Видеоурок: закон Архимеда
Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).
Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.
В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:
где:
Описание[править | править код]
Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.
Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.
Плавание тела. Сила Архимеда () уравновешивает вес тела ():
ρж g Vж = ρт g Vт
Например, воздушный шарик объёмом , наполненный гелием, летит вверх из-за того, что плотность гелия () меньше плотности воздуха ():
Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление () и сила давления (), действующие на верхнюю грань тела, равны:
где:
Давление () и сила давления (), действующие на нижнюю грань тела, равны:
где:
Сила давления жидкости или газа на тело определяется разностью сил и :
где:
Разница давлений:
В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.
Обобщения[править | править код]
Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.
Вывод закона Архимеда для тела произвольной формы[править | править код]
Вывод через мысленный эксперимент[править | править код]
Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной [4][5][6].
Расчёт силы[править | править код]
Гидростатическое давление на глубине , оказываемое жидкостью с плотностью на тело, есть . Пусть плотность жидкости () и напряжённость гравитационного поля () — постоянные величины, а — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат , причём выберем направление оси z совпадающим с направлением вектора . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку . На неё будет действовать сила давления жидкости, направленная внутрь тела, . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:
При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.
Получаем, что модуль силы Архимеда равен , и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.
Вывод через закон сохранения энергии[править | править код]
Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:
где — масса вытесненной части жидкости, — перемещение её центра масс. Отсюда модуль вытесняющей силы:
По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:
- где — объем погружённой части тела.
Таким образом, для силы Архимеда имеем:
Условие плавания тел[править | править код]
Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:
- — тело тонет;
- — тело плавает в жидкости или газе;
- — тело всплывает до тех пор, пока не начнёт плавать.
Другая формулировка (где — плотность тела, — плотность среды, в которую тело погружено):
- — тело тонет;
- — тело плавает в жидкости или газе;
- — тело всплывает до тех пор, пока не начнёт плавать.
Примечания[править | править код]
- ↑ Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
- ↑ Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
- ↑ Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
- ↑ Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
- ↑ Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
- ↑ Buoyancy (англ.). Архивировано 14 июля 2007 года.
Ссылки[править | править код]
- Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Закон Архимеда // Энциклопедия «Кругосвет».
Содержание:
Выталкивающая сила:
Наблюдение. Почему тяжело погрузить мяч в воду, и почему, как только мы его отпустим, он выпрыгивает из воды? Почему в море легче плавать, чем в озере? Почему в воде мы можем поднять камень, а в воздухе — нет?
Опыт 1. Подвесим к пружине тело (рис. 138). В связи с тем, что на тело действует сила тяжести
Газы во многом подобны жидкостям. На тела, помещённые в газ, также действует выталкивающая сила. Именно под действием этой силы воздушные шары, метеорологические зонды, детские шарики, наполненные водородом, поднимаются вверх.
А от чего зависит выталкивающая сила ?
Опыт 2. Два тела разного объёма, но одинаковой массы, погрузим полностью в одну и ту же жидкость (воду). Мы видим, что тело большего объёма выталкивается из жидкости (воды) с большей силой (рис. 139).
Выталкивающая сила зависит от объёма погружённого в жидкость тела. Чем больше объём тела, тем большая выталкивающая сила действует на него.
Опыт 3. Погрузим полностью два тела одинакового объёма и массы в разные жидкости, например воду и керосин (рис. 140). Нарушение равновесия в этом случае свидетельствует, что в воде на тело действует большая выталкивающая сила, это можно связать с тем, что плотность воды больше, чем плотность керосина.
Выталкивающая сила зависит от плотности жидкости, в которую погружено тело. Чем больше плотность жидкости, тем большая выталкивающая сила действует на погружённое в неё тело.
Обобщая результаты наблюдений и опытов можно сделать такой вывод.
На тело, погружённое в жидкость (газ), действует выталкивающая сила, равная по значению весу жидкости (газа), вытесненной этим телом.
Это утверждение называют законом Архимеда, древнегреческого учёного, который его открыл и, по легенде, успешно применил для решения практической задачи: определил, содержится ли в золотой короне царя Гиерона примесь серебра. Силу, которая выталкивает тело из жидкости или газа, называют еще архимедовой силой.
На основе закона Архимеда можно сразу написать формулу для определения выталкивающей силы, но чтобы лучше понять, вследствие чего она возникает, выполним простые расчёты. Для этого рассмотрим тело в форме прямоугольного бруска, погружённого в жидкость таким образом, чтобы его верхняя и нижняя фан и располагались параллельно поверхности жидкости (рис. 141).
Посмотрим, каким будет результат действия сил давления на поверхность этого тела.
Согласно закону Паскаля горизонтальные силы и действующие на симметричные боковые грани бруска, попарно равны по значению и противоположно направлены. Они не выталкивают брусок вверх, а только сжимают его с боков. Рассмотрим силы гидростатического давления на верхнюю и нижнюю грани бруска.
Пусть верхняя грань площадью S расположена на глубине тогда сила давления , на неё будет равна:
где — плотность жидкости.
Нижняя грань бруска площадью S расположена на большей глубине , поэтому сила давления на неё будет также больше, чем :
Обе силы давления , и действуют вдоль вертикали, их равнодействующая и будет силой Архимеда , направленной вверх в сторону большей силы , а её значение будет равно разности сил
и : .
Поскольку разность является высотой бруска, то произведение равно объёму тела , и мы окончательно получаем формулу,
являющуюся математическим выражением закона Архимеда:
Действительно, поскольку жидкость не сжимается, то объём вытесненной телом жидкости равен объёму этого тела, и произведение равно массе жидкости в объёме тела . В свою очередь, произведение является весом этой жидкости.
Из приведённого расчета наглядно видно, что выталкивающая (архимедова) сила возникает вследствие того, что значения гидростатического давления на разных глубинах неодинаковы и возрастают с глубиной.
Архимедовую силу можно определить экспериментально.
Опыт 4. Подвесим тело к динамометру (рис. 142). На тело действует сила тяжести почти 10 Н. Погрузим тело в жидкость (рис. 143).
Динамометр показывает 6 Н. Определим разность показаний динамометра. Она равняется 4 Н.
Кстати:
Однажды у императора Цао-Цао, который правил в Китае свыше 2000 лет тому назад, возникла мысль взвесить слона. Как ни суетились сановники, никто из них не мог ничего придумать, ведь нигде не было таких гигантских весов, чтобы на них можно было взвесить слона. Когда все сановники признали свою беспомощность, пришёл человек по имени Чао Чун и сказал, что он может взвесить слона. Он попросил: «Прикажите поставить слона в большую лодку, после чего обозначьте уровень погружения лодки в воду. Снимите слона, а лодку загрузите камнями так, чтобы она погрузилась до отметки. Вес камней будет равен весу слона”. Талантливый самородок, на много лет опередивший великого Архимеда, получил за своё предложение «щедрое» вознаграждение – благосклонный кивок императора Цао-Цао.
Выталкивающая сила и закон Архимеда
При взаимодействии твердых неподвижных тел, действуя друг на друга, они только деформируются. И действие каждого из этих тел на другое характеризуется силой.
Как взаимодействуют твердое тело и жидкость
Если твердое тело взаимодействует с жидкостью, то оно проникает в жидкость. Что происходит в таком случае? Ответ на этот вопрос получим из опыта.
К резиновой нити прицепим груз и измерим длину нити, которая растягивается весом груза. Если же груз после этого опустить в воду, то станет заметным сокращение длины нити. Таким образом, вес тела в воде уменьшился. Это возможно только потому, что в жидкости на погруженное тело действует выталкивающая сила. Направление этой силы противоположно направлению действия силы тяжести.
Как рассчитать значение выталкивающей силы
Опыты показывают, что значение выталкивающей силы зависит как от характеристик погруженного тела, так и от свойств жидкости.
Возьмем металлический цилиндр и стакан, объем которого равен объему цилиндра. Прицепим их к крючку динамометра и определим вес цилиндра и стакана (рис. 110). Теперь полностью погрузим цилиндр в воду. Динамометр покажет уменьшение веса. Но если стакан полностью заполнить водой, то показания динамометра восстановятся. Таким образом, выталкивающая сила равна весу воды, объем которой равен объему тела. Если воду заменить насыщенным раствором соли в воде, то выталкивающая сила будет большей, так как большим будет вес воды, объем которой равен объему тела.
Если учесть, что вес жидкости то для расчета выталкивающей силы можно использовать формулу
где – выталкивающая сила; – плотность жидкости; – объем погруженного в жидкость тела или его части.
Зависимость, выраженная формулой для выталкивающей силы, называется законом Архимеда, сама выталкивающая сила — силой Архимеда.
От чего зависит сила Архимеда
Почему действует сила Архимеда в жидкости? Представим себе, что в жидкость погружено тело в виде прямоугольного бруска (рис. 111).
На тело, погруженное в жидкость, действует выталкивающая сила, которая равна весу жидкости в объеме погруженного тела или его погруженной части.
В результате действия силы тяжести в жидкости существует давление, которое согласно закону Паскаля действует во всех направлениях. В связи с этим на верхнюю грань бруска будет действовать сила направленная вниз.
На нижнюю грань будет действовать сила направленная вверх. Так как , то и . Равнодействующая этих сил направлена вверх. Это и будет сила Архимеда.
Действует сила Архимеда и в газах, так как в них давление тоже изменяется с высотой.
Окончательно закон Архимеда можно сформулировать так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме погруженной части тела.
В газах сила Архимеда значительно меньше, чем в жидкостях, поскольку плотность газа намного меньше плотности жидкости.
Выталкивающая сила в жидкостях и газах
Почему мяч, если его погрузить в воду и отпустить, выпрыгивает над поверхностью воды? Почему тяжелый камень, который на суше нельзя сдвинуть с места, можно легко поднять под водой? Почему корабль, севший на мель, самостоятельно не может всплыть? Попробуем разобраться.
Существование выталкивающей силы:
Подвесим к коромыслу весов два одинаковых шара. Массы шаров равны, значит, весы будут уравновешены (рис. 27.1, а). Подставим под правый шар пустой сосуд (рис. 27.1, б). Затем нальем в сосуд воду и увидим, что равновесие весов нарушится (рис. 27.1, в), — некая сила пытается вытолкнуть шар из воды.
Откуда берется эта сила? Чтобы разобраться, рассмотрим погруженный в жидкость кубик. На него со всех сторон действуют силы гидростатического давления жидкости (рис. 27.2). Силы гидростатического давления действующие на боковые грани кубика, противоположны по направлению и равны по значению, так как площади боковых граней одинаковы и эти грани расположены на одинаковой глубине. Такие силы уравновешивают друг друга. А вот силы гидростатического давления , соответственно действующие на верхнюю и нижнюю грани кубика, друг друга не уравновешивают. На верхнюю грань кубика действует сила давления : где — гидростатическое давление жидкости; S — площадь грани. Аналогично на нижнюю грань кубика действует сила давления : Нижняя грань находится на большей глубине, чем верхняя поэтому сила давления больше силы давления
Равнодействующая этих сил равна разности значений сил и направлена в сторону действия большей силы, то есть вертикально вверх. По вертикали вверх на кубик, погруженный в жидкость, действует сила, обусловленная разностью давлений на его нижнюю и верхнюю грани, — выталкивающая сила: На тело, помещенное в газ, тоже действует выталкивающая сила, но она значительно меньше выталкивающей силы, действующей на то же тело в жидкости, поскольку плотность газа намного меньше плотности жидкости. Выталкивающую силу, которая действует на тело в жидкости или газе, называют также архимедовой силой (в честь древнегреческого ученого Архимеда (рис. 27.3), который первым указал на существование этой силы и вычислил ее значение).
Расчет и вычисление силы Архимеда
Вычислим значение архимедовой (выталкивающей) силы для кубика, погруженного в жидкость (см. рис. 27.2). Вы уже знаете, что архимедова сила равна разности сил давлений жидкости на нижнюю и верхнюю грани кубика: где — сила давления жидкости на верхнюю грань кубика; — сила давления жидкости на нижнюю грань кубика. Зная , найдем выталкивающую силу: Разность глубин , на которых находятся нижняя и верхняя грани кубика, — это высота h кубика, следовательно, . Произведение площади S основания кубика на его высоту h — это объем V кубика: V= Sh, значит, формула для расчета архимедовой силы: Здесь — это масса жидкости в объеме кубика, то есть масса жидкости, объем которой равен объему кубика. Так как , то Архимедова сила равна весу жидкости в объеме кубика:
Мы рассмотрели случай с кубиком, полностью погруженным в жидкость. Однако полученный результат выполняется для тела любой формы, а также в случаях, когда тело погружено в жидкость частично (для расчетов следует брать объем погруженной в жидкость части тела). Кроме того, результат справедлив и для газов. А теперь сформулируем закон Архимеда: На тело, погруженное в жидкость или газ, действует выталкивающая сила, которая равна весу жидкости или газа в объеме погруженной части тела: где — архимедова сила; — плотность жидкости или газа; — объем погруженной части тела. Архимедова сила приложена к центру погруженной части тела и направлена вертикально вверх (рис. 27.4).
Выясняем, всегда ли на тело, погруженное в жидкость, действует архимедова сила:
Подвесим к динамометру камешек на нити. Динамометр покажет вес камешка. Подставим стакан с водой так, чтобы камешек оказался полностью погруженным в воду. Показание динамометра уменьшится. Кажется, что камешек «потерял» часть своего веса. Но никакой потери веса тела в жидкости не происходит: вес перераспределяется между подвесом (нитью) и опорой (жидкостью). Даже если архимедова сила, действующая на тело, достаточна, чтобы его удержать, и подвес не будет растянут, тело все равно не находится в состоянии невесомости, ведь оно давит на опору — жидкость. Следует отметить: когда тело плавает, его вес распределяется на воду, окружающую всю поверхность тела. Поэтому во время плавания нам кажется, что мы потеряли вес. Такие комфортные условия поддержания тяжелого тела обусловили то, что в результате эволюции самые массивные существа на Земле живут в океане (рис. 27.5).
Именно архимедова сила помогает нам поднимать в воде тяжелые камни или другие предметы, ведь часть силы тяжести, действующей на эти тела, уравновешивается не силой наших рук, а выталкивающей силой.
Однако случается, что вода не помогает поднять тело, а наоборот — препятствует этому. Это происходит, если тело лежит на дне и плотно к нему прилегает. Вода не может попасть под нижнюю поверхность тела и помочь своим давлением поднять его. В таком случае, чтобы оторвать тело от дна, нужно преодолеть не только силу тяжести, действующую на тело, но и силу давления воды на верхнюю поверхность тела (рис. 27.6). Данное явление может стать причиной трагедии: если подводная лодка опустится на глинистое дно и вытеснит из под себя воду, всплыть сама она не сможет.
Пример №1
Однородный алюминиевый брусок массой 540 г полностью погружен в воду и не касается дна и стенок сосуда. Определите архимедову силу, действующую на брусок. Анализ физической проблемы. Для вычисления архимедовой силы нужно знать плотность воды и объем бруска. Объем бруска определим по его массе и плотности. Плотности воды и алюминия узнаем из таблиц плотностей (с. 249). Задачу будем решать в единицах СИ.
Дано:
,,,
Найти:
Решение:
По закону Архимеда: По определению плотности:
Подставим выражение для объема бруска в формулу для расчетов архимедовой силы:
Проверим единицу, найдем значение искомой величины:
Ответ:
Итоги:
На тело, находящееся в жидкости или газе, действует выталкивающая (архимедова) сила. Причина ее появления в том, что давление, которое оказывает жидкость или газ на верхнюю поверхность тела, отличается от давления, оказываемого на нижнюю поверхность тела. Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, которая направлена вертикально вверх и равна весу жидкости или газа в объеме погруженной части тела:
Условия плавания тел
При приготовлении раствора соли определенной плотности хозяйки погружают в него сырое яйцо: если плотность раствора недостаточна, яйцо тонет, если достаточна — всплывает. аналогично определяют плотность сахарного сиропа при консервации.
Вы наверняка можете привести множество примеров плавания тел. Плавают корабли и лодки, деревянные игрушки и воздушные шарики, плавают рыбы, дельфины, другие существа. А от чего зависит способность тела плавать? Проведем опыт. Возьмем небольшой сосуд с водой и несколько шариков, изготовленных из разных материалов. Будем поочередно погружать тела в воду, а потом отпускать их без начальной скорости. Далее в зависимости от плотности тела возможны разные варианты (см. таблицу).
Погружение
Тело начинает тонуть и в конце концов опускается на дно сосуда. Выясним, почему это происходит. На тело действуют две силы: 1) сила тяжести (поскольку ), направленная вертикально вниз; 2) выталкивающая сила направленная вертикально вверх. Тело погружается, а это значит, что сила, направленная вниз, больше: Поскольку . После сокращения на имеем:
тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа. Вариант 2. Плавание внутри жидкости. Тело не тонет и не всплывает, а остается плавать внутри жидкости. Попробуйте доказать, что в данном случае плотность тела равна плотности жидкости:
тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа. Вариант 3. Всплытие. Тело начинает всплывать и в конце концов останавливается на поверхности жидкости, погрузившись в жидкость частично. Пока тело всплывает, архимедова сила больше силы тяжести: или: Остановка тела на поверхности жидкости означает, что архимедова сила и сила тяжести уравновешены: тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше, чем плотность жидкости или газа.
Плавание тел в живой природе
Тела обитателей морей и рек содержат в своем составе много воды, поэтому их средняя плотность близка к плотности воды. Чтобы свободно двигаться в жидкости, они должны «управлять» средней плотностью своего тела. Приведем примеры. У рыб с плавательным пузырем такое управление происходит за счет изменения объема пузыря (рис. 28.1). Моллюск наутилус (рис. 28.2), обитающий в тропических морях, может быстро всплывать и снова опускаться на дно благодаря тому, что может менять объем внутренних полостей в организме (моллюск живет в закрученной спиралью раковине). Распространенный в Европе водяной паук (рис. 28.3) несет с собой в глубину воздушную оболочку на брюшке — именно она дает ему запас плавучести и помогает вернуться на поверхность.
Пример №2
Медный шар массой 445 г имеет внутри полость объемом 450 см3. Будет ли этот шар плавать в воде? Анализ физической проблемы. Чтобы ответить на вопрос, как поведет себя шар в воде, нужно плотность шара сравнить с плотностью воды Для вычисления плотности шара следует определить его объем и массу. Масса воздуха в шаре незначительна по сравнению с массой меди, поэтому Объем шара — это объем медной оболочки и объем полости Объем медной оболочки можно определить, зная массу и плотность меди. О плотностях меди и воды узнаем из таблиц плотностей (с. 249). Задачу целесообразно решать в представленных единицах.
Дано:
,,,
Найти:
Решение:
По определению плотности:
Объем шара: — объем медной оболочки.
Таким образом,
Решим задачу по действиям. 1. Определим объем шара:
2. Зная объем и массу шара, определим его плотность:
Анализ результата: плотность шара меньше плотности воды, поэтому шар будет плавать на поверхности воды.
Ответ: да, шар будет плавать на поверхности воды.
- Заказать решение задач по физике
Итоги:
Тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа Тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше плотности жидкости или газа
Судоходство и воздухоплавание
Стальной брусок в воде тонет, а стальные корабли плавают. Нейлоновая ткань падает в воздухе, а воздушные шары, изготовленные из этой ткани, поднимаются вверх сами и поднимают гондолы с пассажирами. Почему же стальные корабли плавают в воде, а воздушные шары называют аппаратами, которые легче воздуха? Получить ответы на эти вопросы вам помогут знания об основах судоходства и воздухоплавания.
Почему плавают суда
На первый взгляд, сталь непригодна для изготовления плавучего средства: плотность стали намного больше плотности воды, поэтому стальная пластинка в воде тонет. Но если из пластинки сделать кораблик и опустить его на поверхность воды, кораблик будет плавать (рис. 29.1). Почему? Дело в том, что погруженная в воду часть кораблика вытесняет воды достаточно, чтобы архимедова сила уравновесила силу тяжести, действующую на кораблик. Другими словами, средняя плотность кораблика за счет воздуха внутри него намного меньше плотности воды. Именно поэтому кораблик плавает на поверхности воды лишь немного в нее погружаясь.
Этот принцип лежит в основе конструкции всех судов. Средняя плотность судов намного меньше плотности воды, поэтому суда плавают на ее поверхности, погружаясь на относительно небольшую часть своего объема.
Характеристики судов:
Когда новое судно спускают на воду, оно начинает погружаться. Нижняя часть судна начинает вытеснять воду, вследствие чего возникает архимедова сила. Когда архимедова сила уравновешивает силу тяжести, действующую на судно, оно прекращает погружение. Глубину, на которую погружается судно, называют осадкой. Осадка судна изменяется в зависимости от загруженности судна и от того, в речной или морской воде оно находится. Разумеется, судно нельзя перегружать.
На корпус судна нанесена ватерлиния — линия, указывающая максимально допустимую осадку судна, при которой оно может безопасно плавать (рис. 29.2). Когда судно полностью нагружено, оно находится в воде вровень с ватерлинией.
Вес воды, которую вытесняет судно, погруженное в воду до ватерлинии, то есть архимедова сила, действующая на полностью нагруженное судно, называется полным водоизмещением судна. Напомним: поскольку нагруженное судно плавает на поверхности воды, то архимедова сила, которая действует на него, по значению равна силе тяжести, действующей на судно с грузом: Самые большие суда — танкеры для нефти — имеют полное водоизмещение до 5 млн кН, то есть их масса вместе с грузом достигает 500 000 т. Если из полного водоизмещения исключить вес самого судна, то получим максимальный вес груза, который может взять на борт данное судно, то есть определим грузоподъемность судна. грузоподъемность судна — максимальный вес груза, который судно может взять на борт, — это разность между полным водоизмещением судна и его весом. Украина — морское государство. В стране есть морской и речной флот, а также порты, имеющие большое экономическое значение: Одесский, Ильичевский, Южный, Николаевский, Херсонский, Бердянский, Мариупольский.
Как осуществилась мечта человека летать
Люди уже давно используют воздушные шары (аэростаты), поднимающиеся в воздух благодаря заполнению их оболочки горячим воздухом или легким газом. На воздушный шар в воздухе действует выталкивающая сила. Средняя плотность воздушного шара меньше плотности воздуха, поэтому выталкивающая сила больше силы тяжести и шар поднимается вверх. Разность между выталкивающей (архимедовой) силой и силой тяжести представляет собой подъемную силу воздушного шара. Сейчас воздушные шары используют для метеорологических и других исследований, соревнований, перевозок пассажиров, туристических и познавательных путешествий. Воздушные шары, наполненные легким газом (в основном гелием), называют шарльерами. В последнее время распространены воздушные шары, наполненные горячим воздухом, — современные монгольфьеры (рис. 29.3). Высокую температуру воздуха внутри шара поддерживают газовые горелки, установленные в его горловине. Поскольку плотность воздуха с высотой уменьшается, воздушные шары не могут подняться на какую угодно высоту. Воздушные шары поднимаются только до той высоты, где плотность воздуха равна средней плотности шара вместе с грузом.
Пример №3
В речном порту судно взяло на борт 100 т груза. В результате осадка судна увеличилась на 0,2 м и достигла максимально допустимой. Какова площадь сечения судна на уровне ватерлинии? Анализ физической проблемы. Когда на судно взяли груз, оно увеличило осадку и дополнительно вытеснило некоторый объем воды. По закону Архимеда, вес груза равен весу дополнительно вытесненной воды: Осадка судна увеличилась всего на 20 см, значит, площадь сечения судна на уровне поверхности воды изменилась незначительно. Поэтому объем дополнительно вытесненной воды равен где h — увеличение осадки; S — площадь сечения судна на уровне ватерлинии (по условию судно достигло максимальной осадки). Порт речной, поэтому плотность воды равна Задачу следует решать в единицах СИ.
Дано:
,,
Найти:
Решение:
1. Определим массу дополнительно вытесненной воды. По закону Архимеда:
поэтому
2. Определим объем дополнительно вытесненной воды:
3. Площадь S сечения судна на уровне ватерлинии найдем через объем вытесненной воды:
Ответ:
Мы решили задачу 1 по действиям. Решите эту задачу в общем виде (получите общую формулу, найдите значение искомой величины).
Пример №4
Объем воздушного шара равен Шар натягивает трос, которым прикреплен к причалу, с силой 800 Н. После освобождения троса шар смог подняться на некоторую высоту. Какова плотность воздуха на этой высоте, если плотность воздуха у причала
Анализ физической проблемы. Шар прекратил подъем потому, что на этой высоте его средняя плотность равна плотности воздуха . Чтобы определить среднюю плотность шара, следует найти его массу. Массу шара найдем по силе тяжести, действующей на шар. Для определения силы тяжести выполним пояснительный рисунок и покажем все силы, действовавшие на шар на причале: — сила тяжести; — архимедова сила, — сила натяжения троса. Шар на причале не двигался, поэтому силы, действовавшие на него, были скомпенсированы. Задачу будем решать по действиям в единицах СИ.
Дано:
,,,
Найти:
Решение:
Силы, действовавшие на прикрепленный к причалу шар, были скомпенсированы, следовательно:
1. Найдем архимедову силу, которая действовала на прикрепленный к причалу шар:
2. Найдем силу тяжести, действующую на шар:
3. Определим массу шара:
4. По известным массе и объему шара вычислим его среднюю плотность:
5. Плотность воздуха на высоте максимального подъема шара равна средней плотности шара, потому на этой высоте
Ответ:
Итоги:
Взаимодействие тел:
Вы узнали, что причиной изменения скорости движения тел и причиной изменения формы и объема тел является взаимодействие.
Вы ознакомились с разными силами в механике.
Вы продолжили знакомство с физическими телами и веществами и узнали о физических величинах, характеризующих тело, вещество, взаимодействие.
Вы узнали о давлении жидкостей и газов, ознакомились с законом Паскаля, законом Архимеда, доказали наличие атмосферного давления.
- Условия плавания тел в физике
- Гидростатическое взвешивание в физике
- Воздухоплавание в физике
- Машины и механизмы в физике
- Атмосферное давление в физике и его измерение
- Манометры в физике
- Барометры в физике
- Жидкостные насосы в физике
План урока:
Сила Архимеда – выталкивающая сила
О жидкости, в которой нельзя утонуть
Почему не тонут корабли?
Воздухоплавание
Сила Архимеда – выталкивающая сила
Сидит на берегу рыбак с удочкой, внимательно смотрит на поплавок, ждет, когда рыбка клюнет. Вряд ли задумываются любители рыбной ловли над тем, какие законы физики используются для изготовления рыболовных снастей. Кроме лески и крючков берутся поплавок и грузило. Предназначение их совершенно противоположное. Поплавок должен плавать на поверхности воды, подергиваться при клеве. Грузило, наоборот, должно затонуть и опустить крючки на глубину, где плавает рыба.
Поплавок и грузило Источник
Простейшие явления, происходящие на воде, которые часто встречаются в жизни и взрослых, и детей, объясняются наличием внутри воды (да и любой жидкости тоже) выталкивающей силы.
Любой мяч, наполненный воздухом, будет плавать на поверхности. Не затонет и большой шар в зорбинге, даже если внутри него находится человек. Зорбинг – это современный экстремальный аттракцион на воде, иначе его называют «Водный шар». Сам шар – зорб. Однако, пройтись пешком по воде человек не сможет, хотя выталкивающая сила действует на человека тоже.
Зорбинг
Простой лабораторный опыт. Если взять динамометр, прикрепить к нему металлический цилиндр (пружина растянется под весом цилиндра), а затем опустить его в воду, показания динамометра уменьшатся. Это значит, что появилась сила, выталкивающая тело из воды, направленная вверх. Результирующая двух сил стала меньше.
Источник
Выталкивающая сила всегда направлена вверх. Какова же причина возникновения такой силы и ее происхождение?
Пусть в стакане с водой находится правильное тело – параллелепипед. Пусть площадь его основания S и высота H.
Все грани параллелепипеда находятся под водой, верхняя – на глубине h1, нижняя – h2. Сверху давление p1 = ρ g h1, а снизу – p2 = ρ g h2.. Давление p2 больше p1, так как h2 больше h1. На вертикальные грани параллелепипеда действуют одинаковые давления, стремящиеся его сжать. Значит, сила давления снизу больше силы давления сверху. Разность этих сил и является силой, выталкивающей тело из жидкости. После алгебраических преобразований получается правило вычисления выталкивающей силы.
F = F2 – F1 = p2 S – p1 S = ρж g h2 S – ρж g h1 S = ρж g S (h2 – h1). Из рисунка видно, что разность h2 – h1 равна высоте параллелепипеда H, но произведение S∙H равно объему данной фигуры Vт. Тогда, F = ρж g S H = ρж g Vт. Результирующая сила, по которой вычисляют выталкивающую силу, запишется в следующем виде:
FA = ρж g Vт
ρж – плотность жидкости.
«Эврика!» – воскликнул Архимед, понимая, от чего зависит сила, выталкивающая тела из жидкости. Конечно, это легенда, но сила носит название архимедовой, потому что Архимед впервые определил эту силу.
Источник
Легенда такова: правитель города Сиракузы на острове Сицилия был родственником Архимеда. Однажды он приказал мастеру изготовить золотую корону. Когда корона была готова, Гирон засомневался в честности мастера, заподозрив, что мастер заменил частично золото серебром или другими примесями. Герон потребовал от Архимеда установить истину.
Чтобы решить эту проблему, надо знать объем короны и объем золота той же массы. Если они совпадут, то мастер – молодец, в противном случае он – лжец.
Объем тела неправильной формы находят с помощью мензурки. Корону в мензурку не поместить. Архимед придумал, как найти объем большого тела, когда сам погрузился в ванну с водой. Он увидел, что часть воды вытекла. Возглас Архимеда «Эврика!», что значит «Нашел!», вошел во все языки мира.
Определенные таким способом объемы куска золота и короны оказались различными. Изготовитель короны был нечестен.
Случай с Архимедом послужил толчком для его дальнейших исследований поведения тела в жидкости. В его сочинении «О плавающих телах» был сформулирован закон, позволяющий определить архимедову силу. Впоследствии закону дали имя: закон Архимеда. Этот закон устанавливает связь выталкивающей силы с весом вытесненной телом жидкости.
В формуле FA = ρж g Vт произведение ρж Vт = m – это масса вытесненной жидкости, объем ее равен объему тела, вытесняющему эту жидкость. Значит,
FA = Pт, т.е. тела выталкиваются из жидкости с силой, такой же, как и вес вытесненной жидкости.
Закон легко доказывается опытным путем:
Источник
Для опыта берется ведерко Архимеда, состоящее из двух частей: полое ведерко 2 и тяжелый цилиндр 3 такого же объема, что и ведерко. Ведерко и цилиндр вместе подвешиваются к динамометру 1, показания динамометра фиксируются (рис.а). Под цилиндр помещается сливной стакан 4 (стакан с носиком, направленным вниз для слива жидкости). Жидкость в стакан первоначально налита точно до сливного носика.
