Как найти объем треугольного многогранника формула

В данной публикации мы рассмотрим, как можно найти объем тетраэдра и разберем примеры решения задач для закрепления материала.

  • Формула вычисления объема тетраэдра

    • 1. Общая формула (через площадь основания и высоту)

    • 2. Объем правильного тетраэдра

  • Примеры задач

Формула вычисления объема тетраэдра

1. Общая формула (через площадь основания и высоту)

Объем (V) тетраэдра считается также, как и объем любой пирамиды. Он равняется одной третьей произведения площади любой грани и высоты, опущенной на нее:

Формула объема тетраэдра

Объем тетраэдра

  • S – площадь грани ABC, в данном случае выступающего в роли основания
  • h – высота, опущенная на грань ABC

2. Объем правильного тетраэдра

В правильном тетраэдре все грани являются равносторонними треугольниками. Объем данной фигуры равен одной двенадцатой произведения длины его ребра в кубе на квадратный корень из числа 2.

Объем правильного третраэдра

Объем правильного тетраэдра

Т.к. это правильный тетраэдр, все его ребра равны (AB = BC = AC = AD = BD = CD).

Примеры задач

Задание 1
Площадь одной из граней тетраэдра равна 24 см2, а высоту, опущенная на нее – 9 см. Найдите объем фигуры.

Решение:
Применим общую формулу и получаем:
Расчет объема тетраэдра

Задание 2
Дан правильный тетраэдр, ребро которого равняется 8 см. Найдите его объем.

Решение:
Воспользуемся формулой для расчета объема правильной фигуры:
Вычисление объема правильного тетраэдра

Определение тетраэдра

Тетраэдр – простейшее многогранное тело, гранями и основанием которого являются треугольники.

Онлайн-калькулятор объема тетраэдра

Тетраэдр имеет четыре грани, каждая их которых образована тремя сторонами. Вершин у тетраэдра четыре, из каждой выходит по три ребра.

Данное тело разделяется на несколько видов. Ниже приведена их классификация.

  1. Равногранный тетраэдр — у него все грани являются одинаковыми треугольниками;
  2. Ортоцентрический тетраэдр — все высоты, проведенные из каждой вершины на противолежащую грань, являются одинаковыми по длине;
  3. Прямоугольный тетраэдр — ребра, исходящие из одной вершины, образуют друг с другом угол в 90 градусов;
  4. Каркасный;
  5. Соразмерный;
  6. Инцентрический.

Формулы объема тетраэдра

Объем данного тела можно найти несколькими способами. Разберем их более подробно.

Через смешанное произведение векторов

Если тетраэдр построен на трех векторах с координатами:

a⃗=(ax,ay,az)vec{a}=(a_x, a_y, a_z)
b⃗=(bx,by,bz)vec{b}=(b_x, b_y, b_z)
c⃗=(cx,cy,cz)vec{c}=(c_x, c_y, c_z),

тогда объем этого тетраэдра это смешанное произведение этих векторов, то есть такой определитель:

Объем тетраэдра через определитель

V=16⋅∣axayazbxbybzcxcycz∣V=frac{1}{6}cdotbegin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}

Задача 1

Известны координаты четырех вершин октаэдра. A(1,4,9)A(1,4,9), B(8,7,3)B(8,7,3), C(1,2,3)C(1,2,3), D(7,12,1)D(7,12,1). Найдите его объем.

