введите температуру T = 15 °C.
  • Введите объем V = 5 л.
  • Нажмите кнопку Рассчитать.
  • Калькулятор рассчитает количество в молях, которое будет использовано в следующем шаге.
  • Выберите Объем в селекторе Выберите неизвестную величину.
  • Введите температуру и давление P = 100 kPa, T = 0 °C (нормальные условия) и нажмите кнопку Рассчитать.
  • Калькулятор рассчитает новый объем газа V = 23.69 л при нормальных условиях.

Задача 4: Рассчитать давление в паскалях в 70-литровом баке работающего на метане автомобиля, если в нем хранится 12,8 кг метана (молярная масса 16 г/моль) при 30 °С.

Определения и формулы

Идеальный газ

Идеальный газ — теоретическая модель, в которой газ представляется в виде множества свободно движущихся частиц бесконечно малого размера, которые взаимодействуют друг с другом абсолютно упруго, то есть при столкновении двух частиц их кинетическая энергия не изменяется и не превращается ни в какую другую форму энергию, например, в потенциальную энергию или в тепло. Считается, что суммарный размер частиц настолько мал, что занимаемый ими объем в сосуде пренебрежимо мал. Эта теоретическая модель полезна, так как она упрощает многие расчеты, а также в связи с тем, что идеальный газ подчиняется законам классической механики. Идеальный газ можно представить себе в виде множества абсолютно твердых сфер, которые только сталкиваются друг с другом и больше никак не взаимодействуют.

В обычных условиях, например, при стандартных условиях (при температуре 273,15 К и давлении в 1 стандартную атмосферу) большинство реальных газов ведут себя как идеальный газ. В общем случае, газ ведет себя как идеальный при низком давлении и высокой температуре, когда расстояния между молекулами газа относительно велики. В этих условиях потенциальная энергия вследствие действия межмолекулярных сил намного меньше кинетической энергии частиц. Размер молекул также незначителен по сравнению с расстоянием между ними. Идеальная модель не работает при низких температурах и высоких давлениях, а также для тяжелых газов. При понижении температуры и повышении давления реальный газ может стать жидкостью или даже перейти в твердое состояние, то есть может произойти фазовый переход. В то же время, модель идеального газа не допускает жидкого или твердого состояния.

Закон идеального газа

Идеальный газ, как и любой другой газ, можно охарактеризовать четырьмя переменными и одной константой, а именно:

  • давление (P),
  • объем (V),
  • количество в молях (n),
  • температура (T), and
  • универсальная газовая постоянная (R)

Эти четыре переменные и одна константа объединены в приведенном ниже уравнении, которое называется уравнением состояния идеального газа:

Formula

Это уравнение также известно под названием закона идеального газа и уравнения Менделеева — Клапейрона или уравнения Клапейрона, так как уравнение было впервые выведено в 1834 г. французским инженером Эмилем Клапейроном (1799–1864). О вкладе Д. И. Менделеева — чуть ниже. В этом уравнении:

  • Pабсолютное давление, измеряемое в СИ в паскалях (Па),
  • V — объем, измеряемый в СИ в кубических метрах (м³),
  • n — количество вещества (газа) в молях (сокращение моль). Один моль любого вещества в граммах численно равен средней массы одной молекулы в соединении, выраженной в атомных единицах массы. Например, один моль кислорода с атомной массой 16 соответствует 16 граммам. Один моль идеального газа при стандартных условиях занимает 22,4 литра.
  • Tабсолютная температура.
  • Rуниверсальная газовая постоянная, являющаяся физическим коэффициентом пропорциональности уравнения состояния идеального газа.

Приведенное выше уравнение показывает, что при нулевой абсолютной температуре получается нулевой объем. Однако это не означает, что объем реального газа действительно исчезает. При очень низких температурах все газы становятся жидкостями и уравнение идеального газа к ним неприменимо.

Универсальная газовая постоянная соответствует работе, выполненной при расширении одного моля идеального газа при нагревании на 1 К при постоянном давлении. Размерность постоянной — работа на количество вещества на температуру. Постоянная в точности равна 8,31446261815324 Дж⋅К⁻¹⋅моль⁻¹. Универсальная газовая постоянная также определяется как произведение числа Авогадро NA и постоянной Больцмана k:

Formula

Входящая в уравнение состояния идеального газа универсальная газовая постоянная была предложена и введена в уравнение Дмитрием Менделеевым в 1877 г. Поэтому уравнение состояния идеального газа в литературе на русском языке и ее переводах на другие языки, называется уравнением Менделеева — Клапейрона.

