Объем треугольной пирамиды (тетраэдра), построенной на векторах онлайн
Объём треугольной пирамиды (тетраэдра) равен (1/6) от величины смешанного произведения векторов на которых она построена:
Так как значение смешанного произведения векторов может быть числом отрицательным, а объём тетраэдра – только положительным, то при вычислении объёма треугольной пирамиды (тетраэдра), построенной на векторах, результат смешанного произведения берется по модулю:
Вычислить объём треугольной пирамиды (тетраэдра), построенной на векторах поможет наш онлайн калькулятор с описанием хода решения на русском языке.
Онлайн калькулятор. Объем пирамиды (объем тетраэдра) построенной на векторах.
Этот онлайн калькулятор позволит вам очень просто найти объем пирамиды или объем тетраэдра построенных на векторах.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление объема пирамиды построенной на векторах и закрепить пройденый материал.
Калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
Выберите каким образом задается пирамида (тетраэдр):
Введите значения векторов: Введите координаты вершин пирамиды:
Инструкция использования калькулятора для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
Ввод данных в калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора вычисления объема пирамиды (объема тетраэдра) построенной на векторах
- Между полями для ввода можно перемещаться нажимая клавиши “влево” и “вправо” на клавиатуре.
Теория. Объем пирамиды (объем тетраэдра) построенной на векторах
Определение Объем пирамиды (объем тетраэдра) построенной на векторах a , b и c равен шестой части модуля смешанного произведения векторов составляющих пирамиду:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Как рассчитать объем пирамиды по координатам вершин? Методика и пример задачи
Часто в задачах школьного курса геометрии приходится решать задания, которые требуют использования комплексного подхода. Одной из таких задач является вычисление объема пирамиды по координатам вершин. Как решить эту геометрическую задачу – ответит приведенная ниже статья.
Что представляет собой пирамида?
Говоря простыми словами, под этой фигурой понимают пространственный объект, ограниченный треугольными сторонами и одной многоугольной гранью, которая называется основанием. Многоугольное основание может быть произвольным n-угольником на плоскости, например, правильным треугольником, параллелограммом и так далее.
Вам будет интересно: Какую роль играет репродуктивная клетка животных и растений?
Любая пирамида имеет n + 1 грань, 2 * n ребер и n + 1 вершину. Вершины фигуры не являются равноправными. Так, существует единственная вершина, которая не принадлежит основанию. Она называется главной. Расстояние от нее до плоскости основания – это высота фигуры.
Пирамиды могут быть наклонными, если высота пересекает основание не в его центре, или прямыми, когда высота с основанием пересекается в геометрическом центре последнего. Также фигуры могут быть неправильными и правильными. Пирамиды правильные состоят из равноугольного и равностороннего основания и нескольких равнобедренных треугольников, которые друг другу равны.
Как рассчитывается объем пирамиды?
Прежде чем приводить методику вычисления по координатам вершин объема пирамиды, следует привести формулу, при помощи которой можно рассчитать эту величину для фигуры любого типа из рассматриваемого класса. Итак, объем пирамиды рассчитывается так:
Здесь So – это основания площадь, h – расстояние от главной вершины до основания, то есть высота пирамиды.
Таким образом, любая геометрическая задача на нахождение объема пирамиды сводится к расчету величин So и h.
Как найти объем пирамиды по координатам вершин: методика
Пирамида может быть представлена произвольным n-угольным основанием. Чтобы рассчитать его площадь, следует внимательно изучить условие задачи, в котором должно быть сказано, о каком типе n-угольника идет речь. Если это треугольник или параллелограмм, то расчет его площади по известным координатам очень прост: необходимо лишь найти векторное произведение соответствующих векторов сторон.
Вычислить высоту пирамиды также не представляет особого труда. Для этого следует из любых трех точек основания получить уравнение плоскости в общем виде, а затем нужно воспользоваться формулой расстояния между плоскостью и точкой (вершиной пирамиды). Формула имеет вид:
d = |(A * x1 + B * y1 + C * z1 + D)| / √(A2 + B2 + C2).
Здесь (x1; y1; z1) – координаты точки.
Уравнение плоскости имеет вид:
A * x + B * y + C * z + D = 0.
Задача с треугольной пирамидой
Решим задачу на примере самой простой пирамиды – треугольной. Условие простое: ниже даны координаты вершин пирамиды, объем найти нужно для фигуры, которая на этих координатах построена:
Положим, что основание пирамиды является треугольником ABC. Найдем длины векторов AB¯ и AC¯:
Векторное произведение AB¯ и AC¯ даст нам, с одной стороны, двойную площадь треугольника, то есть 2 * So, а с другой стороны, мы получим координаты нормального к плоскости вектора n¯, имеем:
n¯ = [AB¯ * AC¯] = (8; -10; -7).
Площадь треугольного основания равна полудлине вектора n¯, то есть:
So = √(82 + 102 + 72) / 2 = 7,3.
Прежде чем рассчитывать расстояние от D до плоскости ABC, необходимо записать уравнение плоскости. Три его коэффициента (A, B, C) мы уже знаем, они соответствуют координатам нормали n¯. Свободный член можно получить, подставив в уравнение координаты любой точки плоскости, например точки A, имеем:
D = -1 * (A * x1 + B * y1 + C * z1) = -1 * (8 * 1 + (-10) * 0 + (-7) * 3) = 13.
Тогда уравнение плоскости основания пирамиды принимает форму:
8 * x – 10 * y – 7 * z + 13 = 0.
Теперь применяем приведенную выше формулу для расчета расстояния от точки D(4; 3; 4) до найденной плоскости, получаем:
d = |(8 * 4 – 10 * 3 – 7 * 4 + 13)| / √(82 + 102 + 72) = 0,89.
Поскольку найденное значение расстояния d соответствует высоте пирамиды треугольной h, то можно воспользоваться формулой для объема фигуры:
V = 1 / 3 * So * h = 1 / 3 * 7,3 * 0,89 ≈ 2,166.
Полученное значение объема выражено в кубических единицах выбранной координатной системы.
[spoiler title=”источники:”]
http://ru.onlinemschool.com/math/assistance/vector/pyramid_volume/
http://1ku.ru/obrazovanie/51574-kak-rasschitat-obem-piramidy-po-koordinatam-vershin-metodika-i-primer-zadachi/
[/spoiler]
Вычисление площадей многоугольников и объемов многогранников, заданных координатами своих вершин в прямоугольной системе координат, основывается на использовании скалярного, векторного и смешанного произведений векторов.
Если параллелограмм задан в пространстве координатами своих вершин, то для вычисления его площади нужно найти координаты двух векторов, соответствующих смежным сторонам параллелограмма, а затем модуль их векторного произведения. Аналогично вычисляется площадь треугольника, равная половине модуля векторного произведения векторов, на которых он построен как на смежных сторонах.
Пример 4.2. Пусть три вершины треугольника заданы своими координатами: A(4;4;4), B(1; 2; 3), C(3; —1;2).
Для определения площади ΔABC с помощью (4.10) найдем координаты векторов AB и AC: AB = {1 — 4; 2 — 4; 3 — 4} = { — 3; —2; —1}, —1 = {3 — 4; —1 — 4; 2 — 4} = { — 1; —5; —2}.
Затем по (3.2) вычислим их векторное произведение:
Модуль этого векторного произведения равен |AB×AC| = √((—1)2 + (—5)2 + 132) = √195, и следовательно, S ΔABC = |AB×AC|/2 = √195/2 #
Для вычисления объема параллелепипеда, заданного координатами своих вершин, нужно найти координаты трех векторов, соответствующих смежным ребрам, а затем вычислить модуль смешанного произведения этих векторов. Через смешанное произведение вычисляется и объем произвольной треугольной пирамиды SABC (см. пример 3.2), поскольку он равен 1/6 объема параллелепипеда, построенного на ребрах AB, AC и AS. Таким образом, объем этой пирамиды равен VSABC = |ABACAS|/6.
Пример 4.3. Найдем объем V пирамиды SABC, заданной координатами своих вершин: A(2; —1;1), B(5; 5; 4), C(3; 2; —1), S(4;1;3).
Используя (4.10), вычисляем координаты векторов, направленных по ребрам пирамиды: AB = {5 — 2; 5 — (—1);4 — 1} = {3; 6; 3}, AC = {3 — 2; 2 — (—1); —1 — 1} = {1;3; —2},= AS {4 — 2;1 — (—1); 3 — 1} = {2;2;2}, и определяем объем с помощью смешанного произведения найденных векторов:
Рассмотрим произвольный треугольник ABC и точку D, не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC. В результате получим треугольники ADC, CDB, ABD. Поверхность ограниченная четырьмя треугольниками ABC, ADC, CDB и ABD называется тетраэдром и обозначается DABC.
Треугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра
Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.
Таким образом, тетраэдр – это простейший многогранник, гранями которого являются четыре треугольника.
Но также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.
Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.
Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле
,
где
- S – площадь любой грани,
- H – высота, опущенная на эту грань
Правильный тетраэдр – частный вид тетраэдра
Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:
- Все грани равны.
- Все плоские углы правильного тетраэдра равны 60°
- Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
- Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).
Пусть нам дан правильный тетраэдр ABCD с ребрами равными a. DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD.
Высота BM равна BM и равна
Рассмотрим треугольник BDM, где DH, являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой
, где
BM=, DM=, BD=a,
p=1/2 (BM+BD+DM)=
Подставим эти значения в формулу высоты. Получим
Вынесем 1/2a. Получим
Применим формулу разность квадратов
После небольших преобразований получим
Объем любого тетраэдра можно рассчитать по формуле
,
где ,
Подставив эти значения, получим
Таким образом формула объема для правильного тетраэдра
где a –ребро тетраэдра
Вычисление объема тетраэдра, если известны координаты его вершин
Пусть нам даны координаты вершин тетраэдра
Из вершины проведем векторы , , .
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула
Для закрепления материала рассмотрим пример использования формулы объема тетраэдра.
Объем правильного тетраэдра равен 2 см3. Найдите объем правильного тетраэдра, ребро которого в 3 раза больше ребра данного тетраэдра.
Объем правильного тетраэдра вычисляется по формуле
Тогда
Выразим куб стороны
Если сторону увеличить в 3 раза, что его куб увеличиться в 27 раз. Тогда
м
Найдем объем
Найдем объем треугольной пирамиды, вершинами которой являются точки :
M1 = ( 2, 4, 6 )
M2 = ( 2, 4, 7 )
M3 = ( 1 , -2, 0 )
M4 = ( 5, 1, 4 )
Построим векторы M4M1, M4M2 и M4M3 .
M4M1 = ( 2 – 5, 4 – 1, 6 – 4 ) = ( -3, 3, 2 )
M4M2 = ( 2 – 5, 4 – 1, 7 – 4 ) = ( -3, 3, 3 )
M4M3 = ( 1 – 5 , -2 – 1, 0 – 4 ) = ( -4 , -3 , -4 )
Рассмотрим произведение векторов M4M1, M4M2 и M4M3, составленное следующим образом : ( M4M1 x M4M2 ) * M4M3. Два первые вектора перемножаются векторно, а их результат скалярно на третий вектор. Такое произведение называется смешанным произведение трех векторов. Смешанное произведение – это число, по модулю равное объему параллелепипида построенного на векторах M4M1, M4M2, M4M3. Объем треугольной пирамиды, построенной на этих же векторах, равен 1/6 объема параллелепипеда. Найдем смешанное произведение векторов ( M4M1 x M4M2 ) * M4M3.
M4M1 x M4M2 ) * M4M3 = (далее определитель)
-3 3 2
-333 =-21
-4-3-4
V = 1/6* | ( M4M1 x M4M2 ) * M4M3 | = 1/6 * 21 = 3.5
Свои обозначения точек поставьте сами
Введите длину первой стороны треугольника в мм (миллиметрах) а =
Введите длину второй стороны треугольника в мм (миллиметрах) b =
Введите длину третьей стороны треугольника в мм (миллиметрах) с =
Введите толщину треугольника в мм (миллиметрах) h =
Как рассчитать объем треугольника по трем сторонам и толщине?
Если треугольник имеет толщину или высоту, то фактически это треугольная призма. Объем треугольной призмы в общем случае рассчитывается по формуле:
V = S х h
V — объем призмы. Объем треугольника имеющего толщину (высоту).
S — площадь треугольника
h — высота призмы. Толщина треугольника
Нахождение площади треугольника по трем сторонам
Можно воспользоваться формулой Герона:
S = √ (p (p-a) (p-b) (p-c))
p = (a+b+c) / 2
p — полупериметр треугольника;
S — площадь треугольника образованного сторонами a, b и c;
a — первая сторона треугольника;
b — первая сторона треугольника;
с — первая сторона треугольника.
Таким образом объем треугольника по сторонам и толщине равен:
V = √ (p (p-a) (p-b) (p-c)) х h
p = (a+b+c) / 2