Решение

A(1,4,9)A(1,4,9)
B(8,7,3)B(8,7,3)
C(1,2,3)C(1,2,3)
D(7,12,1)D(7,12,1)

Первым шагом является определение координат векторов, на которых построено данное тело.
Для этого необходимо найти каждую координату вектора путем вычитания соответствующих координат двух точек. Например, координаты вектора AB→overrightarrow{AB}, то есть, вектора, направленного от точки AA к точке BB, это разности соответствующих координат точек BB и AA:

AB→=(8−1,7−4,3−9)=(7,3,−6)overrightarrow{AB}=(8-1, 7-4, 3-9)=(7, 3, -6)

Далее, аналогично:

AC→=(1−1,2−4,3−9)=(0,−2,−6)overrightarrow{AC}=(1-1, 2-4, 3-9)=(0, -2, -6)
AD→=(7−1,12−4,1−9)=(6,8,−8)overrightarrow{AD}=(7-1, 12-4, 1-9)=(6, 8, -8)

Теперь найдем смешанное произведение данных векторов, для этого составим определитель третьего порядка, при этом принимая, что AB→=a⃗overrightarrow{AB}=vec{a}, AC→=b⃗overrightarrow{AC}=vec{b}, AD→=c⃗overrightarrow{AD}=vec{c}.

∣axayazbxbybzcxcycz∣=∣73−60−2−668−8∣=7⋅(−2)⋅(−8)+3⋅(−6)⋅6+(−6)⋅0⋅8−(−6)⋅(−2)⋅6−7⋅(−6)⋅8−3⋅0⋅(−8)=112−108−0−72+336+0=268begin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}=
begin{vmatrix}
7 & 3 & -6 \
0 & -2 & -6 \
6 & 8 & -8 \
end{vmatrix}=7cdot(-2)cdot(-8) + 3cdot(-6)cdot6 + (-6)cdot0cdot8 – (-6)cdot(-2)cdot6 – 7cdot(-6)cdot8 – 3cdot0cdot(-8) = 112 – 108 – 0 – 72 + 336 + 0 = 268

То есть, объем тетраэдра равен:

V=16⋅∣axayazbxbybzcxcycz∣=16⋅∣73−60−2−668−8∣=16⋅268≈44.8 см3V=frac{1}{6}cdotbegin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}=frac{1}{6}cdot
begin{vmatrix}
7 & 3 & -6 \
0 & -2 & -6 \
6 & 8 & -8 \
end{vmatrix}=frac{1}{6}cdot268approx44.8text{ см}^3

Ответ

44.8 см3.44.8text{ см}^3.

Формула объема равногранного тетраэдра по его стороне

Эта формула справедлива только для вычисления объема равногранного тетраэдра, то есть такого тетраэдра, у которого все грани являются одинаковыми правильными треугольниками.

Объем равногранного тетраэдра

V=2⋅a312V=frac{sqrt{2}cdot a^3}{12}

aa — длина ребра тетраэдра.

Задача 2

Определить объем тетраэдра, если дана его сторона, равная 11 см11text{ см}.

Решение

a=11a=11

Подставляем aa в формулу для объема тетраэдра:

V=2⋅a312=2⋅11312≈156.8 см3V=frac{sqrt{2}cdot a^3}{12}=frac{sqrt{2}cdot 11^3}{12}approx156.8text{ см}^3

Ответ

156.8 см3.156.8text{ см}^3.

На нашем сайте вы можете оформить выполнение контрольных работ на заказ онлайн!

Тест по теме «Объем тетраэдра»

Объем пирамиды

{V= S cdot h}

На этой странице собраны формулы и калькуляторы для нахождения объема пирамиды. Просто введите известные данные в калькулятор и получите результат. Либо рассчитайте объем пирамиды по приведенным формулам самостоятельно.

Пирамида — многогранник, в основании которого лежит многоугольник, а остальные грани представляют собой треугольники, имеющие общую вершину.

Содержание:
  1. калькулятор объема пирамиды
  2. формула объема пирамиды
  3. объем правильной треугольной пирамиды
  4. объем правильной четырехугольной пирамиды
  5. объем правильной шестиугольной пирамиды
  6. объем правильной n-угольной пирамиды
  7. объем тетраэдра
  8. примеры задач

Формула объема пирамиды

Объем пирамиды

{V= dfrac{1}{3} S cdot h}

S – площадь основания пирамиды

h – высота пирамиды

Формула объема правильной треугольной пирамиды

Правильная треугольная пирамида – пирамида, в основании которой лежит равносторонний треугольник, а грани являются равнобедренными треугольниками.

Объем правильной треугольной пирамиды

{V= dfrac{h cdot a^2}{4 sqrt{3}}}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной четырехугольной пирамиды

Правильная четырехугольная пирамида – пирамида, в основании которой лежит квадрат, а грани являются равнобедренными треугольниками.

Объем правильной четырехугольной пирамиды

{V= dfrac{1}{3} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной шестиугольной пирамиды

Правильная шестиугольная пирамида – пирамида, в основании которой лежит правильный шестиугольник, а грани являются равнобедренными треугольниками.

Объем правильной шестиугольной пирамиды

{V= dfrac{sqrt{3}}{2} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной n-угольной пирамиды

Правильная пирамида имеет в основании правильный многоугольник (все стороны и углы равны между собой), а высота проходит через центр этого основания.

Объем правильной n-угольной пирамиды

{V= dfrac{n cdot h cdot a^2}{12 cdot tg(dfrac{180°​}{n} )}}

a – длина стороны основания пирамиды

h – высота пирамиды

n – число сторон многоугольника в основании пирамиды

Формула объема тетраэдра

Тетраэдр – правильный многогранник (четырехгранник), имеющий четыре грани, каждая из которых является правильным треугольником. У тетраэдра кроме четырех граней также 4 вершины и 6 ребер.

Объем тетраэдра

{V= dfrac{sqrt{2} a^3}{12}}

a – длина стороны тетраэдра

Примеры задач на нахождение объема пирамиды

Задача 1

Найдите объем пирамиды с высотой 2м, а основанием ее служит квадрат со стороной 3м.

Решение

Так как в основании пирамиды лежит квадрат, то воспользуемся формулой объема правильной четырехугольной пирамиды и подставим в нее значения высоты и стороны основания.

V= dfrac{1}{3} cdot h cdot a^2 = dfrac{1}{3} cdot 2 cdot 3^2 = dfrac{1}{3} cdot 2 cdot 9 = dfrac{1}{3} cdot 18 = 6 : м^3

Ответ: 6 м³

Используем калькулятор для проверки полученного ответа.

Задача 2

Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1см, а высота равна √3см.

Решение

Из условия следует, что пирамида правильная треугольная. Это значит, что для решения задачи необходимо воспользоваться формулой для правильной треугольной пирамиды. Подставим в нее значения и рассчитаем объем.

V= dfrac{h cdot a^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1}{4 sqrt{3}} = dfrac{sqrt{3}}{4 sqrt{3}} = dfrac{cancel{sqrt{3}}}{4 cancel{sqrt{3}}} = dfrac{1}{4} = 0.25 : м^3

Ответ: 0.25 см³

Для проверки с помощью калькулятора извлечем квадратный корень из 3: √3 = 1.73205. Теперь можем подставить значения в калькулятор и проверить полученный ответ.

Формулы объёма и площади поверхности. Многогранники.

Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

  1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
  2. Элементарная логика.

Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.


Куб
V=a^3 S = 6a^2
d=asqrt{3}, d- диагональ

Параллелепипед
V=S_text{OCH}h, h - высота

Прямоугольный параллелепипед
V=abc S = 2ab+2bc+2ac
d=sqrt{a^2+b^2+c^2}

Призма
V=S_text{OCH}h S = 2S_text{OCH}+

Пирамида
V=frac{1}{3}S_text{OCH}h S = S_text{OCH}+

Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

Задача 1.Объём куба равен 12. Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Решение:

Пирамида в кубе
Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб 🙂

Очевидно, их 6, поскольку у куба 6 граней.

Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше – читайте о приемах решения задач по стереометрии.

Разберем задачи, где требуется найти площадь поверхности многогранника.

Мы рассмотрим призмы и пирамиды. Начнем с призмы.

Площадь полной поверхности призмы можно найти как сумму площадей всех ее граней. А это площади верхнего и нижнего оснований плюс площадь боковой поверхности.

Площадь боковой поверхности призмы – это сумма площадей боковых граней, которые являются прямоугольниками. Она равна периметру основания, умноженному на высоту призмы.

Задача 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Многогранник на рисунке – это прямая призма с высотой 12.

P_text{OCH}=8+6+6+2+2+4=28.

Пирамида в кубе

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

S_1=6cdot 6=36 (больший квадрат), S_2=2cdot 4=8 (маленький прямоугольник), S_text{OCH}=36+8=44

Подставим все данные в формулу: и найдем площадь поверхности многогранника:

S=28cdot12+2cdot44=336+88=424.

Ответ: 424.

Задача 3. Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

Перевернем многогранник так, чтобы получилась прямая призма с высотой 1.
Площадь поверхности этой призмы находится по формуле:

P_text{OCH}=4+5+2+1+2+4=18.

Пирамида в кубе

Найдем площадь основания. Для этого разделим его на два прямоугольника и посчитаем площадь каждого:

S_1=4cdot4=16;~S_2=2cdot1=2 (большой прямоугольник), S_text{OCH}=16+2=18 (маленький прямоугольник).

Найдем площадь полной поверхности: =18cdot1+2cdot18=54

Ответ: 54

Задача 4.Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Покажем еще один способ решения задачи.

Посмотрим, как получился такой многогранник. Можно сказать, что к «кирпичику», то есть прямоугольному параллелепипеду со сторонами 4, 1 и 3, сверху приклеен «кубик», все стороны которого равны 1.

И значит, площадь поверхности данного многогранника равна сумме площадей поверхностей прямоугольного параллелепипеда со сторонами 4,1,3 и
куба со стороной 1, без удвоенной площади квадрата со стороной 1:

S=((4+1+4+1)cdot 3+2cdot 4 cdot 1)+6cdot 1-2cdot 1=42.

Почему мы вычитаем удвоенную площадь квадрата? Представьте себе, что нам надо покрасить это объемное тело. Мы красим все грани параллелепипеда, кроме квадрата на верхней его грани, где на него поставлен кубик. И у куба мы покрасим все грани, кроме этого квадрата.

Ответ: 42

Задача 5. . Основание прямой призмы – треугольник со сторонами 5 см и 3 см и углом 120° между ними. Наибольшая из площадей боковых граней равна 35 см². Найдите площадь боковой поверхности призмы.

Пирамида в кубе

Решение.

Пусть АВ = 5 см, ВС = 3 см, тогда angle{ABC}=120^{circ}

Из Delta ABC по теореме косинусов найдем ребро АС:

AC^2=AB^2+BC^2-2cdot ABcdot BC cdot cos120^{circ}

AC^2=25+9-2cdot5cdot3cdotleft(-frac{1}{2}right)=47, ~AC = 7

Отрезок АС – большая сторона Delta ABC, следовательно, ACC_1A_1 - большая боковая грань призмы.

Поэтому ACcdot CC_1=35, или 7cdot h=35, откуда h=5.

(5+3+7)cdot5=75.

Ответ: 75

Теперь две задачи на площадь боковой поверхности пирамиды.

Задача 6. Основанием пирамиды DАВС является треугольник АВС, у которого АВ = АС = 13, ВС = 10; ребро АD перпендикулярно к плоскости основания и равно 9. Найдите площадь боковой поверхности пирамиды.

Пирамида в кубе

Решение.

Площадь боковой поверхности пирамиды – это сумма площадей всех ее боковых граней.

Проведем AKperp BC, тогда BC perp DK (по теореме о 3-х перпендикулярах), то есть DК – высота треугольника DВС.

Delta ABC – равнобедренный (по условию АВ = АС), то высота АК, проведенная к основанию ВС, является и медианой, то есть ВК = КС = 5.

Из прямоугольного Delta ABK получим:

AK=sqrt{AB^2-BK^2}=sqrt{13^2-5^2}=sqrt{169-25}=sqrt{144}=12.

Из прямоугольного Delta DAK имеем:

DK=sqrt{DA^2+AK^2}=sqrt{9^2+12^2}=sqrt{81+144}=sqrt{225}=15.

Delta ADB=Delta ADC (по двум катетам), тогда S_{ADB}=S_{ADC}, следовательно

=2S_{ADB}+S_{BDC},=2cdotfrac{1}{2}cdot13cdot9+frac{1}{2}cdot10cdot15=117+75=192.

Ответ: 192

Задача 8. Стороны основания правильной четырехугольной пирамиды равны 24, боковые ребра равны 37. Найдите площадь поверхности пирамиды.

Пирамида в кубе

Решение:

Так как четырехугольная пирамида правильная, то в основании лежит квадрат, а все боковые грани – равные равнобедренные треугольники.

Площадь поверхности пирамиды равна

=pcdot h+a^2, где р – полупериметр основания, h – апофема (высота боковой грани правильной пирамиды), a – сторона основания.

Значит, полупериметр основания p = 24 cdot 2 = 48.

Апофему найдем по теореме Пифагора:

h=sqrt{37^2-12^2}=sqrt{(37-12)(37+12)}=sqrt{25cdot49}=5cdot7=35

S = 48cdot 35+24^2=1680+576=2256.

Ответ: 2256

Как решать задачи на нахождение объема многогранника сложной формы?

Покажем два способа.

Первый способ

1.Составной многогранник достроить до полного параллелепипеда или куба.
2.Найти объем параллелепипеда.
3.Найти объем лишней части фигуры.
4.Вычесть из объема параллелепипеда объем лишней части.

Второй способ.

1.Разделить составной многогранник на несколько параллелепипедов.
2.Найти объем каждого параллелепипеда.
3.Сложить объемы.

Задача 9. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

1) Достроим составной многогранник до параллелепипеда.

2) Найдем объем параллелепипеда – для этого перемножим его длину, ширину и высоту: V=9cdot 4cdot10=360

3) Найдем объем лишней части, то есть маленького параллелепипеда.

Его длина равна 9 – 4 = 5, ширина 4, высота 7, тогда его объем V_1=5cdot4cdot7=140.

4) Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры: V=360-140=220.

Ответ: 220.

Задача 10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 7, боковое ребро равно 6. Найдите объем призмы.

Пирамида в кубе

Объем призмы равен V=S_{OCH}cdot h, а так как призма прямая, то ее боковое ребро является и высотой, то есть h=6.

Основанием призмы является прямоугольный треугольник c катетами 6 и 7, тогда площадь основания

S_{OCH}=frac{1}{2}cdot ab=frac{1}{2}cdot6cdot7=21.

V=21cdot6=126.

Ответ: 126

Задача 11. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 324 см. На какой высоте будет находиться уровень воды, если ее перелить в другой сосуд, у которого сторона в 9 раз больше, чем у первого? Ответ выразите в сантиметрах.

Пирамида в кубе

Решение.

Объем призмы равен V = S_{OCH}cdot h

Воду перелили в другой такой же сосуд. Это значит, что другой сосуд также имеет форму правильной треугольной призмы, но все стороны основания второго сосуда в 9 раз больше, чем у первого.

Основанием второго сосуда также является правильный треугольник. Он подобен правильному треугольнику в основании первого сосуда. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Если все стороны треугольника увеличить в 9 раз, его площадь увеличится в 9^2 = 81 раз. Мы получили, что площадь основания второго сосуда в 81 раз больше, чем у первого.

Объем воды не изменился, V=S_1cdot h_1=S_2 cdot h_2. Так как S_2=81S_1, высота воды h_2 должна быть в 81 раз меньше, чем h_1. Она равна 324:81 = 4 (см).

Ответ: 4

Задача 12. Объем параллелепипеда ABCDA_1B_1C_1D_1. Найдите объем треугольной пирамиды ABDA_1.

Пирамида в кубе

Решение.
Опустим из вершины A_1 высоту A_1H Н на основание ABCD.

=S_{ABCD}cdot A_1H

=frac{1}{3}S_{ABD}cdot A_1H

Пирамида в кубе

Диагональ основания делит его на два равных треугольника, следовательно, S_{ABD}=frac{1}{2}S_{ABCD}.

Имеем:

ABDA_1=frac{1}{3}S_{ABD}cdot A_1H=frac{1}{3}cdotfrac{1}{2}S_{ABCD}cdot A_1H=frac{1}{6}V_{ABCDA_1B_1C_1D_1}=frac{1}{6}cdot21=3,5.

Ответ: 3,5

Задача 13. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 8, а высота равна 6sqrt{3}.

Пирамида в кубе

Решение.
По формуле объема пирамиды, .

В основании пирамиды лежит правильный треугольник. Его площадь равна S_{OCH}=frac{a^2sqrt{3}}{4}.

S_{OCH}=frac{8^2sqrt{3}}{4}=frac{64sqrt{3}}{4}=16sqrt{3}.

Объем пирамиды V=frac{1}{3}cdot16sqrt{3}cdot6sqrt{3}=16cdot6=96.

Ответ: 96

Задача 14. Через середины сторон двух соседних ребер основания правильной четырехугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объем меньшей из частей, на которые эта плоскость делит призму, если объем призмы равен 32.

Пирамида в кубе

Решение.

По условию, призма правильная, значит, в ее основании лежит квадрат, а высота равна боковому ребру.

Пусть AD=x, тогда S_{OCH}=x^2.

Так как точки М и К – середины АD и DС соответственно, то DM=DK=frac{x}{2}.

S_{MDK}=frac{1}{2}MDcdot DK=frac{1}{2}cdotfrac{x}{2}cdotfrac{x}{2}=frac{1}{8}x^2.

Площадь треугольника MDK, лежащего в основании новой призмы, составляет frac{1}{8} часть площади квадрата в основании исходной призмы.
Высоты обеих призм одинаковые. Согласно формуле объема призмы: V=S_{OCH}cdot h, и значит, объем маленькой призмы в 8 раз меньше объема большой призмы. Он равен 32:8=4.

Ответ: 4

Докажем полезную теорему.

Теорема: Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.

Доказательство:

Пирамида в кубе

Плоскость перпендикулярного сечения призмы перпендикулярна к боковым ребрам, поэтому стороны перпендикулярного сечения призмы являются высотами параллелограммов.

S=a_1l+a_2l+dots+a_nl,

S=(a_1+a_2+dots+a_n)l,

S=P_{perp}cdot l.

Больше задач на формулы объема и площади поверхности здесь.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Формулы объёма и площади поверхности. Многогранники.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Объем многогранника формула

В стереометрии изучаются свойства самых разнообразных объемных тел, в том числе приводятся доказательства формул объемов многогранников от самого простого — куба — до сложных геометрических тел с n-м количеством граней.

Определение геометрических тел

Один из разделов геометрии — стереометрия — изучает самые разнообразные пространственные фигуры и их свойства. В общем случае геометрическое тело — это часть пространства, имеющая наружные границы в виде замкнутой поверхности. Сугубо геометрическое определение описывает любую пространственную форму как компактную совокупность множества точек, каждые две из которых можно соединить отрезком и он будет полностью находиться внутри заданного ограниченного контура.

Объем произвольного многогранника

Совокупность всех точек, которые находятся на границе тела, составляет его поверхность. Кроме того, можно сказать, что любое геометрическое тело образовано множеством внутренних точек. В

иды пространственных фигур:

  • многогранники;
  • тела вращения.

Конечное число плоских многоугольников, ограничивающих пространственное тело, называется многогранником. При этом должны соблюдаться два свойства:

Формула объема правильного многогранника

  1. Любая сторона каждого из многоугольников одновременно является стороной другого многоугольника и только их двоих. Соприкасающиеся стороны называются смежными.
  2. Все многоугольники связаны между собой — от каждого из них можно проложить путь до любого другого через смежные стороны.

В геометрии многоугольники, образующие сложный пространственный многогранник, называют гранями, отрезки, образованные местом соединения двух смежных граней — ребрами, а углы, образованные соединенными в одной точке гранями — вершинами.

Общий принцип названий таких геометрических тел заключается в указании количества их сторон.

Таким образом, если число граней обозначить n, то название образуется как n-гранник:

  • 4 грани — четырехгранник;
  • 5 граней — пятигранник;
  • 6 граней — шестигранник;
  • 8 граней — восьмигранник.

Если весь многогранник находится только с одной стороны каждой своей грани, то его называют выпуклым, в противном случае — вогнутым или невыпуклым. Звездчатые многогранники, состоящие из множества правильных пространственных фигур, относятся к невыпуклым.

Отрезок, проложенный между двумя вершинами, принадлежащими разным граням и соединяющий их — диагональ многогранника.

Понятие объема

У людей давно возникла необходимость подсчитывать или отмерять необходимое количество разных веществ.

 объем фигур

При измерении жидких и сыпучих материалов это было сделать легко, поместив их в сосуд известного объема. Для определения вместимости любых пространственных форм в стереометрии было введено понятие объема. Величина, описывающая размер части пространства, которую занимает геометрическое тело, называется его объемом и обозначается латинской буквой V. Для величины объема верны две аксиомы:

  1. Полный объем любого многогранника равен сумме объемов всех его простых частей. Это свойство используется при вычислении объемов составных пространственных фигур.
  2. У равных тел и объемы равные, что доказывается принципом наложения, и при параллельном переносе их объем не изменяется.

На величину объема никак не влияет ни пространственное местонахождение тела, ни то, каким образом оно делится на части. Как физическая величина объем выражается через массу и плотность вещества.

Чтобы понять, какая из емкостей более вместительная, можно заполнить одну жидкостью, а потом перелить в другую и увидеть, сколько жидкости останется или не хватит. Но это очень неудобно, и при решении геометрических задач пользуются понятием единицы измерения объема. Она равна объему куба, длина ребра которого — это единица длины.

Исторически известны разные меры емкостей — бушель, галлон, ведро, бочка и т. п. , объем нефти и сейчас измеряется в баррелях. В СИ за единицу объема принят 1 кубический метр, равный количеству вещества, вмещаемого кубом с длиной грани 1 м. В стереометрии обычно используются кубические сантиметры.

Виды многогранников

Различают несколько условных классов пространственных фигур.

Объем прямоугольного многогранника формула

К обычным или классическим относятся параллелепипеды всех разновидностей, пирамиды и призмы. Правильными или Платоновыми телами называют отдельную группу из пяти многогранников, состоящих только из правильных многоугольников. Полуправильными или Архимедовыми телами называют усеченные Платоновы тела.

Отдельно рассматриваются сложные многогранники, такие как звездчатые, криволинейные или составленные из классических геометрических тел. Следует отметить, что одно и то же геометрическое тело может относиться к разным классам или являться частным случаем другого. Например, параллелепипед — частный случай призмы, а куб — правильный многогранник и частный случай параллелепипеда. Объем произвольных многогранников определяется как сумма объемов его простых частей.

Призма и параллелепипед

Такие многогранники всегда образованы двумя конгруэнтными основаниями, принадлежащими параллельным плоскостям, и n-м числом параллелограммов, являющихся их боковыми гранями. Если все ребра перпендикулярны основаниям призмы, то она называется прямой. У наклонной призмы величина углов между ребрами и основаниями отличается от 90º. Для правильной призмы обязательно выполнение условия — ее основание должно быть правильным многоугольником.

 объема многогранника прямоугольного параллелепипеда

Высота — важная характеристика этого многогранника, она обозначается как h и в численном выражении представляет собой длину перпендикулярного отрезка между его основаниями. У прямой призмы высота равна длине ее ребра.

Формула для призмы: V = Sо·h, где Sо — площадь основания.

Параллелепипед является частным случаем призмы с основанием в виде четырехугольного многоугольника — параллелограмма. Тела такой формы тоже могут быть прямыми или наклонными и имеют две пары противоположных граней и четыре смежных. Если в основании параллелепипеда лежит прямоугольник, а его грани перпендикулярны основаниям, то он называется прямоугольным.

Формула объема многогранника прямоугольного параллелепипеда: V = a·b·c, где a и b — длина и ширина основания, а c — высота ребра.

К другой разновидности призм относится призматоид, если его изобразить на рисунке, то легко заметить, что грани такого тела — треугольники, одна сторона которых совпадает со стороной верхнего или нижнего основания, или трапеции, основания которых совпадают со сторонами оснований призматоида. Формула Симпсона: V = h/6 x (Sо + 4S + S1), где Sо и S1 — обозначения площадей оснований, а S — площадь параллельного и равноудаленного от оснований сечения.

Разновидности пирамиды

Пирамида представляет собой многогранник, строение которого включает в себя одно основание и n-е число треугольных граней, сходящихся в одной точке — вершине. К пирамидам относится простейший многогранник — четырехгранная пирамида, сторонами которой являются треугольники. В зависимости от того, какой многоугольник является основанием пирамиды, она может быть треугольной, четырехугольной, пятиугольной и т. д. Если при этом основания — правильные фигуры

 объем формулы

Формула расчета для пирамиды: V = 1/3 x So·h, где So — площадь основания, h — высота пирамиды, соединяющая ее вершину и центр основания.

Усеченная пирамида получается, если часть полной пирамиды отсекается параллельной основанию плоскостью. Получившееся сечение образует второе основание пирамиды.

Для усеченной пирамиды: V = 1/3 x h x (S1 + √(S1·S2) +S2), где S1 — площадь нижнего, а S2 — площадь верхнего оснований.

Правильные многогранники

Платоновы тела относятся к выпуклым многогранникам, обладают пространственной симметрией и состоят из одинаковых правильных многоугольников. Тетраэдр имеет форму пирамиды и состоит из четырех равносторонних треугольников. Его объем можно вычислить по стандартной формуле для пирамиды или так: V = √2/12 x a³, где a — длина ребра.

Следующий правильный многоугольник — это гексаэдр, который обычно называется кубом, у него шесть квадратных граней, следовательно, длины всех ребер равны между собой.

Формула объема куба: V = a³, где a — длина ребра.

Октаэдр имеет восемь треугольных граней. Формула объема этого правильного многогранника: V = (a³√2)/3.

Икосаэдр состоит из двадцати треугольных граней. Формула: V = (5a³(3 + √5))/12. Додекаэдр имеет 12 пятиугольных граней, а его объем вычисляется так: V = (a³(15 + 7√5))/4.

Тела вращения

Если какую-либо плоскую геометрическую фигуру вращать вокруг оси, расположенной в той же плоскости, то получится объемное тело вращения.

 объем шара

Шар образуется при вращении круга вокруг своей оси. Если сделать оборот прямоугольника вокруг одной из его сторон, то получится цилиндр. Конус образуется вращением треугольника по линии одного из его катетов. Окружность, вращающаяся вокруг прямой, ее не пересекающей, образует тор. Объемы сложных криволинейных тел определяются по специальной формуле с помощью интеграла.

Формулы для определения объема тел вращения приведены в таблице.

Тело Формула объема
Цилиндр V = π R² h, R — радиус основания цилиндра, h — высота
Конус V = 1/3 x π R² h, R — радиус основания конуса, h — высота
Шар V = 4/3 x π R³, R — радиус, π — число пи, равное 3,14

Объемы деталей, представляющих собой составные многогранники можно вычислить с помощью онлайн-калькулятора.

Добавить комментарий