Количество газа в молях часто бывает удобно заменить массой газа. Количество газа в молях n, его масса m в граммах и молярная масса M в граммах на моль связаны формулой:

Formula

Заменяя в уравнении состояния идеального газа n на m/M, имеем:

Formula

Для определения молярной массы элемента, его относительная атомная масса умножается на коэффициент молярной массы в кг/моль

Formula

Например, молярная масса кислорода как элемента в единицах системы СИ

Formula

Если ввести в уравнение состояния идеального газа плотность ρ = m/V, мы получим:

Formula

Теперь введем понятие удельной газовой постоянной, которая представляет собой отношение универсальной газовой постоянной R к молярной массе M:

Formula

Например, удельная газовая постоянная сухого воздуха приблизительно равна 287 Дж·кг⁻¹·К⁻¹. Подставив удельную газовую постоянную в уравнение состояния идеального газа, получим:

Formula

Закон идеального газа объединяет четыре более простых эмпирических газовых закона, открытых в XVII–XIX вв. несколькими учеными, которые аккуратно измеряли свойства газа. Простые газовые законы можно также вывести из уравнения состояния идеального газа (PV=nRT). Поскольку в этом уравнении R является постоянной величиной, можно записать

Formula

Поскольку PV/NT — постоянная величина, можно записать это иначе:

Formula

Здесь индексы 1 и 2 показывают начальное и конечное состояние газа в системе. Мы будем использовать это уравнение ниже при описании четырех газовых законов.

Отметим, что исторически именно эмпирические законы поведения газа, описанные ниже, привели к открытию обобщенного закона состояния идеального газа. Эти законы были открыты несколькими учеными, которые проводили эксперименты, изменяя только две переменные состояния газа и оставляя две другие переменные постоянными.

Закон Бойля — Мариотта (T=const, n=const)

Роберт Бойль

Роберт Бойль

Изменим предыдущее уравнение с учетом, что количество газа в молях n и его температура Т остаются неизменными:

Formula

или

Formula

Эдм Мариотт

Эдм Мариотт

Это закон Бойля — Мариотта, описывающий зависимость объема V фиксированного количества газа в молях n от давления P при постоянной температуре T. Давление фиксированной массы газа при неизменной температуре обратно пропорционально его объему. Закон был сформулирован англо-ирландским химиком и физиком Робертом Бойлем в 1662 г. В России и континентальной Европе это закон называют законом Бойля — Мариотта с учетом вклада в открытие закона французского физика и священника Эдма Мариотта.

Закон Авогадро (T=const, P=const)

Амедео Авогадро

Амедео Авогадро

Если температура и давление остаются неизменными, можно записать

Formula

Это закон Авогадро, указывающий, что при неизменных температуре и давлении равные объемы любых газов содержат одинаковое количество молекул. Это уравнение показывает, что, если количество газа увеличивается, объем газа пропорционально растет. Иными словами, количество атомов или молекул газа не зависит от их размеров или от молярной массы газа. Закон назван в честь итальянского ученого Амедео Авогадро, который опубликовал гипотезу об отношениях объема газа и его количества в молях в 1811 году. Число Авогадро также носит его имя.

Закон Гей-Люссака (P=const, n=const)

Жак Шарль

Жак Шарль

При постоянном давлении объем фиксированного количества газа в молях пропорционален абсолютной температуре системы с газом.

Formula

В англоязычной литературе этот закон называется законом объемов и законом Шарля. Закон описывает как расширяется любой газ при увеличении его абсолютной температуры. Закон был сформулирован в неопубликованной работе французским ученым Жаком Шарлем в 80-х гг. XVIII в. Его соотечественник Жозеф Луи Гей-Люссак опубликовал этот закон в 1803 г. и указал, что приоритет открытия принадлежит Жаку Шарлю. Поэтому этот закон в литературе не на английском языке часто называют законом Гей-Люссака. В русскоязычной литературе закон носит имя Гей-Люссака. Итальянцы называют этот закон первым законом Гей-Люссака (ит. prima legge di Gay-Lussac).