В тот момент, когда цилиндр помещается в воду, она вытесняется цилиндром и сливается в сосуд 5. На цилиндр вверх действует архимедова сила, показания динамометра уменьшаются (рис.б), т.е. вес цилиндра становится меньше.
Из сосуда 5 вытесненная жидкость выливается в пустое ведерко 2 (рис. в). Когда вся вода перелита в ведерко, динамометр фиксирует первоначальный вес (рис. г). Это означает, что при помещении в воду цилиндр потерял вес, равный весу жидкости, которая вытесняется из сливного стакана.
Итак,
- на все тела, помещенные в жидкость, оказывает действие направленная вверх архимедова сила;
- архимедова сила связана с давлением, а значит, с плотностью жидкости, и объемом тела, помещенного в жидкость;
- архимедова сила не зависит от плотности изучаемого тела и глубины погружения.
О жидкости, в которой нельзя утонуть
В воде одни тела сразу тонут, а другие плавают. Тот же поплавок у рыбака держится на поверхности, а грузило плавает. Не тонет сухая древесина, но, если она долго пробудет в воде, пропитается ею, то окажется на дне. Существуют древесные породы, например, бакаут[1] (железное дерево) и черное дерево[2], тонущие в воде в сухом виде. Почему одни тела свободно плавают, а другие тонут?
На тело, помещенное в жидкость, вниз действует сила тяжести и вверх – архимедова сила. Которая из двух сил преобладает, туда и направлена равнодействующая. Тело переместится в сторону равнодействующей силы:
Источник
Следует особо обратить внимание на разницу двух из приведенных случаев. Обычно говорят, что тело плавает, независимо, где оно плавает: внутри жидкости или на поверхности. Но, если Fтяж = FA, тело плавает внутри. Если Fтяж ˂ FA, тело плавает на поверхности (тело не может выпрыгнуть из жидкости и повиснуть над ней, сила тяжести вернет его).
При сравнении формул обеих сил просматривается объяснение, при каком условии силы различны или одинаковы.
FA = ρж g Vт Fтяж = mg = ρт Vт g.
В обеих формулах есть одинаковые множители: g и Vт. Отличие в плотностях. Видно, что, если ρт ˂ ρж, то сила тяжести меньше архимедовой – тело поднимается к поверхности жидкости. Если ρт ˃ ρж, то сила тяжести больше выталкивающей – тело идет на дно. Если ρт = ρж, силы тоже равны – тело плавает между дном и поверхностью (внутри) жидкости.
Именно поэтому поплавок, который обычно полый внутри (плотность воздуха 1,29 кг/м3), плавает на воде (плотность воды 1000 кг/м3). Свинцовое грузило (плотность свинца 11 300 кг/м3) тонет.
Конечно, условия такого плавания подходят для сплошных тел. Например, стекло с плотностью 2600 кг/м3 тонет в воде, а закупоренная стеклянная бутылка плавает, потому что весь объем закрытой бутылки занимает воздух с небольшой плотностью.
Способность бутылки плавать издавна использовали мореплаватели для передачи посланий о крушениях на землю. В пустую бутылку вкладывали свиток с текстом, бутылку закупоривали и бросали за борт. Долго бутылка путешествовала по морским просторам, но когда-то все равно волнами приливов прибивалась к суше.
Средняя плотность тела человека находится в пределах от 1030 до 1070 кг/м3. Значит, в чистой воде человек без умения плавать тонет.
Есть Мертвое море, где нельзя утонуть. В этом море, как и в воде залива Кара-Богаз-Гол (в Каспийском море) и озера Эльтон не утонуть, так как в них вода содержит около 27 % солей. Соли повышают плотность воды до 1180 кг/м3, что больше плотности человеческого тела. В обычной морской воде солей 2-3 % и плотность этой морской воды 1030 кг/м3.
Мертвое море
Некоторые домохозяйки используют для определения свежести купленных куриных яиц (плотность примерно 1090 кг/м3) простой способ. Через мелкие поры в тонкой скорлупе часть жидкости сырого яйца испаряется, замещаясь воздухом. Плотность такого яйца уменьшается. Свежее более плотное яйцо в чистой воде затонет, несвежее – всплывет.
Другой пример из жизни домохозяек. Они наливают в кастрюлю с водой, где отваривают макароны, растительное масло, чтобы макароны не слипались. Как бы ни размешивали смесь масла и воды, масло всплывает наверх. Объяснить просто. Плотность масла 930 кг/м3, меньше плотности воды. Стоит ли наливать масло? Не стоит. Масло будет плавать поверх воды. Большая часть макарон будет находиться в чистой воде. Поэтому масло никак не повлияет на макароны.
Нефть, мазут, бензин всегда находятся на поверхности воды, что представляет угрозу для окружающей среды при водных катастрофах, связанных с этими веществами.
Нефть на воде
Жидкости менее плотные плавают сверху, а более плотные опускаются вниз. В жидкой ртути плавает большинство металлов, только наиболее плотные (осмий, вольфрам, иридий, золото и некоторые другие) тонут.
Интересный пример плавания представляет подводная лодка. Она может плавать на поверхности воды, внутри ее и может залечь на дно. Можно схематически показать, как это происходит.
Источник
Конструкция лодки двухкорпусная: внутренний и внешний корпусы. Внутренний корпус предназначен для технических устройств, оборудования, людей. Между внешним и внутренним корпусами находятся балластные цистерны. Когда лодке требуется погружение, открываются кингстоны – отверстия, через которые забортная вода поступает между внутренним и внешним отсеками, заполняя балластные цистерны. Сила тяжести возрастает и становится больше архимедовой. Лодка погружается.
Чтобы прекратить погружение или всплыть, цистерны под большим давлением продуваются компрессорами, вода вытесняется в океан, ее место занимает воздух. Сила тяжести уменьшается. В момент равенства силы тяжести и архимедовой лодка будет плавать внутри воды. При дальнейшем заполнении цистерн воздухом лодка всплывает.
Почему не тонут корабли?
Теперь следует объяснить плавание судов. Понятно, что корабли, изготовленные из строительного деревянного материала, плавают по волнам, так как плотность дерева меньше плотности воды. Условие плавания здесь срабатывает безоговорочно. Современные корабли изготовлены преимущественно из металлов, у которых большая плотность. Почему металлический гвоздь тонет, а корабль нет?
Кораблю придают специальную форму, чтобы он как можно больше вытеснял воды, вес которой превосходит силу тяжести судна. Этот вес равен выталкивающей (архимедовой) силе, и значит, она больше силы тяжести. Из металла делают основной корпус судна, а остальной его объем заполнен воздухом. Корпусом корабль вытесняет значительное количество воды, достаточно глубоко погружаясь в нее.
Источник
Глубину погружения судна моряки называют осадкой. После загрузки корабля его осадка увеличивается. Перегружать корабль нельзя, иначе нарушится условие плавания, корабль может затонуть. Рассчитывается максимальная осадка, на судне проводится красная линия, которую называют ватерлинией, ниже ее корабль оседать не должен.
Вес корабля с максимально взятым грузом называется водоизмещением.
Мореплавание и судостроение неразрывно связаны с историей человечества. От плотов и лодок глубокой древности к каравеллам Колумба и Магеллана, Васко де Гамы и первому российскому военному кораблю «Орел» (1665г.), от первого парохода «Клермонт», построенного Р. Фультоном в США в 1807 году, до ледокола «Арктика», созданного в России в 1975 году.
Суда используются в различных целях: для пассажирских и грузовых перевозок, для научно-исследовательских работ, для охраны границ государства.
К сожалению, с кораблями происходят и неприятности. Во время шторма или других катастроф они могут затонуть. Опять приходит на помощь закон Архимеда.
Со спасательного судна[3] на прочных стропах опускают полые цилиндры большого объема. Чтобы они затонули, их заполняют водой. Водолазы закрепляют эти цилиндры на корпусе корабля. Сжатым воздухом под большим давлением, подаваемым по шлангам, вода из цилиндров вытесняется, заменяется воздухом. Вес цилиндров резко уменьшается. Они начинают выталкиваться из воды и вместе с кораблем всплывают на поверхность.
Спасение затонувшего корабля
В судоходстве, мореплавании, спасении судов помогает закон Архимеда, как один из самых важных законов природы.
Воздухоплавание
Красивое зрелище: цветные воздушные шары на разной высоте голубого неба. Какая сила поднимает их вверх?
5 июня 1783 года во Франции братья Монгольфьер наполнили дымом оболочку шара диаметром 10 м, и он стремительно полетел ввысь. Впервые официально было зарегистрировано изобретение, показавшее путь к воздухоплаванию. 27 августа 1783 года на Марсовом поле Парижа профессор Жак Шарль наполнил шар водородом, плотность которого 0,09 кг/м3. Около трехсот тысяч зрителей увидели, как шар стремительно поднялся вверх и стал вскоре невидимым. Началась история воздухоплавания.
Человек издавна мечтал освоить воздушный океан, как птица, поднявшись в небеса. Мечта стала явью благодаря открытой архимедом силе, действующей во всех жидкостях и газах. На все тела на Земле оказывает действие выталкивающая их из воздуха сила. Для твердых тел она значительно меньше силы тяжести, на практике ее не учитывают. Для газов эта сила имеет существенное значение.
Подъемная сила летящих воздушных шаров – это разность между весом воздуха, вытесненного шаром, и весом газа в оболочке. Что значит «вытесненного газом» и откуда вытесненного. Корабль вытесняет воду из моря. Это для моря как «комар для слона», но, тем не менее, это так. Человек вытесняет воду из ванны, что уже очень заметно. Так и воздушный шар вытесняет воздух из атмосферы.
А вот имеет ли воздух вес, проверяется очень легко, даже в домашних условиях: найти середину ровной палочки или линейки, вколотить туда маленький гвоздик так, чтобы палочка могла свободно вокруг него поворачиваться. Можно подвесить палочку на нитке за середину. На края палочки повесить два одинаково надутых шара. Палочка располагается горизонтально, т.е. наблюдается равновесие. Выпустить воздух из одного шарика. Равновесие нарушается. Шарик с воздухом перевешивает.
Источник
Опыт в лабораторных условиях проводится также легко и понятно. Находится масса открытого (значит, там есть воздух) стеклянного шара (рис. а). Затем насосом откачивается из шара воздух (рис.б) и шар плотно закрывается пробкой. Новое определение массы показывает, что масса шара без воздуха меньше (рис. в). Зная массу можно найти вес воздуха.
Источник
Газ в оболочке шара должен иметь плотность заметно меньшую плотности воздуха, как и плотность тела на поверхности какой-либо жидкости меньше плотности самой жидкости. Плотность гелия 0,18 кг/м3, водорода 0,09 кг/м3, а плотность воздуха 1,29 кг/м3. Поэтому для наполнения оболочек шаров используются подобные газы.
Создать подъемную силу для воздушного шара можно уменьшением плотности воздуха.
Из анализа таблицы зависимости плотности воздуха от температуры следует вывод: с ростом температуры снижается плотность воздуха. Соответственно с повышением температуры разница между архимедовой силой и силой тяжести возрастает. Эта разница сил и является подъемной силой шара.
При подъеме температура воздуха в оболочке шара снижается. Воздух приходится нагревать, что небезопасно.
Подогрев воздуха в шаре
Полет на таких шарах осуществляется недолго. Чтобы продлить его, используют балласт – дополнительный груз, который крепится на гондоле[4] (устройство, где находятся люди и приборы для работы). Сбрасывая балласт, можно подниматься выше. Спуская воздух из оболочки, можно опускаться вниз. Спускаясь или поднимаясь в разные слои атмосферы, можно уловить движение воздушных масс и двигаться в их направлении. Но подобрать нужное направление достаточно сложно. Таким способом можно лишь немного влиять на направление движения. Поэтому воздушные шары обычно движутся по направлению ветра.
Источник
На гигантских по своим размерам шарах (20 000 – 30 000 м3) удавалось достигать стратосферы. Такие шары называют стратостатами. Гондола стратостата должна иметь пригодный для жизни человека микроклимат. Воздух и температура в стратосфере не соответствуют условиям жизни человека. Приходится специально обустраивать гондолы стратостатов.
Другие, более простые, воздушные шары называют аэростатами. Если к гондоле шара пристроить двигатель, то получится управляемый человеком аэростат, называемый дирижаблем.
Дирижабль
К сожалению, полеты аэростатов зависят от капризов природы. Однако эти устройства обладают неоспоримыми преимуществами:
- огромная подъемная сила;
- экологически чистые аппараты;
- не нуждаются в больших количествах топлива;
- зрелищны.
Поэтому эти аппараты еще долго будут служить человеку.
Словарь
1. Бакаут (железное дерево) – вечнозеленое дерево тропиков с плотностью древесина близкой к плотности чугуна.
2. Черное эбеновое дерево – вечнозеленое тропическое дерево, в ядре которого не видны годичные кольца. Ядро твердое, тяжелое. Плотность дерева 1300 кг/м3.
3. Спасательное судно – судно специального (вспомогательного) назначения, служащее для подъема на поверхность затонувших объектов или для помощи кораблям, терпящим бедствие.
4. Гондола – устройство, крепящееся к воздушному шару для помещения туда людей, различных вещей и аппаратуры.
Сила Архимеда
Из кодификатора по физике, 2020.
«1.3.5. … если тело и жидкость покоятся в ИСО, то
Теория
Архимедова (выталкивающая) сила равна:
где – плотность жидкости (кг/м3), g — ускорение свободного падения (м/с2),
— объем погруженной части тела (м3).
— Объем жидкости , вытесненной телом, равен объему погруженной части тела в жидкость
— Если тело находится полностью в жидкости, то объем жидкости , вытесненной телом, равен объему тела
Задачи
Задача 1. Груз массой 3 кг, подвешенный на тонкой нити, целиком по-гружен в воду и не касается дна сосуда (рис. 1). Модуль силы натяжения нити 10 Н. Найдите объём груза (в литрах).
Решение. На груз в воде действуют сила тяжести (), архимедова сила (FA) и сила натяжения нити (Т). Ось OY направим вверх (рис. 2). Запишем второй закон Ньютона:
где — плотность воды, которую находим из таблицы «Плотность» (см. «Справочные данные»). Тогда
Задача 2. Предмет из алюминия объемом 100 см3 подвесили к пружине и опустили в бензин. Определите силу натяжения пружины.
Решение. На тело в керосине действуют сила тяжести (), архимедова сила (FA) и сила упругости (Fупр) пружины. Ось OY направим вверх (рис. 3). Запишем второй закон Ньютона:
где — объем тела, — масса тела,
=700 кг/м3 — плотность бензина, ρ = 2700 кг/м3 — плотность алюминия, которые находим из таблицы «Плотность» (см. «Справочные данные»). Тогда
Задача 3. Стальной шарик висит на нити, привязанной к штативу. Шарик целиком погружен в керосин (рис. 4). Затем стакан с керосином заменили на стакан с водой, и шарик оказался целиком в воде (рис. 5). Как изменились при этом сила натяжения нити и сила Архимеда, действующая на шарик?
Для каждой величины определите соответствующий характер изменения:
1) увеличилась; 2) уменьшилась; 3) не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Сила натяжения нити | Сила Архимеда, действующая на шарик |
Решение. На тело в жидкости действуют сила тяжести (), архимедова сила (FA) и сила натяжения нити (T). Ось OY направим вверх (рис. 6). Запишем второй закон Ньютона:
Архимедова сила равна
где — объем тела. Тогда
Масса бруска m и его объем V не меняются, плотность жидкости ρж увеличивается (ρ1ж = 800 кг/м3 — плотность керосина, ρ2ж = 1000 кг/м3 — плотность воды, которые находим из таблицы «Плотность» (см. «Справочные данные»)).
Из уравнения (2) следует, что так как масса бруска m не меняется, а плотность жидкости ρж увеличивается, то сила натяжения нити уменьшается. Это соответствует изменению № 2.
Из уравнения (1) следует, что так как масса бруска m и его объем V не меняются, а плотность жидкости ρж увеличивается, то сила Архимеда так же увеличивается. Это соответствует изменению № 1.
Ответ: 21.
Задача 4. К динамометру подвесили тело. Показания динамометра в воздухе 12 Н, в воде — 7 Н. Определите плотность тела.
Решение. Показания динамометра — это значение силы упругости Fупр его пружины. На тело в воздухе действуют сила тяжести () и сила упругости (Fупр1) (рис. 7, а). На тело в воде действуют сила тяжести (), архимедова сила (FA) и сила упругости (Fупр2) (рис. 7, б). Ось 0Y направим вверх. Запишем второй закон Ньютона для двух случаев:
где — объем тела, ρж = 1000 кг/м3 — плотность воды, которую находим из таблицы «Плотность» (см. «Справочные данные»), ρ — плотность тела. Тогда
Автор Сакович А.Л.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Сила Архимеда» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023
Архимедова сила — выталкивающая сила, равная весу газа или жидкости в объёме погружённой части тела.
Опыт. Нам понадобятся ёмкость с ручкой и груз в форме цилиндра.
- Растяжение пружины динамометра отметим стрелкой на штативе (рис. (A)), она показывает вес тела в воздухе.
- Подставим сосуд, наполненный жидкостью, до уровня отливной трубки (рис. (B)) и поместим в него цилиндр.
- После погружения цилиндра вода выливается в мерный стакан. Её объём равен объёму цилиндрического груза (рис. (B)).
- Стрелка динамометра поднимается вверх, растяжение пружины уменьшается, что соответствует уменьшению веса тела в жидкости (рис. (C)). В этом случае на цилиндр действует сила тяжести и сила Архимеда, направленная вверх.
- Если в ведёрко вылить вытесненную из отливного стаканчика жидкость, то стрелка динамометра возвратится в начальное положение (рис. (D)).
Вывод: выталкивающая сила, действующая на погружённое в жидкость тело, равна весу жидкости, вытесненной этим телом.
Сила, выталкивающая тело из газа, также равна весу газа, взятого в объёме тела. Это и есть закон Архимеда.
Формулу можно записать в другом виде.
Выразим массу жидкости, вытесняемую телом, через её плотность и объём тела, погружённого в жидкость, тогда получим:
Согласно полученной формуле, на тело, погружённое в жидкость, действует выталкивающая сила (сила Архимеда), равная произведению плотности жидкости, ускорения свободного падения и объёма тела (или той его части, которая погружена в жидкость).
Эта формула позволяет рассчитать выталкивающую силу для тела, находящегося в газе. В этом случае плотность жидкости заменяют плотностью газа.