Закон Шарля (или второй закон Гей-Люссака) (V=const, n=const)

Жозеф Луи Гей-Люссак

Жозеф Луи Гей-Люссак

Закон Шарля (называемый также вторым законом Гей-Люссака) гласит, что давление фиксированного количества газа в молях при его неизменном объеме прямо пропорционально абсолютной температуре газа:

Formula

Закон был сформулирован Гей-Люссаком в 1802 г. В литературе на других языках этот закон также называют законом Амонтона по имени французского ученого Гийома Амонтона, который на сто лет раньше обнаружил количественную зависимость объема газа от его температуры. Иногда закон называют вторым законом Гей-Люссака и законом Шарля, так как сам Гей-Люссак считал, что закон открыт Шарлем. Закон зависимости давления от температуры был также независимо открыт английским физиком Джоном Дальтоном в 1801 г. Итальянцы называют этот закон вторым законом Вольта–Гей-Люссака (ит. seconda legge di Volta – Gay-Lussac), потому что итальянец Алессандро Вольта независимо проводил исследования газов и получил аналогичные результаты.

При нагревании воздуха в оболочке воздушного шара его плотность уменьшается и становится меньше плотности окружающего воздуха; в результате шар приобретает положительную плавучесть

При нагревании воздуха в оболочке воздушного шара его плотность уменьшается и становится меньше плотности окружающего воздуха; в результате шар приобретает положительную плавучесть

Термодинамика — теплота

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Как вычислить объем газа

Газ, как и вещества, находящиеся в других агрегатных состояниях, имеет ряд параметров, в число которых входит и объем. Объем газа находится на основании других его характеристик, которые приведены в условии задачи. Любой газ, независимо от вида и состава, имеет объем, который и требуется найти во многих задачах.

Как вычислить объем газа

Инструкция

Газ, независимо от его состава, имеет три основных параметра: массу, объем и плотность. В большинстве задач оперируют так называемым идеальным газом, поэтому опираться в них необходимо лишь на приведенные в условии значения массы, давления, температуры. Например, в условии задачи может быть указан газ азот N2 с температурой в 60 градусов, давлением в 30 кПа и массой в 0,05 г. Зная эти три параметра и состав газа, по уравнению Менделеева-Клапейрона можно найти его объем. Для этого необходимо переделать данное уравнение следующим образом:

pV=mRT/M.

Осуществив дальнейшее преобразование формулы, найдите объем азота:

V =mRT/pM.

При этом молярную массу M можно найти по таблице Д.И. Менделеева. У азота она равна 12 г/моль. Тогда:

V=0,05*12*8,31*333/30*12≈4,61.

Если известны объем при нормальных условиях, а объем при других условиях является искомым, примените законы Бойля-Мариотта и Гей-Люссака:

pV/T=pнVн/Tн.

В таком случае преобразуйте формулу следующим образом:

pV*Tн=pнVн*T.

Отсюда объем V равен:

V=pнVн*T/p*Tн.

Индекс н означает величину того или иного параметра при нормальных условиях.

Если рассматривать объем газа с точки зрения термодинамики, можно заметить, что на газы могут действовать силы, за счет которых меняется объем. При этом давление газа постоянно, что характерно для изобарных процессов. В ходе таких процессов объем изменяется с одной величины на другую. Их можно обозначить как V1 и V2. В условиях ряда задач описывается некоторый газ, находящийся под поршнем в сосуде. При расширении этого газа поршень передвигается на некоторое расстояние dl, в результате чего осуществляется работа:

A=pdV=p(V2 -V1).

Эта формула связывает изменение объема газа и работу. Как известно, если дан конечный объем V2, то можно найти начальный объем V1:

V1=pV2-A/p.

Наконец, наиболее просто найти объем газа, исходя из двух других физических параметров – массы и плотности. Если в условиях задан газ с некоторой плотностью и массой, то его объем следует вычислять по формуле:

V=m/ρ.

У каждого газа имеется определенная плотность, как и у любого твердого или жидкого вещества. Поэтому, находя объем газа, в первую очередь необходимо учитывать именно этот параметр.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий